Qualifications Final Pilot

Note: “focalman” and “focalwoman” indicate the which columns the focal man and focal woman are in.

Labeling notes:

pers_simplified references a variable coded for EVERY candidate.
targ_gend_f references a variable coded for the candidate’s gender.
deiexpert_f references a variable our between-subjects manipulations.

Snapshot of the dataset is below:

Items

Ranking:

I reverse-coded the ranking variable. So I coded ‘1’ ranking as ‘4’, ‘2’ ranking as ‘3’, and ‘4’ as ‘1’ So higher #’s means person was more likely to be picked.

Voice Quality

  • I think they can offer useful ideas for this initiative.
  • I think their ideas will likely have a lot of value for improving this initiative.

Voice Solicitation

  • I would ask for help/advice from them on this initiative.
  • I would encourage them to speak out on this initiative.

Interest

How interested do you think each candidate would be in offering their perspectives or insights on this initiative?

We will now ask for you to imagine that each candidate had their voice solicited. We are curious to know how you think each candidate would experience their voice being solicited.

Each candidate was shown the following items:

Scale VS Citation Justification
Positive Affect Tangirala, S., & Ramanujam, R. (2012). Controlled for in their studies (which found that voice solicitation was POSITIVELY associated with PA), and there was a positive association.
Negative Affect Tangirala, S., & Ramanujam, R. (2012). Controlled for in their studies (which found that voice solicitation was NEGATIVELY associated with NA), and there was a negative association.
Voice Tangirala, S., & Ramanujam, R. (2012). Hypothesis was that voice solicitation leads to greater subsequent upward voice.
Rewards for voicer Park, H., Tangirala, S., Hussain, I., & Ekkirala, S. (2022). Table 3: voice solicitation and manager-rated job rewards are positively correlated*.
  • This paper shows that managers reward employees less when they solicit voice (vs. expressing voice). But they show that there is a moderate correlation (r = .22, p < .01, n = 385) between managerial voice solicitation and manager-rated job rewards

Affect

If you asked Laura Moffett to provide her perspective or insight on this position, she would be….

  • inspired (PA)
  • determined (PA)
  • attentive (PA)
  • active (PA)
  • upset (NA)
  • hostile (NA)
  • alert (NA)
  • ashamed (NA)
  • nervous (NA)
  • afraid (NA)

Voice

After asking Laura Moffett to provide her perspective or insight on this position, how likely would she be to engage in the following behaviors more generally at work?

  • make recommendations to you for improving work procedures in your unit
  • speak up to you with ideas for change in work procedures in your unit
  • express her opinions on work-related issues to you even when you disagree with her

Rewards

For offering her perspectives or insights on this initiative, how likely would Laura Moffett be to receive the following?

  • a salary increase.
  • a promotion.
  • more high-profile projects.
  • more public recognition.

Scale information

Alphas + Means

## Some items ( lm_na_3 ka_na_3 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option

Analyses - Men Vs. Women

Ranking

Estimated marginal means

## Call:
## clm2(location = rank_rf ~ deiexpert_f * backlash_f * gendertarget + 
##     (1 | pid), data = nonebacklash_long1)
## 
## Location coefficients:
##                                                                    Estimate Std. Error z value Pr(>|z|)        
## deiexpert_fTrad                                                     0.742    0.173      4.284  0.00001834211366
## backlash_fNo Backlash Cond.                                        -0.052    0.174     -0.297  0.76621         
## gendertargetWoman trgt                                              1.329    0.181      7.328  0.00000000000023
## deiexpert_fTrad:backlash_fNo Backlash Cond.                        -0.090    0.240     -0.375  0.70752         
## deiexpert_fTrad:gendertargetWoman trgt                             -1.439    0.244     -5.895  0.00000000375510
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                  0.140    0.243      0.576  0.56448         
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt  0.149    0.339      0.440  0.66022         
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2 -0.478    0.131     -3.647 
## 2|3  0.690    0.132      5.222 
## 3|4  1.851    0.138     13.415 
## 
## log-likelihood: -2445.47 
## AIC: 4910.93 
## Condition number of Hessian: 317.23 
## (8 observations deleted due to missingness)

Anova

## Anova Table (Type 3 tests)
## 
## Response: rank_r
##                                  Effect     df  MSE         F   ges p.value
## 1                            backlash_f 1, 449 0.00      0.00 <.001   >.999
## 2                           deiexpert_f 1, 449 0.00      0.00 <.001   >.999
## 3                backlash_f:deiexpert_f 1, 449 0.00      0.00 <.001   >.999
## 4                        gendertarget_f 1, 449 0.88 49.32 ***  .099   <.001
## 5             backlash_f:gendertarget_f 1, 449 0.88      1.11  .002    .294
## 6            deiexpert_f:gendertarget_f 1, 449 0.88 44.59 ***  .090   <.001
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 449 0.88      0.11 <.001    .737
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Voice Quality

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6398
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.526 -0.503  0.039  0.566  2.633 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.82     0.906   
##  Residual             1.46     1.206   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                    Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                                                           4.399      0.124  747.372   35.53 < 0.0000000000000002 ***
## deiexpert_fTrad                                                       0.148      0.167  747.372    0.89              0.37518    
## backlash_fNo Backlash Cond.                                          -0.242      0.168  747.372   -1.44              0.14969    
## gendertargetWoman trgt                                                0.611      0.120 1361.000    5.09            0.0000004 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                           0.286      0.234  747.372    1.22              0.22261    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.605      0.162 1361.000   -3.74              0.00019 ***
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                    0.439      0.163 1361.000    2.69              0.00718 ** 
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt   -0.323      0.227 1361.000   -1.42              0.15467    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.485  0.359  0.357                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.256                     
## dxprt_fT:Wt  0.359 -0.485 -0.265 -0.741  0.346              
## bck_NBC.:Wt  0.357 -0.265 -0.485 -0.737  0.348  0.546       
## d_T:_NBC.:t -0.256  0.346  0.348  0.529 -0.485 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: vq
##                                  Effect     df  MSE         F   ges p.value
## 1                            backlash_f 1, 451 2.37      0.15 <.001    .703
## 2                           deiexpert_f 1, 451 2.37      0.82  .001    .367
## 3                backlash_f:deiexpert_f 1, 451 2.37      0.37 <.001    .545
## 4                        gendertarget_f 1, 451 1.08 41.73 ***  .028   <.001
## 5             backlash_f:gendertarget_f 1, 451 1.08    4.00 *  .003    .046
## 6            deiexpert_f:gendertarget_f 1, 451 1.08 30.66 ***  .021   <.001
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 1.08      1.36 <.001    .244
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Voice Solicitation

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6676
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.343 -0.519  0.048  0.536  2.686 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.07     1.04    
##  Residual             1.66     1.29    
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                    Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                                                           4.262      0.137  718.573   31.07 < 0.0000000000000002 ***
## deiexpert_fTrad                                                       0.372      0.185  718.573    2.01                0.045 *  
## backlash_fNo Backlash Cond.                                          -0.204      0.186  718.573   -1.10                0.273    
## gendertargetWoman trgt                                                0.866      0.128 1361.000    6.77        0.00000000002 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                          -0.155      0.259  718.573   -0.60                0.549    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.891      0.173 1361.000   -5.16        0.00000029100 ***
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                    0.298      0.174 1361.000    1.72                0.086 .  
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt    0.091      0.242 1361.000    0.38                0.707    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.467  0.346  0.344                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.247                     
## dxprt_fT:Wt  0.346 -0.467 -0.255 -0.741  0.333              
## bck_NBC.:Wt  0.344 -0.255 -0.467 -0.737  0.335  0.546       
## d_T:_NBC.:t -0.247  0.333  0.335  0.529 -0.467 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: vs
##                                  Effect     df  MSE         F   ges p.value
## 1                            backlash_f 1, 451 2.97      0.92  .001    .339
## 2                           deiexpert_f 1, 451 2.97      1.26  .002    .263
## 3                backlash_f:deiexpert_f 1, 451 2.97      0.23 <.001    .632
## 4                        gendertarget_f 1, 451 1.19 66.64 ***  .041   <.001
## 5             backlash_f:gendertarget_f 1, 451 1.19    5.60 *  .004    .018
## 6            deiexpert_f:gendertarget_f 1, 451 1.19 33.86 ***  .021   <.001
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 1.19      0.10 <.001    .754
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Interest

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: interest ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6416
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.558 -0.479  0.052  0.550  3.174 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.04     1.02    
##  Residual             1.40     1.18    
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                     Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                           4.3564     0.1312  692.5232   33.22 < 0.0000000000000002 ***
## deiexpert_fTrad                                                       0.1842     0.1770  692.5232    1.04                 0.30    
## backlash_fNo Backlash Cond.                                           0.0727     0.1780  692.5232    0.41                 0.68    
## gendertargetWoman trgt                                                0.7574     0.1177 1361.0000    6.43        0.00000000017 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                           0.2109     0.2479  692.5232    0.85                 0.40    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.6761     0.1588 1361.0000   -4.26        0.00002219364 ***
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                    0.1051     0.1597 1361.0000    0.66                 0.51    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt   -0.0963     0.2225 1361.0000   -0.43                 0.67    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.449  0.333  0.331                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.237                     
## dxprt_fT:Wt  0.333 -0.449 -0.245 -0.741  0.320              
## bck_NBC.:Wt  0.331 -0.245 -0.449 -0.737  0.322  0.546       
## d_T:_NBC.:t -0.237  0.320  0.322  0.529 -0.449 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: interest
##                                  Effect     df  MSE         F   ges p.value
## 1                            backlash_f 1, 451 2.77    3.48 +  .005    .063
## 2                           deiexpert_f 1, 451 2.77      0.43 <.001    .513
## 3                backlash_f:deiexpert_f 1, 451 2.77      0.54 <.001    .463
## 4                        gendertarget_f 1, 451 1.10 41.13 ***  .025   <.001
## 5             backlash_f:gendertarget_f 1, 451 1.10      0.17 <.001    .684
## 6            deiexpert_f:gendertarget_f 1, 451 1.10 26.90 ***  .017   <.001
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 1.10      0.12 <.001    .730
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Positive Affect

