Set up

library(tidyverse)
library(tidyquant) # for financial analysis
library(broom) # for tidy model results
library(umap)  # for dimension reduction
library(plotly) # for interactive visualization

Data

employed <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-02-23/employed.csv")
employed_grouped <- employed %>%
  filter(!is.na(employ_n)) %>%
  group_by(occupation = paste(industry, minor_occupation), race_gender) %>%
  summarise(n = sum(employ_n)) %>%
  ungroup()
employed_tidy <- employed_grouped %>%
  
  # Remove total category
  filter(race_gender != "TOTAL") %>%
  
  # Add total column 
  left_join(employed_grouped %>%
              filter(race_gender == "TOTAL") %>%
              select(occupation, total = n)) %>%
  
  # Get pct in total
  mutate(pct= n / total) %>% 
  
  # Remove outliers
  filter(total > 1000) %>%
  select(-n)

employed_tidy
## # A tibble: 1,160 × 4
##    occupation                                          race_gender  total    pct
##    <chr>                                               <chr>        <dbl>  <dbl>
##  1 Agriculture and related Construction and extractio… Asian       7.3 e4 0.0274
##  2 Agriculture and related Construction and extractio… Black or A… 7.3 e4 0.0822
##  3 Agriculture and related Construction and extractio… Men         7.3 e4 0.973 
##  4 Agriculture and related Construction and extractio… White       7.3 e4 0.863 
##  5 Agriculture and related Construction and extractio… Women       7.3 e4 0.0274
##  6 Agriculture and related Farming, fishing, and fore… Asian       5.74e6 0.0139
##  7 Agriculture and related Farming, fishing, and fore… Black or A… 5.74e6 0.0342
##  8 Agriculture and related Farming, fishing, and fore… Men         5.74e6 0.789 
##  9 Agriculture and related Farming, fishing, and fore… White       5.74e6 0.911 
## 10 Agriculture and related Farming, fishing, and fore… Women       5.74e6 0.211 
## # ℹ 1,150 more rows
employed_standard <- employed_tidy %>%
  
  # Standardize
  group_by(race_gender) %>%
  mutate(pct = pct %>% scale() %>% as.numeric()) %>%
  ungroup() %>%
  mutate(total = total %>% log() %>% scale() %>% as.numeric()) 

employed_standard
## # A tibble: 1,160 × 4
##    occupation                                          race_gender  total    pct
##    <chr>                                               <chr>        <dbl>  <dbl>
##  1 Agriculture and related Construction and extractio… Asian       -1.30  -0.539
##  2 Agriculture and related Construction and extractio… Black or A… -1.30  -0.405
##  3 Agriculture and related Construction and extractio… Men         -1.30   1.31 
##  4 Agriculture and related Construction and extractio… White       -1.30   0.725
##  5 Agriculture and related Construction and extractio… Women       -1.30  -1.30 
##  6 Agriculture and related Farming, fishing, and fore… Asian        0.819 -0.928
##  7 Agriculture and related Farming, fishing, and fore… Black or A…  0.819 -1.21 
##  8 Agriculture and related Farming, fishing, and fore… Men          0.819  0.510
##  9 Agriculture and related Farming, fishing, and fore… White        0.819  1.38 
## 10 Agriculture and related Farming, fishing, and fore… Women        0.819 -0.503
## # ℹ 1,150 more rows
occupation_demo_tb1 <- employed_tidy %>%
  pivot_wider(names_from = race_gender, values_from = pct) %>%
  janitor::clean_names()

occupation_demo_tb1
## # A tibble: 232 × 7
##    occupation            total   asian black_or_african_ame…¹   men white  women
##    <chr>                 <dbl>   <dbl>                  <dbl> <dbl> <dbl>  <dbl>
##  1 Agriculture and rel… 7.3 e4 0.0274                 0.0822  0.973 0.863 0.0274
##  2 Agriculture and rel… 5.74e6 0.0139                 0.0342  0.789 0.911 0.211 
##  3 Agriculture and rel… 1.94e5 0.0155                 0.0309  0.985 0.918 0.0103
##  4 Agriculture and rel… 1.01e6 0.00992                0.00794 0.739 0.967 0.261 
##  5 Agriculture and rel… 5.22e6 0.00997                0.00882 0.741 0.962 0.259 
##  6 Agriculture and rel… 5.15e5 0.0233                 0.0155  0.159 0.938 0.841 
##  7 Agriculture and rel… 2.11e5 0.0332                 0.104   0.815 0.820 0.185 
##  8 Agriculture and rel… 2.95e5 0.0339                 0.0373  0.675 0.902 0.329 
##  9 Agriculture and rel… 8.80e4 0                      0.0682  0.864 0.875 0.136 
## 10 Agriculture and rel… 9.40e4 0                      0.0213  0.585 0.968 0.426 
## # ℹ 222 more rows
## # ℹ abbreviated name: ¹​black_or_african_american
occupation_cluster <- kmeans(occupation_demo_tb1 %>% select(-occupation), centers = 3, nstart = 20)

