\(\int 4e^{-7x} \, dx\) \[ u = -7x \]
differentiate \(u\) with respect to \(x\) to find \(du\): \[ du = -7 \, dx \] \[ dx = -\frac{1}{7} \, du \]
Substituting: \[ \int 4e^{-7x} \, dx = \int 4e^u \left(-\frac{1}{7}\right) \, du \] \[ = -\frac{4}{7} \int e^u \, du \]
The integral of \(e^u\) : \[ -\frac{4}{7} \int e^u \, du = -\frac{4}{7} e^u + C \]
substitute into the original variable \(x\): \[ -\frac{4}{7} e^u + C = -\frac{4}{7} e^{-7x} + C \]
\[ \int 4e^{-7x} \, dx = -\frac{4}{7} e^{-7x} + C \]
\[ \frac{dN}{dt} = -\frac{3150}{t^4} - 220 \]
\[ \int -\frac{3150}{t^4} \, dt = -3150 \int t^{-4} \, dt = -3150 \left(-\frac{1}{3} t^{-3}\right) = \frac{3150}{3t^3} \]
\[ \int -220 \, dt = -220t \]
\[ N(t) = \frac{3150}{3t^3} - 220t + C \]
Day 1 :\(N(1) = 6530\): \[ N(1) = \frac{3150}{3(1)^3} - 220(1) + C = 1050 - 220 + C \] \[ 6530 = 830 + C \] \[ C = 6530 - 830 = 5700 \]
\[ N(t) = \frac{3150}{3t^3} - 220t + 5700 = \frac{1050}{t^3} - 220t + 5700 \]
f <- function(x) {
return(2*x - 9)
}
x <- seq(4.5, 8.5, by =.5)
heights <- sapply(x, f)
width <- .5
area <- sum(heights * width)
area
## [1] 18
Find the area of the region bounded by the graphs of the given equations. \(y = x^2 - 2x - 2\), \(y = x + 2\)
\[ x^2 - 2x - 2 = x + 2 \]
\[ x^2 - 2x - 2 - x - 2 = 0 \implies x^2 - 3x - 4 = 0 \] \[ (x - 4)(x + 1) = 0 \] \(x = 4\) and \(x = -1\).
\[ A = \int_{-1}^4 [(x + 2) - (x^2 - 2x - 2)] \, dx \]\[ A = \int_{-1}^4 [x + 2 - x^2 + 2x + 2] \, dx = \int_{-1}^4 [-x^2 + 3x + 4] \, dx \]
\[ A = \int_{-1}^4 [-x^2 + 3x + 4] \, dx = 20.83 \]
A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year.There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
Given:
Annual demand, \(D = 110\)
flat irons - Holding cost per unit per year, h = $3.75
Fixed cost per order, ( K = $8.25 )
The formula for the EOQ, \(Q\), is: \[ Q = \sqrt{\frac{2DK}{h}} \]
\[ Q = \sqrt{\frac{2(110)8.25}{3.75}} = \sqrt{\frac{1815}{3.75}}=\sqrt{484} = 22 \]
\[ 22x = 110 => x = \frac{110}{22} = 5 \]
\(\int ln(9) \ x^6 \, dx\)
\(u = \ln(9x)\) \(dv = x^6 \, dx\)
\(du = \frac{d}{dx}[\ln(9x)] \, dx = \frac{1}{x} \, dx\) - \(v = \int x^6 \, dx = \frac{x^7}{7}\)
\[ \int \ln(9x) \cdot x^6 \, dx = \left( \ln(9x) \cdot \frac{x^7}{7} \right) - \int \frac{x^7}{7} \cdot \frac{1}{x} \, dx \] \[ = \frac{x^7}{7} \ln(9x) - \int \frac{x^6}{7} \, dx \]\[ \int \frac{x^6}{7} \, dx = \frac{1}{7} \int x^6 \, dx = \frac{1}{7} \cdot \frac{x^7}{7} = \frac{x^7}{49} \]
\[ \int \ln(9x) \cdot x^6 \, dx = \frac{x^7}{7} \ln(9x) - \frac{x^7}{49} + C \]
\[ \int_1^{e^6} \frac{1}{6x} \, dx \]
\[ \frac{1}{6} \int_1^{e^6} \frac{1}{x} \, dx = \ln(x) \]
\[ \ln(e^6) - \ln(1) = 6 - 0 = 6 \]
\[ \frac{1}{6} \cdot 6 = 1 \]
\(f(x) = \frac{1}{6x}\) is probability density function on the interval \([1, e^6]\)