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: pa ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5409
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.666 -0.462  0.010  0.507  3.452 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.912    0.955   
##  Residual             0.723    0.850   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                     Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                           4.1077     0.1123  606.9522   36.58 < 0.0000000000000002 ***
## deiexpert_fTrad                                                       0.4553     0.1516  606.9522    3.00               0.0028 ** 
## backlash_fNo Backlash Cond.                                           0.2725     0.1524  606.9522    1.79               0.0742 .  
## gendertargetWoman trgt                                                0.5656     0.0846 1361.0000    6.69       0.000000000033 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                          -0.0968     0.2123  606.9522   -0.46               0.6485    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.3451     0.1142 1361.0000   -3.02               0.0026 ** 
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                    0.1792     0.1148 1361.0000    1.56               0.1188    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt   -0.2725     0.1599 1361.0000   -1.70               0.0886 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.377  0.279  0.278                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.199                     
## dxprt_fT:Wt  0.279 -0.377 -0.206 -0.741  0.269              
## bck_NBC.:Wt  0.278 -0.206 -0.377 -0.737  0.270  0.546       
## d_T:_NBC.:t -0.199  0.269  0.270  0.529 -0.377 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: pa
##                                  Effect     df  MSE         F   ges p.value
## 1                            backlash_f 1, 451 2.19    6.24 *  .011    .013
## 2                           deiexpert_f 1, 451 2.19    2.86 +  .005    .091
## 3                backlash_f:deiexpert_f 1, 451 2.19      1.40  .002    .237
## 4                        gendertarget_f 1, 451 0.57 68.42 ***  .030   <.001
## 5             backlash_f:gendertarget_f 1, 451 0.57      0.18 <.001    .668
## 6            deiexpert_f:gendertarget_f 1, 451 0.57 23.06 ***  .010   <.001
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 0.57      1.85 <.001    .175
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Negative Affect

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: na ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 3891
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.011 -0.424 -0.094  0.324  6.446 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.559    0.747   
##  Residual             0.284    0.533   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                     Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                                           2.3210     0.0833  556.2553   27.86 <0.0000000000000002 ***
## deiexpert_fTrad                                                       0.1330     0.1124  556.2553    1.18                0.24    
## backlash_fNo Backlash Cond.                                           0.1457     0.1130  556.2553    1.29                0.20    
## gendertargetWoman trgt                                                0.0099     0.0531 1361.0000    0.19                0.85    
## deiexpert_fTrad:backlash_fNo Backlash Cond.                          -0.1807     0.1575  556.2553   -1.15                0.25    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.0357     0.0716 1361.0000   -0.50                0.62    
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                    0.0102     0.0720 1361.0000    0.14                0.89    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt   -0.0130     0.1003 1361.0000   -0.13                0.90    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.319  0.236  0.235                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.169                     
## dxprt_fT:Wt  0.236 -0.319 -0.174 -0.741  0.227              
## bck_NBC.:Wt  0.235 -0.174 -0.319 -0.737  0.229  0.546       
## d_T:_NBC.:t -0.169  0.227  0.229  0.529 -0.319 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: na
##                                  Effect     df  MSE    F   ges p.value
## 1                            backlash_f 1, 451 1.26 0.59  .001    .444
## 2                           deiexpert_f 1, 451 1.26 0.08 <.001    .773
## 3                backlash_f:deiexpert_f 1, 451 1.26 1.57  .003    .210
## 4                        gendertarget_f 1, 451 0.20 0.04 <.001    .837
## 5             backlash_f:gendertarget_f 1, 451 0.20 0.00 <.001    .950
## 6            deiexpert_f:gendertarget_f 1, 451 0.20 0.51 <.001    .474
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 0.20 0.01 <.001    .912
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Voice

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5708
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.821 -0.455 -0.009  0.512  3.012 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.766    0.875   
##  Residual             0.928    0.963   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                     Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                                           4.6320     0.1104  672.8237   41.97 <0.0000000000000002 ***
## deiexpert_fTrad                                                       0.0143     0.1489  672.8237    0.10              0.9234    
## backlash_fNo Backlash Cond.                                           0.1569     0.1498  672.8237    1.05              0.2953    
## gendertargetWoman trgt                                                0.2904     0.0958 1361.0000    3.03              0.0025 ** 
## deiexpert_fTrad:backlash_fNo Backlash Cond.                           0.0812     0.2086  672.8237    0.39              0.6973    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.1576     0.1293 1361.0000   -1.22              0.2231    
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                   -0.0460     0.1301 1361.0000   -0.35              0.7237    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt   -0.2595     0.1811 1361.0000   -1.43              0.1522    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.434  0.322  0.320                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.230                     
## dxprt_fT:Wt  0.322 -0.434 -0.237 -0.741  0.310              
## bck_NBC.:Wt  0.320 -0.237 -0.434 -0.737  0.312  0.546       
## d_T:_NBC.:t -0.230  0.310  0.312  0.529 -0.434 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: voice
##                                  Effect     df  MSE      F   ges p.value
## 1                            backlash_f 1, 451 2.00   1.36  .002    .244
## 2                           deiexpert_f 1, 451 2.00   0.89  .001    .345
## 3                backlash_f:deiexpert_f 1, 451 2.00   0.07 <.001    .796
## 4                        gendertarget_f 1, 451 0.70 4.93 *  .003    .027
## 5             backlash_f:gendertarget_f 1, 451 0.70   2.48  .001    .116
## 6            deiexpert_f:gendertarget_f 1, 451 0.70 6.64 *  .004    .010
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 0.70   1.35 <.001    .245
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Rewards

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rewards ~ deiexpert_f * backlash_f * gendertarget + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5766
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.334 -0.408 -0.022  0.412  3.601 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.636    1.28    
##  Residual             0.791    0.89    
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                     Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                                           3.7005     0.1418  551.4578   26.09 <0.0000000000000002 ***
## deiexpert_fTrad                                                       0.1643     0.1914  551.4578    0.86               0.391    
## backlash_fNo Backlash Cond.                                           0.4776     0.1925  551.4578    2.48               0.013 *  
## gendertargetWoman trgt                                                0.1448     0.0885 1361.0000    1.64               0.102    
## deiexpert_fTrad:backlash_fNo Backlash Cond.                          -0.3841     0.2681  551.4578   -1.43               0.152    
## deiexpert_fTrad:gendertargetWoman trgt                               -0.1814     0.1195 1361.0000   -1.52               0.129    
## backlash_fNo Backlash Cond.:gendertargetWoman trgt                   -0.1448     0.1201 1361.0000   -1.21               0.228    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:gendertargetWoman trgt   -0.0033     0.1673 1361.0000   -0.02               0.984    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dxpr_T b_NBC. gndrWt d_T:BC d_T:Wt b_NBCt
## dexprt_fTrd -0.741                                          
## bcklsh_NBC. -0.737  0.546                                   
## gndrtrgtWmt -0.312  0.231  0.230                            
## dxp_T:_NBC.  0.529 -0.714 -0.718 -0.165                     
## dxprt_fT:Wt  0.231 -0.312 -0.170 -0.741  0.223              
## bck_NBC.:Wt  0.230 -0.170 -0.312 -0.737  0.224  0.546       
## d_T:_NBC.:t -0.165  0.223  0.224  0.529 -0.312 -0.714 -0.718

Anova

## Anova Table (Type 3 tests)
## 
## Response: rewards
##                                  Effect     df  MSE      F   ges p.value
## 1                            backlash_f 1, 451 3.67 2.78 +  .005    .096
## 2                           deiexpert_f 1, 451 3.67   0.88  .002    .350
## 3                backlash_f:deiexpert_f 1, 451 3.67   2.29  .004    .131
## 4                        gendertarget_f 1, 451 0.60   0.14 <.001    .710
## 5             backlash_f:gendertarget_f 1, 451 0.60   2.03 <.001    .155
## 6            deiexpert_f:gendertarget_f 1, 451 0.60 3.16 + <.001    .076
## 7 backlash_f:deiexpert_f:gendertarget_f 1, 451 0.60   0.00 <.001    .987
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Full posthoc tests

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Analyses - Each candidate individually

