This document presents the Taylor Series expansions for the given
functions.
1. \(f(x) = \frac{1}{1-x}\)
This function is valid for \(|x| <
1\). The Taylor Series expansion for \(f(x)\) is:
\[
f(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots
\]
2. \(f(x) = e^x\)
This function is valid for all real numbers \(x\). The Taylor Series expansion for \(e^x\) is:
\[
f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} +
\frac{x^3}{3!} + \dots
\]
3. \(f(x) = \ln(1 + x)\)
This function is valid for \(-1 < x \leq
1\). The Taylor Series expansion for \(\ln(1 + x)\) is:
\[
f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} = x - \frac{x^2}{2}
+ \frac{x^3}{3} - \frac{x^4}{4} + \dots
\]
4. \(f(x) = \sqrt{x}\)
This function is valid for \(0 \leq
x\). The Taylor Series expansion for \(\sqrt{x}\) is:
\[
f(x) = \sum_{n=0}^{\infty} \binom{1/2}{n} (-1)^n (x-1)^n
\]
where \(\binom{1/2}{n}\) is the
binomial coefficient.
…
LS0tDQp0aXRsZTogIkRpc2N1c3Npb24gMTQiDQphdXRob3I6ICJLb3NzaSBBa3BsYWthIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpUaGlzIGRvY3VtZW50IHByZXNlbnRzIHRoZSBUYXlsb3IgU2VyaWVzIGV4cGFuc2lvbnMgZm9yIHRoZSBnaXZlbiBmdW5jdGlvbnMuDQoNCiMjIDEuIFwoZih4KSA9IFxmcmFjezF9ezEteH1cKQ0KDQpUaGlzIGZ1bmN0aW9uIGlzIHZhbGlkIGZvciBcKHx4fCA8IDFcKS4gVGhlIFRheWxvciBTZXJpZXMgZXhwYW5zaW9uIGZvciBcKGYoeClcKSBpczoNCg0KXFsNCmYoeCkgPSBcc3VtX3tuPTB9XntcaW5mdHl9IHhebiA9IDEgKyB4ICsgeF4yICsgeF4zICsgXGRvdHMNClxdDQoNCiMjIDIuIFwoZih4KSA9IGVeeFwpDQoNClRoaXMgZnVuY3Rpb24gaXMgdmFsaWQgZm9yIGFsbCByZWFsIG51bWJlcnMgXCh4XCkuIFRoZSBUYXlsb3IgU2VyaWVzIGV4cGFuc2lvbiBmb3IgXChlXnhcKSBpczoNCg0KXFsNCmYoeCkgPSBcc3VtX3tuPTB9XntcaW5mdHl9IFxmcmFje3hebn17biF9ID0gMSArIHggKyBcZnJhY3t4XjJ9ezIhfSArIFxmcmFje3heM317MyF9ICsgXGRvdHMNClxdDQoNCiMjIDMuIFwoZih4KSA9IFxsbigxICsgeClcKQ0KDQpUaGlzIGZ1bmN0aW9uIGlzIHZhbGlkIGZvciBcKC0xIDwgeCBcbGVxIDFcKS4gVGhlIFRheWxvciBTZXJpZXMgZXhwYW5zaW9uIGZvciBcKFxsbigxICsgeClcKSBpczoNCg0KXFsNCmYoeCkgPSBcc3VtX3tuPTF9XntcaW5mdHl9IFxmcmFjeygtMSlee24rMX0geF5ufXtufSA9IHggLSBcZnJhY3t4XjJ9ezJ9ICsgXGZyYWN7eF4zfXszfSAtIFxmcmFje3heNH17NH0gKyBcZG90cw0KXF0NCg0KIyMgNC4gXChmKHgpID0gXHNxcnR7eH1cKQ0KDQpUaGlzIGZ1bmN0aW9uIGlzIHZhbGlkIGZvciBcKDAgXGxlcSB4XCkuIFRoZSBUYXlsb3IgU2VyaWVzIGV4cGFuc2lvbiBmb3IgXChcc3FydHt4fVwpIGlzOg0KDQpcWw0KZih4KSA9IFxzdW1fe249MH1ee1xpbmZ0eX0gXGJpbm9tezEvMn17bn0gKC0xKV5uICh4LTEpXm4NClxdDQoNCndoZXJlIFwoXGJpbm9tezEvMn17bn1cKSBpcyB0aGUgYmlub21pYWwgY29lZmZpY2llbnQuDQoNCi4uLg0KDQo=