Exercises 3 - 6, chapter 8.8
\(f(x) = e^x; \, c = 0\) \ The
Taylor series expansion for \(e^x\)
around \(c = 0\) is given by: \[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
\] Let’s find the first few terms of this series and identify the
pattern: \[ f(x) = e^x = 1 + x +
\frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \] The
pattern here is evident: each term is \(\frac{x^n}{n!}\).
\(f(x) = \sin(x); \, c = 0\) \ The
Taylor series expansion for \(\sin(x)\)
around \(c = 0\) is given by: \[ \sin(x) = \sum_{n=0}^{\infty} (-1)^n
\frac{x^{2n+1}}{(2n+1)!} \] Let’s find the first few terms of
this series and identify the pattern: \[ f(x)
= \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots
\] The pattern here is that each term alternates in sign and
involves odd powers of \(x\), with the
coefficient being \(\frac{1}{(2n+1)!}\).
\(f(x) = \frac{1}{1 - x}; \, c =
0\) \ The Taylor series expansion for \(\frac{1}{1 - x}\) around \(c = 0\) is given by: \[ \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n
\] Let’s find the first few terms of this series and identify the
pattern: \[ f(x) = \frac{1}{1 - x} = 1 + x +
x^2 + x^3 + \dots \] The pattern here is that each term is simply
\(x^n\).
\(f(x) = \tan^{-1}(x); \, c = 0\) \
The Taylor series expansion for \(\tan^{-1}(x)\) around \(c = 0\) is given by: \[ \tan^{-1}(x) = \sum_{n=0}^{\infty} (-1)^n
\frac{x^{2n+1}}{2n+1} \] Let’s find the first few terms of this
series and identify the pattern: \[ f(x) =
\tan^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots
\] The pattern here is that each term alternates in sign and
involves odd powers of \(x\), with the
coefficient being \(\frac{1}{2n+1}\).
LS0tDQp0aXRsZTogIkRhdGEgNjA1IERpc2N1c3Npb24gMTQiDQphdXRob3I6ICJMYXVyYSBCIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpFeGVyY2lzZXMgMyAtIDYsIGNoYXB0ZXIgOC44DQoNCg0KDQogIFxpdGVtIFx0ZXh0YmZ7RnVuY3Rpb246fSBcKCBmKHgpID0gZV54OyBcLCBjID0gMCBcKSBcXA0KICAgIFRoZSBUYXlsb3Igc2VyaWVzIGV4cGFuc2lvbiBmb3IgXCggZV54IFwpIGFyb3VuZCBcKCBjID0gMCBcKSBpcyBnaXZlbiBieToNCiAgICBcWyBlXnggPSBcc3VtX3tuPTB9XntcaW5mdHl9IFxmcmFje3hebn17biF9IFxdDQogICAgTGV0J3MgZmluZCB0aGUgZmlyc3QgZmV3IHRlcm1zIG9mIHRoaXMgc2VyaWVzIGFuZCBpZGVudGlmeSB0aGUgcGF0dGVybjoNCiAgICBcWyBmKHgpID0gZV54ID0gMSArIHggKyBcZnJhY3t4XjJ9ezIhfSArIFxmcmFje3heM317MyF9ICsgXGZyYWN7eF40fXs0IX0gKyBcZG90cyBcXQ0KICAgIFRoZSBwYXR0ZXJuIGhlcmUgaXMgZXZpZGVudDogZWFjaCB0ZXJtIGlzIFwoIFxmcmFje3hebn17biF9IFwpLg0KDQogIFxpdGVtIFx0ZXh0YmZ7RnVuY3Rpb246fSBcKCBmKHgpID0gXHNpbih4KTsgXCwgYyA9IDAgXCkgXFwNCiAgICBUaGUgVGF5bG9yIHNlcmllcyBleHBhbnNpb24gZm9yIFwoIFxzaW4oeCkgXCkgYXJvdW5kIFwoIGMgPSAwIFwpIGlzIGdpdmVuIGJ5Og0KICAgIFxbIFxzaW4oeCkgPSBcc3VtX3tuPTB9XntcaW5mdHl9ICgtMSlebiBcZnJhY3t4XnsybisxfX17KDJuKzEpIX0gXF0NCiAgICBMZXQncyBmaW5kIHRoZSBmaXJzdCBmZXcgdGVybXMgb2YgdGhpcyBzZXJpZXMgYW5kIGlkZW50aWZ5IHRoZSBwYXR0ZXJuOg0KICAgIFxbIGYoeCkgPSBcc2luKHgpID0geCAtIFxmcmFje3heM317MyF9ICsgXGZyYWN7eF41fXs1IX0gLSBcZnJhY3t4Xjd9ezchfSArIFxkb3RzIFxdDQogICAgVGhlIHBhdHRlcm4gaGVyZSBpcyB0aGF0IGVhY2ggdGVybSBhbHRlcm5hdGVzIGluIHNpZ24gYW5kIGludm9sdmVzIG9kZCBwb3dlcnMgb2YgXCggeCBcKSwgd2l0aCB0aGUgY29lZmZpY2llbnQgYmVpbmcgXCggXGZyYWN7MX17KDJuKzEpIX0gXCkuDQoNCiAgIFxpdGVtIFx0ZXh0YmZ7RnVuY3Rpb246fSBcKCBmKHgpID0gXGZyYWN7MX17MSAtIHh9OyBcLCBjID0gMCBcKSBcXA0KICAgIFRoZSBUYXlsb3Igc2VyaWVzIGV4cGFuc2lvbiBmb3IgXCggXGZyYWN7MX17MSAtIHh9IFwpIGFyb3VuZCBcKCBjID0gMCBcKSBpcyBnaXZlbiBieToNCiAgICBcWyBcZnJhY3sxfXsxIC0geH0gPSBcc3VtX3tuPTB9XntcaW5mdHl9IHhebiBcXQ0KICAgIExldCdzIGZpbmQgdGhlIGZpcnN0IGZldyB0ZXJtcyBvZiB0aGlzIHNlcmllcyBhbmQgaWRlbnRpZnkgdGhlIHBhdHRlcm46DQogICAgXFsgZih4KSA9IFxmcmFjezF9ezEgLSB4fSA9IDEgKyB4ICsgeF4yICsgeF4zICsgXGRvdHMgXF0NCiAgICBUaGUgcGF0dGVybiBoZXJlIGlzIHRoYXQgZWFjaCB0ZXJtIGlzIHNpbXBseSBcKCB4Xm4gXCkuDQoNCiAgIFxpdGVtIFx0ZXh0YmZ7RnVuY3Rpb246fSBcKCBmKHgpID0gXHRhbl57LTF9KHgpOyBcLCBjID0gMCBcKSBcXA0KICAgIFRoZSBUYXlsb3Igc2VyaWVzIGV4cGFuc2lvbiBmb3IgXCggXHRhbl57LTF9KHgpIFwpIGFyb3VuZCBcKCBjID0gMCBcKSBpcyBnaXZlbiBieToNCiAgICBcWyBcdGFuXnstMX0oeCkgPSBcc3VtX3tuPTB9XntcaW5mdHl9ICgtMSlebiBcZnJhY3t4XnsybisxfX17Mm4rMX0gXF0NCiAgICBMZXQncyBmaW5kIHRoZSBmaXJzdCBmZXcgdGVybXMgb2YgdGhpcyBzZXJpZXMgYW5kIGlkZW50aWZ5IHRoZSBwYXR0ZXJuOg0KICAgIFxbIGYoeCkgPSBcdGFuXnstMX0oeCkgPSB4IC0gXGZyYWN7eF4zfXszfSArIFxmcmFje3heNX17NX0gLSBcZnJhY3t4Xjd9ezd9ICsgXGRvdHMgXF0NCiAgICBUaGUgcGF0dGVybiBoZXJlIGlzIHRoYXQgZWFjaCB0ZXJtIGFsdGVybmF0ZXMgaW4gc2lnbiBhbmQgaW52b2x2ZXMgb2RkIHBvd2VycyBvZiBcKCB4IFwpLCB3aXRoIHRoZSBjb2VmZmljaWVudCBiZWluZyBcKCBcZnJhY3sxfXsybisxfSBcKS4NCg0K