Ranking

Estimated marginal means

## Call:
## clm2(location = rank_rf ~ deiexpert_f * backlash_f * person_f + 
##     (1 | pid), data = nonebacklash_long1)
## 
## Location coefficients:
##                                                              Estimate Std. Error z value Pr(>|z|)      
## deiexpert_fTrad                                               1.034    0.242      4.276  0.000018992821
## backlash_fNo Backlash Cond.                                   0.181    0.246      0.736  0.462         
## person_fotherman                                              0.602    0.259      2.326  0.020         
## person_fwoman1                                                1.705    0.254      6.717  0.000000000019
## person_fwoman2                                                1.532    0.253      6.042  0.000000001517
## deiexpert_fTrad:backlash_fNo Backlash Cond.                  -0.246    0.339     -0.726  0.468         
## deiexpert_fTrad:person_fotherman                             -0.609    0.346     -1.760  0.078         
## deiexpert_fTrad:person_fwoman1                               -1.742    0.342     -5.092  0.000000354088
## deiexpert_fTrad:person_fwoman2                               -1.721    0.342     -5.030  0.000000490769
## backlash_fNo Backlash Cond.:person_fotherman                 -0.496    0.349     -1.424  0.154         
## backlash_fNo Backlash Cond.:person_fwoman1                   -0.239    0.343     -0.696  0.487         
## backlash_fNo Backlash Cond.:person_fwoman2                    0.057    0.345      0.164  0.870         
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman  0.343    0.481      0.713  0.476         
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1    0.430    0.479      0.899  0.369         
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2    0.177    0.480      0.369  0.712         
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2 -0.193    0.181     -1.066 
## 2|3  0.978    0.182      5.362 
## 3|4  2.143    0.187     11.435 
## 
## log-likelihood: -2441.73 
## AIC: 4919.46 
## Condition number of Hessian: 1115.92 
## (8 observations deleted due to missingness)

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Voice Quality

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6408
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.520 -0.525  0.024  0.571  2.611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.819    0.905   
##  Residual             1.459    1.208   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                              Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                                                     4.332      0.150 1299.902   28.84 < 0.0000000000000002 ***
## deiexpert_fTrad                                                 0.270      0.203 1299.902    1.33              0.18314    
## backlash_fNo Backlash Cond.                                    -0.173      0.204 1299.902   -0.85              0.39521    
## person_fotherman                                                0.134      0.170 1353.000    0.79              0.43181    
## person_fwoman1                                                  0.693      0.170 1353.000    4.08             0.000048 ***
## person_fwoman2                                                  0.663      0.170 1353.000    3.90             0.000100 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                     0.157      0.284 1299.902    0.55              0.57959    
## deiexpert_fTrad:person_fotherman                               -0.243      0.229 1353.000   -1.06              0.28881    
## deiexpert_fTrad:person_fwoman1                                 -0.608      0.229 1353.000   -2.65              0.00816 ** 
## deiexpert_fTrad:person_fwoman2                                 -0.846      0.229 1353.000   -3.69              0.00023 ***
## backlash_fNo Backlash Cond.:person_fotherman                   -0.138      0.231 1353.000   -0.60              0.55028    
## backlash_fNo Backlash Cond.:person_fwoman1                      0.353      0.231 1353.000    1.53              0.12644    
## backlash_fNo Backlash Cond.:person_fwoman2                      0.387      0.231 1353.000    1.68              0.09396 .  
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman    0.257      0.321 1353.000    0.80              0.42465    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1     -0.285      0.321 1353.000   -0.89              0.37526    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2     -0.105      0.321 1353.000   -0.33              0.74479    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Voice Solicitation

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6684
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.306 -0.519  0.043  0.543  2.697 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.07     1.04    
##  Residual             1.66     1.29    
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                               Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                     4.1386     0.1645 1233.6684   25.17 < 0.0000000000000002 ***
## deiexpert_fTrad                                                 0.5281     0.2219 1233.6684    2.38                0.017 *  
## backlash_fNo Backlash Cond.                                    -0.0636     0.2232 1233.6684   -0.29                0.776    
## person_fotherman                                                0.2475     0.1813 1353.0000    1.37                0.172    
## person_fwoman1                                                  1.0545     0.1813 1353.0000    5.82         0.0000000075 ***
## person_fwoman2                                                  0.9257     0.1813 1353.0000    5.11         0.0000003738 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                    -0.3868     0.3108 1233.6684   -1.24                0.214    
## deiexpert_fTrad:person_fotherman                               -0.3126     0.2446 1353.0000   -1.28                0.202    
## deiexpert_fTrad:person_fwoman1                                 -1.0016     0.2446 1353.0000   -4.09         0.0000447872 ***
## deiexpert_fTrad:person_fwoman2                                 -1.0924     0.2446 1353.0000   -4.47         0.0000086398 ***
## backlash_fNo Backlash Cond.:person_fotherman                   -0.2809     0.2460 1353.0000   -1.14                0.254    
## backlash_fNo Backlash Cond.:person_fwoman1                      0.0497     0.2460 1353.0000    0.20                0.840    
## backlash_fNo Backlash Cond.:person_fwoman2                      0.2659     0.2460 1353.0000    1.08                0.280    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman    0.4630     0.3426 1353.0000    1.35                0.177    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1      0.3434     0.3426 1353.0000    1.00                0.316    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2      0.3016     0.3426 1353.0000    0.88                0.379    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Interest

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: interest ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6428
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.537 -0.523  0.019  0.538  3.233 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.04     1.02    
##  Residual             1.40     1.19    
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                               Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                     4.2772     0.1555 1170.9100   27.51 < 0.0000000000000002 ***
## deiexpert_fTrad                                                 0.2187     0.2098 1170.9100    1.04               0.2974    
## backlash_fNo Backlash Cond.                                     0.1644     0.2110 1170.9100    0.78               0.4359    
## person_fotherman                                                0.1584     0.1668 1353.0000    0.95               0.3424    
## person_fwoman1                                                  0.9010     0.1668 1353.0000    5.40          0.000000078 ***
## person_fwoman2                                                  0.7723     0.1668 1353.0000    4.63          0.000003999 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                     0.1594     0.2938 1170.9100    0.54               0.5875    
## deiexpert_fTrad:person_fotherman                               -0.0690     0.2251 1353.0000   -0.31               0.7593    
## deiexpert_fTrad:person_fwoman1                                 -0.7059     0.2251 1353.0000   -3.14               0.0017 ** 
## deiexpert_fTrad:person_fwoman2                                 -0.7154     0.2251 1353.0000   -3.18               0.0015 ** 
## backlash_fNo Backlash Cond.:person_fotherman                   -0.1834     0.2263 1353.0000   -0.81               0.4179    
## backlash_fNo Backlash Cond.:person_fwoman1                     -0.0343     0.2263 1353.0000   -0.15               0.8795    
## backlash_fNo Backlash Cond.:person_fwoman2                      0.0611     0.2263 1353.0000    0.27               0.7874    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman    0.1030     0.3152 1353.0000    0.33               0.7439    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1     -0.0437     0.3152 1353.0000   -0.14               0.8898    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2     -0.0459     0.3152 1353.0000   -0.15               0.8843    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Positive Affect

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: pa ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5426
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.593 -0.475  0.013  0.501  3.513 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.912    0.955   
##  Residual             0.725    0.852   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                Estimate Std. Error         df t value             Pr(>|t|)    
## (Intercept)                                                     4.09653    0.12732  934.50893   32.18 < 0.0000000000000002 ***
## deiexpert_fTrad                                                 0.47460    0.17181  934.50893    2.76               0.0059 ** 
## backlash_fNo Backlash Cond.                                     0.22638    0.17278  934.50893    1.31               0.1904    
## person_fotherman                                                0.02228    0.11985 1353.00001    0.19               0.8526    
## person_fwoman1                                                  0.57921    0.11985 1353.00001    4.83            0.0000015 ***
## person_fwoman2                                                  0.57426    0.11985 1353.00001    4.79            0.0000018 ***
## deiexpert_fTrad:backlash_fNo Backlash Cond.                     0.00653    0.24065  934.50893    0.03               0.9783    
## deiexpert_fTrad:person_fotherman                               -0.03854    0.16174 1353.00001   -0.24               0.8117    
## deiexpert_fTrad:person_fwoman1                                 -0.39222    0.16174 1353.00001   -2.42               0.0154 *  
## deiexpert_fTrad:person_fwoman2                                 -0.33645    0.16174 1353.00001   -2.08               0.0377 *  
## backlash_fNo Backlash Cond.:person_fotherman                    0.09231    0.16265 1353.00001    0.57               0.5705    
## backlash_fNo Backlash Cond.:person_fwoman1                      0.22496    0.16265 1353.00001    1.38               0.1669    
## backlash_fNo Backlash Cond.:person_fwoman2                      0.22574    0.16265 1353.00001    1.39               0.1654    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman   -0.20668    0.22654 1353.00001   -0.91               0.3618    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1     -0.30835    0.22654 1353.00001   -1.36               0.1737    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2     -0.44328    0.22654 1353.00001   -1.96               0.0506 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Negative Affect

