This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
library(mlbench)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
data("PimaIndiansDiabetes")
# Set train control
ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 3)
# CART model
set.seed(7)
cart_model <- train(diabetes~., data = PimaIndiansDiabetes, method = "rpart", trControl = ctrl)
# LDA model
set.seed(7)
lda_model <- train(diabetes~., data = PimaIndiansDiabetes, method = "lda", trControl = ctrl)
# SVM model
set.seed(7)
svm_model <- train(diabetes~., data = PimaIndiansDiabetes, method = "svmRadial", trControl = ctrl)
# KNN model
set.seed(7)
knn_model <- train(diabetes~., data =PimaIndiansDiabetes, method = "knn", trControl = ctrl)
# Random Forest model
set.seed(7)
rf_model <- train(diabetes~., data = PimaIndiansDiabetes, method = "rf", trControl = ctrl)
print(cart_model)
## CART
##
## 768 samples
## 8 predictor
## 2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ...
## Resampling results across tuning parameters:
##
## cp Accuracy Kappa
## 0.01741294 0.7469697 0.4151867
## 0.10447761 0.7178742 0.3614570
## 0.24253731 0.6991684 0.2776661
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.01741294.
print(lda_model)
## Linear Discriminant Analysis
##
## 768 samples
## 8 predictor
## 2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ...
## Resampling results:
##
## Accuracy Kappa
## 0.7791069 0.4862025
print(svm_model)
## Support Vector Machines with Radial Basis Function Kernel
##
## 768 samples
## 8 predictor
## 2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ...
## Resampling results across tuning parameters:
##
## C Accuracy Kappa
## 0.25 0.7712919 0.4621585
## 0.50 0.7625769 0.4485309
## 1.00 0.7560549 0.4339951
##
## Tuning parameter 'sigma' was held constant at a value of 0.124824
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.124824 and C = 0.25.
print(knn_model)
## k-Nearest Neighbors
##
## 768 samples
## 8 predictor
## 2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ...
## Resampling results across tuning parameters:
##
## k Accuracy Kappa
## 5 0.7191900 0.3580128
## 7 0.7261734 0.3779733
## 9 0.7369503 0.3984995
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 9.
print(rf_model)
## Random Forest
##
## 768 samples
## 8 predictor
## 2 classes: 'neg', 'pos'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ...
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.7638528 0.4630809
## 5 0.7634256 0.4664261
## 8 0.7599738 0.4596437
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
results<-resamples(list(CART=cart_model,LDA=lda_model,SVM=svm_model,KNN=knn_model,RF=rf_model))
print(results)
##
## Call:
## resamples.default(x = list(CART = cart_model, LDA = lda_model, SVM =
## svm_model, KNN = knn_model, RF = rf_model))
##
## Models: CART, LDA, SVM, KNN, RF
## Number of resamples: 30
## Performance metrics: Accuracy, Kappa
## Time estimates for: everything, final model fit
#summarize the results
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: CART, LDA, SVM, KNN, RF
## Number of resamples: 30
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.6753247 0.7272727 0.7532468 0.7469697 0.7662338 0.7922078 0
## LDA 0.7142857 0.7508117 0.7662338 0.7791069 0.8000256 0.9078947 0
## SVM 0.7236842 0.7508117 0.7631579 0.7712919 0.7915243 0.8947368 0
## KNN 0.6753247 0.7036056 0.7272727 0.7369503 0.7662338 0.8311688 0
## RF 0.6842105 0.7305195 0.7597403 0.7638528 0.8019481 0.8421053 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.2762566 0.3620724 0.4241878 0.4151867 0.4861107 0.5250000 0
## LDA 0.3011551 0.4192537 0.4662541 0.4862025 0.5308596 0.7812500 0
## SVM 0.3391908 0.3997116 0.4460612 0.4621585 0.5234605 0.7475083 0
## KNN 0.2553191 0.3406000 0.3841761 0.3984995 0.4539789 0.6195363 0
## RF 0.2951613 0.3778304 0.4640696 0.4630809 0.5447483 0.6426332 0
table(PimaIndiansDiabetes$diabetes)
##
## neg pos
## 500 268
prop.table(table(PimaIndiansDiabetes$diabetes))
##
## neg pos
## 0.6510417 0.3489583
scales<-list(x=list(relation="free"), y=list(relation="free"))
bwplot(results,scales=scales)
densityplot(results, scales=scales)
#densityplot(results, scales=scales, pch="|", xlab("methods")=)
dotplot(results, scales=scales)
splom(results)
diffs<-diff(results)
summary(diffs)
##
## Call:
## summary.diff.resamples(object = diffs)
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## Accuracy
## CART LDA SVM KNN RF
## CART -0.032137 -0.024322 0.010019 -0.016883
## LDA 0.0011862 0.007815 0.042157 0.015254
## SVM 0.0116401 0.9156892 0.034342 0.007439
## KNN 1.0000000 6.68e-05 0.0002941 -0.026902
## RF 0.2727542 0.4490617 1.0000000 0.0183793
##
## Kappa
## CART LDA SVM KNN RF
## CART -0.0710158 -0.0469717 0.0166872 -0.0478942
## LDA 0.0008086 0.0240440 0.0877029 0.0231215
## SVM 0.0258079 0.3562734 0.0636589 -0.0009225
## KNN 1.0000000 0.0003858 0.0040823 -0.0645814
## RF 0.0211763 1.0000000 1.0000000 0.0158974
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.