##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Warning: package 'treemapify' was built under R version 4.3.3
VentasUS = read.xlsx("Ev2_VentasUS.xlsx")
VentasMex = read.xlsx("Ev2_VentasMex.xlsx")
OrdMonth = c("January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December")
OrdMonthEs = c("Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre")## Month Region CrujiCos PicanCos SaladoCos BBQCos SalsaCos QuesoCo
## FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
Media_CC= mean(VentasMex$CrujiCos,na.rm=T)
VentasMexL$CrujiCos[is.na(VentasMex$CrujiCos)] = Media_CC
Media_SC= mean(VentasMex$SaladoCos,na.rm=T)
VentasMexL$SaladoCos[is.na(VentasMex$SaladoCos)] = Media_SC
Media_BC= mean(VentasMex$BBQCos,na.rm=T)
VentasMexL$BBQCos[is.na(VentasMex$BBQCos)] = Media_BC
Media_QC= mean(VentasMex$QuesoCo,na.rm=T)
VentasMexL$QuesoCo[is.na(VentasMex$QuesoCo)] = Media_QC
Media_ChC= mean(VentasUS$CheeseCo,na.rm=T)
VentasUSL$CheeseCo[is.na(VentasUS$CheeseCo)] = Media_ChCVentasMexTotales = VentasMexL
VentasMexTotales$MesesNum = match(VentasMexL$Month, OrdMonthEs)
VentasMexTotales$VentasTotal = VentasMexL$CrujiCos + VentasMexL$PicanCos + VentasMexL$SaladoCos + VentasMexL$BBQCos + VentasMexL$SalsaCos + VentasMexL$QuesoCo
ventas_por_mesMex = VentasMexTotales %>%
group_by(MesesNum) %>%
summarise(Ventas = sum(VentasTotal))
VentasUSLTotales= VentasUSL
VentasUSLTotales$MesesNum = match(VentasUSL$Month,OrdMonth)
VentasUSLTotales$VentasTotal = VentasUSL$CrunchyCo + VentasUSL$SpicyCo + VentasUSL$SaltCo + VentasUSL$BBQCo + VentasUSL$SalsaCo +VentasUSL$CheeseCo
ventas_por_mesUS = VentasUSLTotales %>%
group_by(MesesNum) %>%
summarise(Ventas = sum(VentasTotal))
ventas_por_mesUS$Variable = "US"
ventas_por_mesMex$Variable = "MEX"
datos_combinados = rbind(ventas_por_mesUS, ventas_por_mesMex)ventas_RegionUS = VentasUSLTotales %>%
group_by(Region) %>%
reframe(Venta = c(sum(CrunchyCo), sum(SaltCo), sum(BBQCo), sum(SalsaCo), sum(SpicyCo), sum(CheeseCo)))
num_filas = (3*6)
Marca = c("CrunchyCo", "SaltCo", "BBQCo","SalsaCo", "SpicyCo", "CheeseCo")
ventas_RegionUS$Sabores = rep(Marca, length.out = num_filas)
ventas_RegionMex= VentasMexTotales %>%
group_by(Region) %>%
reframe(Venta =c(sum(CrujiCos),sum(SaladoCos), sum(BBQCos), sum(SalsaCos), sum(PicanCos), sum(QuesoCo)))
Marca2 = c("CrujiCos", "SaladoCos", "BBQCos","SalsaCos", "PicanCos", "QuesoCo")
ventas_RegionMex$Sabores = rep(Marca2, length.out = num_filas) ggplot(ventas_RegionMex, aes(y = factor(Sabores), x = Venta, fill = Sabores))+
geom_bar(stat = "identity") +
facet_wrap(~Region) +
labs(
title = "the product that sells the most in Mexico per region",
y = "Product",
x = "Sales")
#PicanCos is the Product that sells the most in Mexico
ggplot(ventas_RegionUS, aes(y = factor(Sabores), x = Venta, fill = Sabores))+
geom_bar(stat = "identity") +
facet_wrap(~Region) +
labs(
title = "the product that sells the most in US per region",