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: na ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 3915
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.994 -0.417 -0.097  0.322  6.496 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.558    0.747   
##  Residual             0.285    0.534   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                Estimate Std. Error         df t value            Pr(>|t|)    
## (Intercept)                                                     2.31518    0.09140  779.46229   25.33 <0.0000000000000002 ***
## deiexpert_fTrad                                                 0.16043    0.12334  779.46229    1.30                0.19    
## backlash_fNo Backlash Cond.                                     0.13760    0.12403  779.46229    1.11                0.27    
## person_fotherman                                                0.01155    0.07516 1353.00002    0.15                0.88    
## person_fwoman1                                                 -0.02805    0.07516 1353.00002   -0.37                0.71    
## person_fwoman2                                                  0.05941    0.07516 1353.00002    0.79                0.43    
## deiexpert_fTrad:backlash_fNo Backlash Cond.                    -0.17176    0.17276  779.46228   -0.99                0.32    
## deiexpert_fTrad:person_fotherman                               -0.05491    0.10142 1353.00002   -0.54                0.59    
## deiexpert_fTrad:person_fwoman1                                 -0.00447    0.10142 1353.00002   -0.04                0.96    
## deiexpert_fTrad:person_fwoman2                                 -0.12174    0.10142 1353.00002   -1.20                0.23    
## backlash_fNo Backlash Cond.:person_fotherman                    0.01623    0.10199 1353.00002    0.16                0.87    
## backlash_fNo Backlash Cond.:person_fwoman1                      0.09333    0.10199 1353.00002    0.92                0.36    
## backlash_fNo Backlash Cond.:person_fwoman2                     -0.05663    0.10199 1353.00002   -0.56                0.58    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman   -0.01791    0.14206 1353.00002   -0.13                0.90    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1     -0.07733    0.14206 1353.00002   -0.54                0.59    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2      0.03337    0.14206 1353.00002    0.23                0.81    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Voice

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5718
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.786 -0.444  0.013  0.514  3.021 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.767    0.876   
##  Residual             0.927    0.963   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                                Estimate Std. Error         df t value            Pr(>|t|)    
## (Intercept)                                                     4.64026    0.12950 1117.40391   35.83 <0.0000000000000002 ***
## deiexpert_fTrad                                                 0.14835    0.17476 1117.40391    0.85               0.396    
## backlash_fNo Backlash Cond.                                     0.09307    0.17574 1117.40391    0.53               0.597    
## person_fotherman                                               -0.01650    0.13550 1353.00000   -0.12               0.903    
## person_fwoman1                                                  0.22772    0.13550 1353.00000    1.68               0.093 .  
## person_fwoman2                                                  0.33663    0.13550 1353.00000    2.48               0.013 *  
## deiexpert_fTrad:backlash_fNo Backlash Cond.                     0.07927    0.24477 1117.40392    0.32               0.746    
## deiexpert_fTrad:person_fotherman                               -0.26805    0.18286 1353.00000   -1.47               0.143    
## deiexpert_fTrad:person_fwoman1                                 -0.27108    0.18286 1353.00000   -1.48               0.138    
## deiexpert_fTrad:person_fwoman2                                 -0.31224    0.18286 1353.00000   -1.71               0.088 .  
## backlash_fNo Backlash Cond.:person_fotherman                    0.12761    0.18389 1353.00000    0.69               0.488    
## backlash_fNo Backlash Cond.:person_fwoman1                      0.07506    0.18389 1353.00000    0.41               0.683    
## backlash_fNo Backlash Cond.:person_fwoman2                     -0.03941    0.18389 1353.00000   -0.21               0.830    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman    0.00379    0.25612 1353.00000    0.01               0.988    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1     -0.27193    0.25612 1353.00000   -1.06               0.289    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2     -0.24324    0.25612 1353.00000   -0.95               0.342    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Rewards

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rewards ~ deiexpert_f * backlash_f * person_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5782
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.283 -0.416 -0.013  0.408  3.551 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.635    1.279   
##  Residual             0.794    0.891   
## Number of obs: 1820, groups:  pid, 455
## 
## Fixed effects:
##                                                               Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                                     3.6559     0.1551  764.7498   23.57 <0.0000000000000002 ***
## deiexpert_fTrad                                                 0.2587     0.2093  764.7498    1.24               0.217    
## backlash_fNo Backlash Cond.                                     0.5274     0.2105  764.7498    2.51               0.012 *  
## person_fotherman                                                0.0891     0.1254 1353.0000    0.71               0.478    
## person_fwoman1                                                  0.1535     0.1254 1353.0000    1.22               0.221    
## person_fwoman2                                                  0.2252     0.1254 1353.0000    1.80               0.073 .  
## deiexpert_fTrad:backlash_fNo Backlash Cond.                    -0.4645     0.2931  764.7498   -1.58               0.113    
## deiexpert_fTrad:person_fotherman                               -0.1887     0.1692 1353.0000   -1.11               0.265    
## deiexpert_fTrad:person_fwoman1                                 -0.2714     0.1692 1353.0000   -1.60               0.109    
## deiexpert_fTrad:person_fwoman2                                 -0.2801     0.1692 1353.0000   -1.66               0.098 .  
## backlash_fNo Backlash Cond.:person_fotherman                   -0.0995     0.1702 1353.0000   -0.58               0.559    
## backlash_fNo Backlash Cond.:person_fwoman1                     -0.1201     0.1702 1353.0000   -0.71               0.480    
## backlash_fNo Backlash Cond.:person_fwoman2                     -0.2690     0.1702 1353.0000   -1.58               0.114    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fotherman    0.1608     0.2371 1353.0000    0.68               0.498    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman1     -0.0142     0.2371 1353.0000   -0.06               0.952    
## deiexpert_fTrad:backlash_fNo Backlash Cond.:person_fwoman2      0.1685     0.2371 1353.0000    0.71               0.477    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Pairwise comparisons (comparing candidates across backlash conditions)

Graphs

Exploratory analyses

Part. gender as a control

Ranking

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rank ~ deiexpert_f * person * backlash + part_gend_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5286
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.9559 -0.9336 -0.0081  0.8205  1.8428 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.00     0.00    
##  Residual             1.17     1.08    
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                                          Estimate             Std. Error                     df t value             Pr(>|t|)    
## (Intercept)                                   2.97368421052631415    0.10340156321675377 1739.00000002338219929   28.76 < 0.0000000000000002 ***
## deiexpert_fTrad                              -0.47368421052631493    0.14442643364110391 1739.00000002352317097   -3.28              0.00106 ** 
## personotherman                               -0.07017543859649203    0.14312212004147110 1739.00000000053955773   -0.49              0.62397    
## personwoman1                                 -0.85964912280701844    0.14312212004147098 1739.00000002034926183   -6.01       0.000000002305 ***
## personwoman2                                 -0.96491228070175572    0.14312212004147110 1739.00000000053955773   -6.74       0.000000000021 ***
## backlashyes                                   0.13971785132935624    0.14926254618172105 1739.00000000853538040    0.94              0.34938    
## part_gend_fMale Participants                  0.00000000000000119    0.05256674953489465 1739.00000000879163053    0.00              1.00000    
## deiexpert_fTrad:personotherman                0.17926634768740157    0.20423700223285635 1739.00000001180751497    0.88              0.38021    
## deiexpert_fTrad:personwoman1                  0.75964912280701935    0.20423700223285635 1739.00000001446414899    3.72              0.00021 ***
## deiexpert_fTrad:personwoman2                  0.95582137161084757    0.20423700223285637 1739.00000001446505848    4.68       0.000003091338 ***
## deiexpert_fTrad:backlashyes                  -0.21598903777003378    0.20692669644445255 1739.00000000859813554   -1.04              0.29673    
## personotherman:backlashyes                   -0.35250497377464274    0.21108730794279118 1739.00000001275907380   -1.67              0.09511 .  
## personwoman1:backlashyes                     -0.19189726894555956    0.21108730794279101 1739.00000001267358130   -0.91              0.36343    
## personwoman2:backlashyes                     -0.01446916259721390    0.21108730794279107 1739.00000001275520845   -0.07              0.94536    
## deiexpert_fTrad:personotherman:backlashyes    0.27731236976847884    0.29253415828913359 1739.00000001418788997    0.95              0.34328    
## deiexpert_fTrad:personwoman1:backlashyes      0.40206676047098222    0.29253415828913354 1739.00000001418652573    1.37              0.16949    
## deiexpert_fTrad:personwoman2:backlashyes      0.18457702084066430    0.29253415828913354 1739.00000001418652573    0.63              0.52815    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Voice Solicitation

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ deiexpert_f * person * backlash + part_gend_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6478
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.317 -0.520  0.041  0.548  2.659 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.04     1.02    
##  Residual             1.67     1.29    
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                             Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                   4.0899     0.1605 1109.7536   25.49 < 0.0000000000000002 ***
## deiexpert_fTrad                               0.0662     0.2195 1209.3349    0.30               0.7630    
## personotherman                               -0.0348     0.1703 1311.0000   -0.20               0.8382    
## personwoman1                                  1.0565     0.1703 1311.0000    6.20       0.000000000739 ***
## personwoman2                                  1.1130     0.1703 1311.0000    6.54       0.000000000091 ***
## backlashyes                                  -0.1035     0.2262 1209.5400   -0.46               0.6475    
## part_gend_fMale Participants                  0.1664     0.1173  436.0000    1.42               0.1565    
## deiexpert_fTrad:personotherman                0.1348     0.2436 1311.0000    0.55               0.5801    
## deiexpert_fTrad:personwoman1                 -0.5974     0.2436 1311.0000   -2.45               0.0143 *  
## deiexpert_fTrad:personwoman2                 -0.7221     0.2436 1311.0000   -2.96               0.0031 ** 
## deiexpert_fTrad:backlashyes                   0.5053     0.3145 1207.7398    1.61               0.1083    
## personotherman:backlashyes                    0.3001     0.2511 1311.0000    1.20               0.2322    
## personwoman1:backlashyes                      0.0302     0.2511 1311.0000    0.12               0.9042    
## personwoman2:backlashyes                     -0.1590     0.2511 1311.0000   -0.63               0.5268    
## deiexpert_fTrad:personotherman:backlashyes   -0.4679     0.3488 1311.0000   -1.34               0.1800    
## deiexpert_fTrad:personwoman1:backlashyes     -0.4596     0.3488 1311.0000   -1.32               0.1878    
## deiexpert_fTrad:personwoman2:backlashyes     -0.3845     0.3488 1311.0000   -1.10               0.2705    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Voice Quality

