To create the Taylor series of the function \(f(x) = e^{-x}\) we utilize the Taylor series expansion formula for the exponential function. The Taylor series for \(e^x\) at \(x = 0\) is given by:
\[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ... \] To create the Taylor series for \(f(x) = e^{-x}\) replace \(x\) with \(-x\) \[ e^{-x} = \sum_{n=0}^{\infty} \frac{-x^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + ... \] I wrote a function to generate the Taylor series
taylorSeries <- function(f){
function(x){
res <- 1
n <- 1
while(n <= f){
c <- (((-x)^n) / factorial(n))
res <- res + c
n <- n + 1
}
res
}
}