y = "Product",
x = "Sales")
#SpicyCo is the Product that sells the most in United States
ventas_producto_mesUS = VentasUSLTotales %>%
group_by(MesesNum) %>%
reframe(Venta = c(sum(CrunchyCo), sum(SaltCo), sum(BBQCo), sum(SalsaCo), sum(SpicyCo), sum(CheeseCo)))
num_filas = (12*6)
Marca = c("CrunchyCo", "SaltCo", "BBQCo","SalsaCo", "SpicyCo", "CheeseCo")
ventas_producto_mesUS$Sabores = rep(Marca, length.out = num_filas)
ventas_producto_mesMEX = VentasMexTotales %>%
group_by(MesesNum) %>%
reframe(Venta =c(sum(CrujiCos),sum(SaladoCos), sum(BBQCos), sum(SalsaCos), sum(PicanCos), sum(QuesoCo)))
Marca2 = c("CrujiCos", "SaladoCos", "BBQCos","SalsaCos", "PicanCos", "QuesoCo")
ventas_producto_mesMEX$Sabores = rep(Marca2, length.out = num_filas) ggplot(ventas_producto_mesUS, aes(x = factor(MesesNum), y = Venta, fill = Sabores)) +
geom_bar(stat = "identity") +
facet_wrap(~Sabores) +
labs(
title = "Mensual Sales by Flavor in US",
x = "Month",
y = "Sales"
)
# December is usually the month with the most sales in the United
States, however, SaltCo sold more in its first quarter
ggplot(ventas_producto_mesMEX, aes(x = factor(MesesNum), y = Venta, fill = Sabores)) +
geom_bar(stat = "identity") +
facet_wrap(~Sabores) +
labs(
title = "Mensual Sales by Flavor in MEX",
x = "Month",
y = "Sales"
)
# The monthly trends of products in Mexico vary, but the number of
mid-year sales of PicanCos stands out
ThreeMonthsSalesUS = filter(ventas_producto_mesUS, MesesNum > 9)
ThreeMonthsSalesMex = filter(ventas_producto_mesMEX, MesesNum > 9) ggplot(ThreeMonthsSalesUS, aes(x = factor(MesesNum), y = Venta, fill = Sabores)) +
geom_bar(stat = "identity") +
facet_wrap(~Sabores) +
labs(
title = "Mensual Sales by Flavor in US",
x = "Month",
y = "Sales"
)
# In the United States, sales usually grow from October to December
ggplot(ThreeMonthsSalesMex, aes(x = factor(MesesNum), y = Venta, fill = Sabores)) +
geom_bar(stat = "identity") +
facet_wrap(~Sabores) +
labs(
title = "Mensual Sales by Flavor in MEX",
x = "Month",
y = "Sales"
)
$ In Mexico, sales usually grow from October to December
ventas_por_mesChe = VentasUSLTotales %>%
group_by(MesesNum) %>%
summarise(Ventas = sum(CheeseCo))
ventas_por_mesQue = VentasMexTotales %>%
group_by(MesesNum) %>%
summarise(Ventas = sum(QuesoCo))
ventas_por_mesChe$Variable = "CheeseCo"
ventas_por_mesQue$Variable = "QuesoCo"
datos_combinados = rbind(ventas_por_mesChe, ventas_por_mesQue)ggplot2::ggplot(data = datos_combinados, mapping = aes(x= MesesNum,y = Ventas, color = Variable))+
geom_line() + theme_classic() + scale_x_continuous(limits = c(1, 12), breaks = seq(1, 12, by = 1)) +
labs(
title = "Mensual CheeseCo/QuesoCo Sales in US and MEX",
x = "Month",
y = "Sales")
# Sales of CheeseCo and QuesoCo seem to behave in a similar way in
Mexico and the United States, but since the American market is a larger
market, the number of sales of this product is worrying