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ deiexpert_f * person * backlash + part_gend_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6228
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.487 -0.521  0.027  0.571  2.581 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.811    0.90    
##  Residual             1.478    1.22    
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                             Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                   4.1680     0.1473 1165.0365   28.30 < 0.0000000000000002 ***
## deiexpert_fTrad                               0.3962     0.2018 1267.5641    1.96              0.04984 *  
## personotherman                                0.0217     0.1603 1311.0000    0.14              0.89217    
## personwoman1                                  1.0174     0.1603 1311.0000    6.35       0.000000000305 ***
## personwoman2                                  1.0609     0.1603 1311.0000    6.62       0.000000000053 ***
## backlashyes                                   0.1044     0.2080 1267.7729    0.50              0.61565    
## part_gend_fMale Participants                  0.0473     0.1055  436.0000    0.45              0.65421    
## deiexpert_fTrad:personotherman               -0.0308     0.2293 1311.0000   -0.13              0.89307    
## deiexpert_fTrad:personwoman1                 -0.8628     0.2293 1311.0000   -3.76              0.00018 ***
## deiexpert_fTrad:personwoman2                 -0.9609     0.2293 1311.0000   -4.19       0.000029720030 ***
## deiexpert_fTrad:backlashyes                  -0.0763     0.2891 1265.9396   -0.26              0.79197    
## personotherman:backlashyes                    0.1262     0.2364 1311.0000    0.53              0.59344    
## personwoman1:backlashyes                     -0.3031     0.2364 1311.0000   -1.28              0.19996    
## personwoman2:backlashyes                     -0.3772     0.2364 1311.0000   -1.60              0.11078    
## deiexpert_fTrad:personotherman:backlashyes   -0.2315     0.3283 1311.0000   -0.71              0.48082    
## deiexpert_fTrad:personwoman1:backlashyes      0.1867     0.3283 1311.0000    0.57              0.56971    
## deiexpert_fTrad:personwoman2:backlashyes      0.0780     0.3283 1311.0000    0.24              0.81215    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interest

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: interest ~ deiexpert_f * person * backlash + part_gend_f + rank +      (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6010
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.830 -0.538  0.029  0.558  3.870 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.09     1.04    
##  Residual             1.21     1.10    
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                             Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                   5.5708     0.1658 1249.9904   33.59 < 0.0000000000000002 ***
## deiexpert_fTrad                               0.1909     0.2027 1042.4550    0.94              0.34661    
## personotherman                               -0.0531     0.1455 1304.0000   -0.36              0.71523    
## personwoman1                                  0.5578     0.1470 1304.0000    3.79              0.00016 ***
## personwoman2                                  0.4825     0.1474 1304.0000    3.27              0.00109 ** 
## backlashyes                                  -0.1566     0.2092 1038.4482   -0.75              0.45432    
## part_gend_fMale Participants                  0.0293     0.1146  434.0000    0.26              0.79831    
## rank                                         -0.3818     0.0244 1304.0000  -15.66 < 0.0000000000000002 ***
## deiexpert_fTrad:personotherman                0.1038     0.2077 1304.0000    0.50              0.61718    
## deiexpert_fTrad:personwoman1                 -0.4778     0.2085 1304.0000   -2.29              0.02208 *  
## deiexpert_fTrad:personwoman2                 -0.3951     0.2090 1304.0000   -1.89              0.05889 .  
## deiexpert_fTrad:backlashyes                  -0.1935     0.2901 1036.9769   -0.67              0.50506    
## personotherman:backlashyes                    0.0670     0.2148 1304.0000    0.31              0.75513    
## personwoman1:backlashyes                     -0.0211     0.2147 1304.0000   -0.10              0.92179    
## personwoman2:backlashyes                     -0.0523     0.2146 1304.0000   -0.24              0.80759    
## deiexpert_fTrad:personotherman:backlashyes   -0.0455     0.2975 1304.0000   -0.15              0.87853    
## deiexpert_fTrad:personwoman1:backlashyes      0.1441     0.2976 1304.0000    0.48              0.62819    
## deiexpert_fTrad:personwoman2:backlashyes      0.0348     0.2975 1304.0000    0.12              0.90693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Positive Affect

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: pa ~ deiexpert_f * person * backlash + part_gend_f + rank + (1 |      pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5086
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.888 -0.487  0.045  0.509  3.672 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.899    0.948   
##  Residual             0.649    0.806   
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                             Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                   5.0003     0.1343 1034.6986   37.22 < 0.0000000000000002 ***
## deiexpert_fTrad                               0.2848     0.1666  866.4866    1.71              0.08760 .  
## personotherman                                0.0738     0.1067 1304.0000    0.69              0.48965    
## personwoman1                                  0.6005     0.1078 1304.0000    5.57          0.000000031 ***
## personwoman2                                  0.5500     0.1081 1304.0000    5.09          0.000000418 ***
## backlashyes                                  -0.2816     0.1719  863.4189   -1.64              0.10174    
## part_gend_fMale Participants                  0.2107     0.1002  434.0000    2.10              0.03610 *  
## rank                                         -0.2300     0.0179 1304.0000  -12.86 < 0.0000000000000002 ***
## deiexpert_fTrad:personotherman               -0.1782     0.1524 1304.0000   -1.17              0.24230    
## deiexpert_fTrad:personwoman1                 -0.5144     0.1529 1304.0000   -3.36              0.00079 ***
## deiexpert_fTrad:personwoman2                 -0.5180     0.1533 1304.0000   -3.38              0.00075 ***
## deiexpert_fTrad:backlashyes                   0.0532     0.2385  862.2939    0.22              0.82338    
## personotherman:backlashyes                   -0.1349     0.1576 1304.0000   -0.86              0.39199    
## personwoman1:backlashyes                     -0.2393     0.1575 1304.0000   -1.52              0.12884    
## personwoman2:backlashyes                     -0.1722     0.1574 1304.0000   -1.09              0.27433    
## deiexpert_fTrad:personotherman:backlashyes    0.2217     0.2182 1304.0000    1.02              0.30978    
## deiexpert_fTrad:personwoman1:backlashyes      0.3480     0.2183 1304.0000    1.59              0.11110    
## deiexpert_fTrad:personwoman2:backlashyes      0.4018     0.2182 1304.0000    1.84              0.06580 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Negative Affect

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: na ~ deiexpert_f * person * backlash + part_gend_f + rank + (1 |      pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 3794
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.017 -0.426 -0.085  0.332  6.444 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.555    0.745   
##  Residual             0.287    0.536   
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                              Estimate Std. Error         df t value             Pr(>|t|)    
## (Intercept)                                   2.27622    0.09803  888.05305   23.22 < 0.0000000000000002 ***
## deiexpert_fTrad                               0.02507    0.12284  756.26718    0.20              0.83837    
## personotherman                                0.03936    0.07099 1304.00002    0.55              0.57941    
## personwoman1                                  0.11625    0.07172 1304.00002    1.62              0.10527    
## personwoman2                                  0.06198    0.07191 1304.00002    0.86              0.38885    
## backlashyes                                  -0.13103    0.12681  753.92263   -1.03              0.30183    
## part_gend_fMale Participants                  0.11853    0.07705  433.99995    1.54              0.12472    
## rank                                          0.04000    0.01189 1304.00003    3.36              0.00079 ***
## deiexpert_fTrad:personotherman               -0.08917    0.10132 1304.00002   -0.88              0.37895    
## deiexpert_fTrad:personwoman1                 -0.12892    0.10170 1304.00002   -1.27              0.20515    
## deiexpert_fTrad:personwoman2                 -0.14344    0.10193 1304.00002   -1.41              0.15961    
## deiexpert_fTrad:backlashyes                   0.18320    0.17593  753.06324    1.04              0.29805    
## personotherman:backlashyes                   -0.00183    0.10478 1304.00002   -0.02              0.98605    
## personwoman1:backlashyes                     -0.09481    0.10472 1304.00002   -0.91              0.36541    
## personwoman2:backlashyes                      0.05794    0.10469 1304.00002    0.55              0.58005    
## deiexpert_fTrad:personotherman:backlashyes    0.00086    0.14513 1304.00002    0.01              0.99527    
## deiexpert_fTrad:personwoman1:backlashyes      0.06777    0.14517 1304.00002    0.47              0.64072    
## deiexpert_fTrad:personwoman2:backlashyes     -0.05214    0.14511 1304.00002   -0.36              0.71943    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Voice