summary(occupation_cluster)
##              Length Class  Mode   
## cluster      232    -none- numeric
## centers       18    -none- numeric
## totss          1    -none- numeric
## withinss       3    -none- numeric
## tot.withinss   1    -none- numeric
## betweenss      1    -none- numeric
## size           3    -none- numeric
## iter           1    -none- numeric
## ifault         1    -none- numeric
tidy(occupation_cluster)
## # A tibble: 3 × 9
##     total  asian black_or_african_ame…¹   men white women  size withinss cluster
##     <dbl>  <dbl>                  <dbl> <dbl> <dbl> <dbl> <int>    <dbl> <fct>  
## 1  1.80e6 0.0424                  0.104 0.693 0.816 0.305   198  8.13e14 1      
## 2  5.41e7 0.0654                  0.124 0.533 0.774 0.467     8  4.86e15 2      
## 3  1.47e7 0.0684                  0.120 0.554 0.779 0.446    26  5.46e14 3      
## # ℹ abbreviated name: ¹​black_or_african_american
glance(occupation_cluster)
## # A tibble: 1 × 4
##     totss tot.withinss betweenss  iter
##     <dbl>        <dbl>     <dbl> <int>
## 1 3.00e16      6.22e15   2.37e16     3
augment(occupation_cluster, occupation_demo_tb1) %>%
  
  ggplot(aes(total, asian, color = .cluster)) +
  geom_point()

kclusts <- tibble(k = 1:9) %>%
  mutate(kclust = map(.x = k, .f = ~ kmeans(occupation_demo_tb1 %>% select(-occupation), centers = .x, nstart = 20)),
         glanced = map(.x = kclust, .f = glance))

kclusts %>%
  unnest(glanced) %>%
  ggplot(aes(k, tot.withinss)) +
  geom_point() +
  geom_line()

final_cluster <- kmeans(occupation_demo_tb1 %>% select(-occupation), centers = 5, nstart = 20)

augment(final_cluster, occupation_demo_tb1) %>%
  
  ggplot(aes(total, asian, color = .cluster)) +
  geom_point()

umap_results <- occupation_demo_tb1 %>% 
  select(-occupation) %>%
  umap()

umap_results_tb1 <- umap_results$layout %>%
  as.tibble() %>%
  bind_cols(occupation_demo_tb1 %>% select(occupation))

umap_results_tb1
## # A tibble: 232 × 3
##        V1     V2 occupation                                                     
##     <dbl>  <dbl> <chr>                                                          
##  1 -5.24  -6.42  Agriculture and related Construction and extraction occupations
##  2 -2.64   6.30  Agriculture and related Farming, fishing, and forestry occupat…
##  3 -1.18  -3.52  Agriculture and related Installation, maintenance, and repair …
##  4  7.50  -0.648 Agriculture and related Manage-ment, business, and financial o…
##  5 -2.14   6.21  Agriculture and related Management, business, and financial op…
##  6  4.16  -3.78  Agriculture and related Office and administrative support occu…
##  7 -0.905 -3.56  Agriculture and related Production occupations                 
##  8  1.07  -3.68  Agriculture and related Professional and related occupations   
##  9 -5.26  -6.24  Agriculture and related Protective service occupations         
## 10 -5.21  -6.02  Agriculture and related Sales and related occupations          
## # ℹ 222 more rows
umap_results_tb1 %>% 
  ggplot(aes(V1, V2)) +
  geom_point()

kmeans_umap_tb1 <- final_cluster %>%
  augment(occupation_demo_tb1) %>%
  select(occupation, .cluster) %>%
  
  # Add umap results
  left_join(umap_results_tb1) %>%
  
  # Add employment info 
  left_join(employed_tidy %>%
              select(-total) %>%
              pivot_wider(names_from = race_gender, values_from = pct) %>%
              janitor::clean_names())
kmeans_umap_tb1
## # A tibble: 232 × 9
##    occupation  .cluster     V1     V2   asian black_or_african_ame…¹   men white
##    <chr>       <fct>     <dbl>  <dbl>   <dbl>                  <dbl> <dbl> <dbl>
##  1 Agricultur… 5        -5.24  -6.42  0.0274                 0.0822  0.973 0.863
##  2 Agricultur… 4        -2.64   6.30  0.0139                 0.0342  0.789 0.911
##  3 Agricultur… 5        -1.18  -3.52  0.0155                 0.0309  0.985 0.918
##  4 Agricultur… 5         7.50  -0.648 0.00992                0.00794 0.739 0.967
##  5 Agricultur… 4        -2.14   6.21  0.00997                0.00882 0.741 0.962
##  6 Agricultur… 5         4.16  -3.78  0.0233                 0.0155  0.159 0.938
##  7 Agricultur… 5        -0.905 -3.56  0.0332                 0.104   0.815 0.820
##  8 Agricultur… 5         1.07  -3.68  0.0339                 0.0373  0.675 0.902
##  9 Agricultur… 5        -5.26  -6.24  0                      0.0682  0.864 0.875
## 10 Agricultur… 5        -5.21  -6.02  0                      0.0213  0.585 0.968
## # ℹ 222 more rows
## # ℹ abbreviated name: ¹​black_or_african_american
## # ℹ 1 more variable: women <dbl>
final <- kmeans_umap_tb1 %>%
  
  # create text label 
  mutate(text_label = str_glue("Occupation: {occupation}
                               Cluster: {.cluster}
                               Asian: {asian %>% scales::percent(1)}
                               Women: {women %>% scales::percent(1)}")) %>%
  
  #plot
  
  ggplot(aes(V1, V2, color = .cluster, text = text_label)) +
  geom_point()