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ deiexpert_f * person * backlash + part_gend_f + rank +      (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5367
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.831 -0.506  0.032  0.539  2.859 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.721    0.849   
##  Residual             0.842    0.917   
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                             Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                   5.5221     0.1372 1274.3342   40.26 <0.0000000000000002 ***
## deiexpert_fTrad                               0.0218     0.1674 1063.8671    0.13               0.897    
## personotherman                                0.0731     0.1215 1304.0000    0.60               0.548    
## personwoman1                                  0.0567     0.1228 1304.0000    0.46               0.644    
## personwoman2                                  0.0333     0.1231 1304.0000    0.27               0.787    
## backlashyes                                  -0.1567     0.1727 1059.7695   -0.91               0.365    
## part_gend_fMale Participants                  0.0655     0.0939  434.0000    0.70               0.486    
## rank                                         -0.2503     0.0204 1304.0000  -12.30 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman               -0.2003     0.1734 1304.0000   -1.15               0.248    
## deiexpert_fTrad:personwoman1                 -0.3242     0.1741 1304.0000   -1.86               0.063 .  
## deiexpert_fTrad:personwoman2                 -0.2962     0.1745 1304.0000   -1.70               0.090 .  
## deiexpert_fTrad:backlashyes                  -0.0483     0.2396 1058.2646   -0.20               0.840    
## personotherman:backlashyes                   -0.1892     0.1794 1304.0000   -1.05               0.292    
## personwoman1:backlashyes                     -0.0554     0.1793 1304.0000   -0.31               0.757    
## personwoman2:backlashyes                      0.0927     0.1792 1304.0000    0.52               0.605    
## deiexpert_fTrad:personotherman:backlashyes    0.0368     0.2484 1304.0000    0.15               0.882    
## deiexpert_fTrad:personwoman1:backlashyes      0.2883     0.2485 1304.0000    1.16               0.246    
## deiexpert_fTrad:personwoman2:backlashyes      0.2444     0.2484 1304.0000    0.98               0.325    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Rewards

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rewards ~ deiexpert_f * person * backlash + part_gend_f + rank +      (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5516
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.387 -0.460 -0.014  0.440  3.910 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.612    1.269   
##  Residual             0.758    0.871   
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                             Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                   4.7087     0.1639  851.2496   28.73 <0.0000000000000002 ***
## deiexpert_fTrad                              -0.3679     0.2060  729.4177   -1.79              0.0745 .  
## personotherman                               -0.0370     0.1153 1304.0000   -0.32              0.7484    
## personwoman1                                 -0.1687     0.1165 1304.0000   -1.45              0.1478    
## personwoman2                                 -0.2692     0.1168 1304.0000   -2.30              0.0214 *  
## backlashyes                                  -0.5963     0.2127  727.2603   -2.80              0.0052 ** 
## part_gend_fMale Participants                  0.2373     0.1306  433.9999    1.82              0.0699 .  
## rank                                         -0.1835     0.0193 1304.0000   -9.50 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman                0.0184     0.1646 1304.0000    0.11              0.9111    
## deiexpert_fTrad:personwoman1                 -0.1042     0.1652 1304.0000   -0.63              0.5284    
## deiexpert_fTrad:personwoman2                  0.1084     0.1656 1304.0000    0.65              0.5128    
## deiexpert_fTrad:backlashyes                   0.5431     0.2950  726.4696    1.84              0.0660 .  
## personotherman:backlashyes                    0.0651     0.1702 1304.0000    0.38              0.7021    
## personwoman1:backlashyes                      0.1484     0.1701 1304.0000    0.87              0.3831    
## personwoman2:backlashyes                      0.3266     0.1701 1304.0000    1.92              0.0550 .  
## deiexpert_fTrad:personotherman:backlashyes   -0.1483     0.2357 1304.0000   -0.63              0.5294    
## deiexpert_fTrad:personwoman1:backlashyes      0.0133     0.2358 1304.0000    0.06              0.9550    
## deiexpert_fTrad:personwoman2:backlashyes     -0.1892     0.2357 1304.0000   -0.80              0.4223    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Part. gender as a moderator

VQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ gendertarget_f * part_gend_f * deiexpert_f * backlash_f +      (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6203
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.382 -0.515  0.047  0.574  2.688 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.809    0.899   
##  Residual             1.460    1.208   
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                                                    Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                                                          4.4417     0.1602  721.2096   27.73 < 0.0000000000000002 ***
## gendertarget_fWoman trgt                                                                             0.5833     0.1560 1315.0000    3.74              0.00019 ***
## part_gend_fMale Participants                                                                        -0.1982     0.2572  721.2096   -0.77              0.44110    
## deiexpert_fTrad                                                                                      0.0702     0.2238  721.2096    0.31              0.75372    
## backlash_fNo Backlash Cond.                                                                         -0.5866     0.2190  721.2096   -2.68              0.00756 ** 
## gendertarget_fWoman trgt:part_gend_fMale Participants                                                0.1075     0.2505 1315.0000    0.43              0.66807    
## gendertarget_fWoman trgt:deiexpert_fTrad                                                            -0.5040     0.2180 1315.0000   -2.31              0.02094 *  
## part_gend_fMale Participants:deiexpert_fTrad                                                         0.2954     0.3443  721.2096    0.86              0.39120    
## gendertarget_fWoman trgt:backlash_fNo Backlash Cond.                                                 0.7754     0.2133 1315.0000    3.63              0.00029 ***
## part_gend_fMale Participants:backlash_fNo Backlash Cond.                                             1.0551     0.3492  721.2096    3.02              0.00260 ** 
## deiexpert_fTrad:backlash_fNo Backlash Cond.                                                          0.7595     0.3077  721.2096    2.47              0.01382 *  
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad                               -0.3277     0.3354 1315.0000   -0.98              0.32871    
## gendertarget_fWoman trgt:part_gend_fMale Participants:backlash_fNo Backlash Cond.                   -0.9335     0.3401 1315.0000   -2.74              0.00614 ** 
## gendertarget_fWoman trgt:deiexpert_fTrad:backlash_fNo Backlash Cond.                                -0.8366     0.2998 1315.0000   -2.79              0.00533 ** 
## part_gend_fMale Participants:deiexpert_fTrad:backlash_fNo Backlash Cond.                            -1.4408     0.4839  721.2096   -2.98              0.00301 ** 
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad:backlash_fNo Backlash Cond.    1.4589     0.4714 1315.0000    3.09              0.00201 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

VS

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ gendertarget_f * part_gend_f * deiexpert_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6464
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.185 -0.515  0.042  0.576  2.719 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.04     1.02    
##  Residual             1.66     1.29    
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                       Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                                                              3.946      0.120  703.161   32.78 < 0.0000000000000002 ***
## gendertarget_fWoman trgt                                                 1.223      0.113 1319.000   10.78 < 0.0000000000000002 ***
## part_gend_fMale Participants                                             0.542      0.192  703.161    2.83               0.0048 ** 
## deiexpert_fTrad                                                          0.448      0.169  703.161    2.65               0.0083 ** 
## gendertarget_fWoman trgt:part_gend_fMale Participants                   -0.556      0.181 1319.000   -3.08               0.0021 ** 
## gendertarget_fWoman trgt:deiexpert_fTrad                                -1.037      0.160 1319.000   -6.50        0.00000000011 ***
## part_gend_fMale Participants:deiexpert_fTrad                            -0.431      0.265  703.161   -1.63               0.1046    
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad    0.511      0.250 1319.000    2.04               0.0411 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.471                                              
## prt_gnd_fMP -0.628  0.296                                       
## dexprt_fTrd -0.711  0.335  0.447                                
## gnd_Wt:__MP  0.296 -0.628 -0.471 -0.210                         
## gndrt_Wt:_T  0.335 -0.711 -0.210 -0.471  0.447                  
## prt_g_MP:_T  0.454 -0.214 -0.723 -0.638  0.341      0.301       
## g_Wt:__MP:_ -0.214  0.454  0.341  0.301 -0.723     -0.638 -0.471
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Ranking

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rank_r ~ gendertarget_f * part_gend_f * deiexpert_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5268
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8691 -0.9126 -0.0146  0.9126  1.8691 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.00     0.00    
##  Residual             1.16     1.08    
## Number of obs: 1756, groups:  pid, 439
## 
## Fixed effects:
##                                                                        Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                              1.9843     0.0677 1748.0000   29.32 < 0.0000000000000002 ***
## gendertarget_fWoman trgt                                                 1.0315     0.0957 1748.0000   10.78 < 0.0000000000000002 ***
## part_gend_fMale Participants                                             0.2360     0.1072 1748.0000    2.20               0.0279 *  
## deiexpert_fTrad                                                          0.5006     0.0948 1748.0000    5.28     0.00000014437418 ***
## gendertarget_fWoman trgt:part_gend_fMale Participants                   -0.4720     0.1517 1748.0000   -3.11               0.0019 ** 
## gendertarget_fWoman trgt:deiexpert_fTrad                                -1.0012     0.1341 1748.0000   -7.47     0.00000000000013 ***
## part_gend_fMale Participants:deiexpert_fTrad                            -0.1896     0.1482 1748.0000   -1.28               0.2010    
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad    0.3792     0.2096 1748.0000    1.81               0.0706 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.707                                              
## prt_gnd_fMP -0.631  0.446                                       
## dexprt_fTrd -0.714  0.505  0.450                                
## gnd_Wt:__MP  0.446 -0.631 -0.707 -0.319                         
## gndrt_Wt:_T  0.505 -0.714 -0.319 -0.707  0.450                  
## prt_g_MP:_T  0.457 -0.323 -0.724 -0.640  0.512      0.452       
## g_Wt:__MP:_ -0.323  0.457  0.512  0.452 -0.724     -0.640 -0.707
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Interest

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: interest ~ gendertarget_f * part_gend_f * deiexpert_f + (1 |      pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 6239
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.454 -0.486  0.013  0.521  3.216 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.04     1.02    
##  Residual             1.42     1.19    
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                       Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                                                              4.306      0.117  672.432   36.95 < 0.0000000000000002 ***
## gendertarget_fWoman trgt                                                 0.930      0.105 1319.000    8.87 < 0.0000000000000002 ***
## part_gend_fMale Participants                                             0.212      0.186  672.432    1.14               0.2545    
## deiexpert_fTrad                                                          0.432      0.164  672.432    2.64               0.0085 ** 
## gendertarget_fWoman trgt:part_gend_fMale Participants                   -0.258      0.167 1319.000   -1.54               0.1230    
## gendertarget_fWoman trgt:deiexpert_fTrad                                -0.945      0.147 1319.000   -6.41         0.0000000002 ***
## part_gend_fMale Participants:deiexpert_fTrad                            -0.372      0.257  672.432   -1.45               0.1478    
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad    0.476      0.231 1319.000    2.06               0.0396 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.450                                              
## prt_gnd_fMP -0.628  0.282                                       
## dexprt_fTrd -0.711  0.320  0.447                                
## gnd_Wt:__MP  0.282 -0.628 -0.450 -0.201                         
## gndrt_Wt:_T  0.320 -0.711 -0.201 -0.450  0.447                  
## prt_g_MP:_T  0.454 -0.204 -0.723 -0.638  0.325      0.287       
## g_Wt:__MP:_ -0.204  0.454  0.325  0.287 -0.723     -0.638 -0.450
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Positive Affect

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: pa ~ gendertarget_f * part_gend_f * deiexpert_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5232
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.862 -0.466  0.036  0.503  3.321 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.894    0.945   
##  Residual             0.721    0.849   
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                        Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                              4.0795     0.0986  590.4826   41.37 < 0.0000000000000002 ***
## gendertarget_fWoman trgt                                                 0.8072     0.0748 1319.0000   10.80 < 0.0000000000000002 ***
## part_gend_fMale Participants                                             0.5232     0.1570  590.4826    3.33              0.00092 ***
## deiexpert_fTrad                                                          0.5597     0.1387  590.4826    4.04        0.00006131748 ***
## gendertarget_fWoman trgt:part_gend_fMale Participants                   -0.3607     0.1191 1319.0000   -3.03              0.00249 ** 
## gendertarget_fWoman trgt:deiexpert_fTrad                                -0.6822     0.1051 1319.0000   -6.49        0.00000000012 ***
## part_gend_fMale Participants:deiexpert_fTrad                            -0.4932     0.2173  590.4826   -2.27              0.02361 *  
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad    0.4779     0.1648 1319.0000    2.90              0.00379 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.379                                              
## prt_gnd_fMP -0.628  0.238                                       
## dexprt_fTrd -0.711  0.270  0.447                                
## gnd_Wt:__MP  0.238 -0.628 -0.379 -0.169                         
## gndrt_Wt:_T  0.270 -0.711 -0.169 -0.379  0.447                  
## prt_g_MP:_T  0.454 -0.172 -0.723 -0.638  0.274      0.242       
## g_Wt:__MP:_ -0.172  0.454  0.274  0.242 -0.723     -0.638 -0.379
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Negative Affect

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: na ~ gendertarget_f * part_gend_f * deiexpert_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 3788
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.989 -0.422 -0.096  0.330  6.397 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.557    0.747   
##  Residual             0.288    0.537   
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                         Estimate Std. Error         df t value            Pr(>|t|)    
## (Intercept)                                                              2.38566    0.07374  540.34364   32.35 <0.0000000000000002 ***
## gendertarget_fWoman trgt                                                 0.01809    0.04725 1319.00002    0.38                0.70    
## part_gend_fMale Participants                                             0.05879    0.11742  540.34364    0.50                0.62    
## deiexpert_fTrad                                                          0.00386    0.10369  540.34364    0.04                0.97    
## gendertarget_fWoman trgt:part_gend_fMale Participants                    0.01763    0.07524 1319.00002    0.23                0.81    
## gendertarget_fWoman trgt:deiexpert_fTrad                                -0.05155    0.06644 1319.00002   -0.78                0.44    
## part_gend_fMale Participants:deiexpert_fTrad                             0.09162    0.16251  540.34364    0.56                0.57    
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad   -0.00240    0.10413 1319.00002   -0.02                0.98    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.320                                              
## prt_gnd_fMP -0.628  0.201                                       
## dexprt_fTrd -0.711  0.228  0.447                                
## gnd_Wt:__MP  0.201 -0.628 -0.320 -0.143                         
## gndrt_Wt:_T  0.228 -0.711 -0.143 -0.320  0.447                  
## prt_g_MP:_T  0.454 -0.145 -0.723 -0.638  0.231      0.204       
## g_Wt:__MP:_ -0.145  0.454  0.231  0.204 -0.723     -0.638 -0.320
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Voice

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: voice ~ gendertarget_f * part_gend_f * deiexpert_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5517
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.839 -0.456 -0.001  0.550  2.961 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.695    0.833   
##  Residual             0.939    0.969   
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                        Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                                              4.6757     0.0950  671.3590   49.22 <0.0000000000000002 ***
## gendertarget_fWoman trgt                                                 0.2713     0.0853 1319.0000    3.18              0.0015 ** 
## part_gend_fMale Participants                                             0.1616     0.1513  671.3590    1.07              0.2858    
## deiexpert_fTrad                                                          0.0983     0.1336  671.3590    0.74              0.4621    
## gendertarget_fWoman trgt:part_gend_fMale Participants                   -0.0114     0.1358 1319.0000   -0.08              0.9331    
## gendertarget_fWoman trgt:deiexpert_fTrad                                -0.3408     0.1199 1319.0000   -2.84              0.0046 ** 
## part_gend_fMale Participants:deiexpert_fTrad                            -0.2481     0.2093  671.3590   -1.19              0.2364    
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad    0.1364     0.1880 1319.0000    0.73              0.4682    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.449                                              
## prt_gnd_fMP -0.628  0.282                                       
## dexprt_fTrd -0.711  0.319  0.447                                
## gnd_Wt:__MP  0.282 -0.628 -0.449 -0.201                         
## gndrt_Wt:_T  0.319 -0.711 -0.201 -0.449  0.447                  
## prt_g_MP:_T  0.454 -0.204 -0.723 -0.638  0.324      0.286       
## g_Wt:__MP:_ -0.204  0.454  0.324  0.286 -0.723     -0.638 -0.449
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Rewards

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rewards ~ gendertarget_f * part_gend_f * deiexpert_f + (1 | pid)
##    Data: nonebacklash_long1
## 
## REML criterion at convergence: 5600
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -4.441 -0.403 -0.020  0.426  3.595 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.610    1.269   
##  Residual             0.802    0.895   
## Number of obs: 1764, groups:  pid, 441
## 
## Fixed effects:
##                                                                        Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                                                              3.8934     0.1249  536.9044   31.18 <0.0000000000000002 ***
## gendertarget_fWoman trgt                                                -0.0678     0.0788 1319.0000   -0.86               0.390    
## part_gend_fMale Participants                                             0.2614     0.1988  536.9044    1.31               0.189    
## deiexpert_fTrad                                                          0.0299     0.1756  536.9044    0.17               0.865    
## gendertarget_fWoman trgt:part_gend_fMale Participants                    0.2940     0.1255 1319.0000    2.34               0.019 *  
## gendertarget_fWoman trgt:deiexpert_fTrad                                -0.1026     0.1108 1319.0000   -0.93               0.355    
## part_gend_fMale Participants:deiexpert_fTrad                            -0.2589     0.2752  536.9044   -0.94               0.347    
## gendertarget_fWoman trgt:part_gend_fMale Participants:deiexpert_fTrad   -0.1509     0.1737 1319.0000   -0.87               0.385    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gnd_Wt pr__MP dxpr_T gn_Wt:__MP g_Wt:_ p__MP:
## gndrtrgt_Wt -0.316                                              
## prt_gnd_fMP -0.628  0.198                                       
## dexprt_fTrd -0.711  0.224  0.447                                
## gnd_Wt:__MP  0.198 -0.628 -0.316 -0.141                         
## gndrt_Wt:_T  0.224 -0.711 -0.141 -0.316  0.447                  
## prt_g_MP:_T  0.454 -0.143 -0.723 -0.638  0.228      0.201       
## g_Wt:__MP:_ -0.143  0.454  0.228  0.201 -0.723     -0.638 -0.316
## [[1]]

## 
## [[2]]

## 
## [[3]]

## 
## [[4]]

## 
## [[5]]

## 
## [[6]]

## 
## [[7]]

## 
## [[8]]

## 
## [[9]]

## 
## [[10]]

## 
## [[11]]
## [[11]][[1]]

## 
## [[11]][[2]]

Rank woman as #1

Here, I compare whether participants ranked a woman as Number 1

## 
## Call:
## lm(formula = rank_wom ~ deiexpert, data = nonebacklash_clean1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.708 -0.534  0.292  0.466  0.466 
## 
## Coefficients:
##               Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)     0.7078     0.0324   21.86 < 0.0000000000000002 ***
## deiexperttrad  -0.1736     0.0450   -3.85              0.00013 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.479 on 451 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0319, Adjusted R-squared:  0.0297 
## F-statistic: 14.8 on 1 and 451 DF,  p-value: 0.000133

Mediation

library(lavaan)
## Warning: package 'lavaan' was built under R version 4.3.1
## This is lavaan 0.6-17
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:JWileymisc':
## 
##     cor2cov
deitraddata <- nonebacklash_long1 %>%
  filter(deiexpert == "Trad")
deidata <- nonebacklash_long1 %>%
  filter(deiexpert == "DEI")

Voice Quality

DEI

library(lavaan)

deivq_mediationdat <- data.frame(
  X = deidata$gendertarget,
  M = scale(deidata$vq, scale = F),
  Y = scale(deidata$rank_r, scale = F),
  pid = deidata$pid
)

med_mod_deivq <- 
  '
  # Direct Effect
  Y ~ c*X
  
  # Mediator
  M~a*X
  Y~b*M
  
  # Indirect effect
  ab:= a*b
  
  # Total effect
  total:= c+ (a*b)
'

sem_med_deivq <- lavaan::sem(med_mod_deivq, cluster = "pid", data = deivq_mediationdat)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -3.468178e-18) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(sem_med_deivq)
## lavaan 0.6.17 ended normally after 1 iteration
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           876         884
##   Number of clusters [pid]                         219            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Y ~                                                 
##     X          (c)    0.653    0.084    7.752    0.000
##   M ~                                                 
##     X          (a)    0.857    0.114    7.531    0.000
##   Y ~                                                 
##     M          (b)    0.240    0.022   10.979    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                -0.979    0.128   -7.676    0.000
##    .M                -1.286    0.195   -6.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 0.935    0.036   26.287    0.000
##    .M                 2.280    0.161   14.190    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab                0.205    0.032    6.370    0.000
##     total             0.858    0.089    9.640    0.000
as.data.frame(lavaan::parameterEstimates(sem_med_deivq,  ci = TRUE, level = 0.95)) %>%
  filter(lhs == "ab") %>%
  dplyr::select(est, ci.lower, ci.upper)

Trad

library(lavaan)

tradvq_mediationdat <- data.frame(
  X = deitraddata$gendertarget,
  M = scale(deitraddata$vq, scale = F),
  Y = scale(deitraddata$rank_r, scale = F),
  pid = deitraddata$pid
)

med_mod_tradvq <- 
  '
  # Direct Effect
  Y ~ c*X
  
  # Mediator
  M~a*X
  Y~b*M
  
  # Indirect effect
  ab:= a*b
  
  # Total effect
  total:= c+ (a*b)
'

sem_med_tradvq <- lavaan::sem(med_mod_tradvq, cluster = "pid", data = tradvq_mediationdat)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= 2.148811e-19) is close to zero. This may be a symptom that the
##     model is not identified.
summary(sem_med_tradvq)
## lavaan 0.6.17 ended normally after 8 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           936
##   Number of clusters [pid]                         234
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Y ~                                                 
##     X          (c)   -0.002    0.074   -0.028    0.978
##   M ~                                                 
##     X          (a)    0.061    0.082    0.740    0.459
##   Y ~                                                 
##     M          (b)    0.315    0.022   14.076    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 0.003    0.113    0.027    0.978
##    .M                -0.091    0.140   -0.650    0.516
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 1.026    0.029   35.727    0.000
##    .M                 2.264    0.130   17.388    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab                0.019    0.026    0.739    0.460
##     total             0.017    0.087    0.197    0.844
as.data.frame(lavaan::parameterEstimates(sem_med_tradvq,  ci = TRUE, level = 0.95)) %>%
  filter(lhs == "ab") %>%
  dplyr::select(est, ci.lower, ci.upper)

Interest

DEI

library(lavaan)

deiinterest_mediationdat <- data.frame(
  X = deidata$gendertarget,
  M = scale(deidata$interest, scale = F),
  Y = scale(deidata$rank_r, scale = F),
  pid = deidata$pid
)

med_mod_deiinterest <- 
  '
  # Direct Effect
  Y ~ c*X
  
  # Mediator
  M~a*X
  Y~b*M
  
  # Indirect effect
  ab:= a*b
  
  # Total effect
  total:= c+ (a*b)
'

sem_med_deiinterest <- lavaan::sem(med_mod_deiinterest, cluster = "pid", data = deiinterest_mediationdat)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -2.692763e-18) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(sem_med_deiinterest)
## lavaan 0.6.17 ended normally after 1 iteration
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##                                                   Used       Total
##   Number of observations                           876         884
##   Number of clusters [pid]                         219            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Y ~                                                 
##     X          (c)    0.735    0.089    8.231    0.000
##   M ~                                                 
##     X          (a)    0.822    0.116    7.074    0.000
##   Y ~                                                 
##     M          (b)    0.150    0.021    7.284    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                -1.102    0.134   -8.220    0.000
##    .M                -1.235    0.200   -6.175    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 1.012    0.037   27.301    0.000
##    .M                 2.367    0.141   16.830    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab                0.123    0.025    4.868    0.000
##     total             0.858    0.089    9.640    0.000
as.data.frame(lavaan::parameterEstimates(sem_med_deiinterest,  ci = TRUE, level = 0.95)) %>%
  filter(lhs == "ab") %>%
  dplyr::select(est, ci.lower, ci.upper)

Trad

library(lavaan)

tradinterest_mediationdat <- data.frame(
  X = deitraddata$gendertarget,
  M = scale(deitraddata$interest, scale = F),
  Y = scale(deitraddata$rank_r, scale = F),
  pid = deitraddata$pid
)

med_mod_tradinterest <- 
  '
  # Direct Effect
  Y ~ c*X
  
  # Mediator
  M~a*X
  Y~b*M
  
  # Indirect effect
  ab:= a*b
  
  # Total effect
  total:= c+ (a*b)
'

sem_med_tradinterest <- lavaan::sem(med_mod_tradinterest, cluster = "pid", data = tradinterest_mediationdat)
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= -6.496565e-19) is smaller than zero. This may be a symptom that
##     the model is not identified.
summary(sem_med_tradinterest)
## lavaan 0.6.17 ended normally after 8 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           936
##   Number of clusters [pid]                         234
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.000       0.000
##   Degrees of freedom                                 0           0
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Y ~                                                 
##     X          (c)   -0.000    0.080   -0.006    0.996
##   M ~                                                 
##     X          (a)    0.085    0.080    1.068    0.286
##   Y ~                                                 
##     M          (b)    0.205    0.021    9.614    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 0.001    0.122    0.005    0.996
##    .M                -0.128    0.140   -0.914    0.361
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 1.144    0.020   56.031    0.000
##    .M                 2.508    0.148   16.973    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ab                0.018    0.016    1.065    0.287
##     total             0.017    0.087    0.197    0.844
as.data.frame(lavaan::parameterEstimates(sem_med_tradinterest,  ci = TRUE, level = 0.95)) %>%
  filter(lhs == "ab") %>%
  dplyr::select(est, ci.lower, ci.upper)

Parallel Mediation just within the DEI condition

Dependent Variable: Ranking

dei_mediationdat2 <- data.frame(
  X = deidata$gendertarget,
  M1 = scale(deidata$vq, scale = F),
  M2 = scale(deidata$interest, scale = F),
  Y = scale(deidata$rank_r, scale = F),
  pid = deidata$pid
)
multipleMediation <- '
Y ~ b1 * M1 + b2 * M2 + c * X
M1 ~ a1 * X
M2 ~ a2 * X
indirect1 := a1 * b1
indirect2 := a2 * b2
total := c + (a1 * b1) + (a2 * b2)
M1 ~~ M2
'

fit <- sem(model = multipleMediation, data = dei_mediationdat2)
summary(fit)
## lavaan 0.6.17 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                           876         884
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Y ~                                                 
##     M1        (b1)    0.220    0.025    8.660    0.000
##     M2        (b2)    0.037    0.025    1.482    0.138
##     X          (c)    0.640    0.068    9.346    0.000
##   M1 ~                                                
##     X         (a1)    0.857    0.102    8.402    0.000
##   M2 ~                                                
##     X         (a2)    0.822    0.104    7.906    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .M1 ~~                                               
##    .M2                1.220    0.089   13.759    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 0.933    0.045   20.928    0.000
##    .M1                2.280    0.109   20.928    0.000
##    .M2                2.367    0.113   20.928    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     indirect1         0.188    0.031    6.030    0.000
##     indirect2         0.030    0.021    1.457    0.145
##     total             0.858    0.070   12.306    0.000
as.data.frame(parameterestimates(fit)) %>%
  dplyr::filter(lhs == "indirect1" | lhs == "indirect2" | lhs == "total") %>%
  dplyr::select(label, est, se, ci.lower, ci.upper)

Dependent Variable: Voice Solicitation

dei_mediationdat2 <- data.frame(
  X = deidata$gendertarget,
  M1 = scale(deidata$vq, scale = F),
  M2 = scale(deidata$interest, scale = F),
  Y = scale(deidata$vs, scale = F),
  pid = deidata$pid
)
multipleMediation <- '
Y ~ b1 * M1 + b2 * M2 + c * X
M1 ~ a1 * X
M2 ~ a2 * X
indirect1 := a1 * b1
indirect2 := a2 * b2
total := c + (a1 * b1) + (a2 * b2)
M1 ~~ M2
'

fit <- sem(model = multipleMediation, data = dei_mediationdat2)
summary(fit)
## lavaan 0.6.17 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##   Number of observations                           884
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Y ~                                                 
##     M1        (b1)    0.786    0.025   31.741    0.000
##     M2        (b2)    0.151    0.024    6.218    0.000
##     X          (c)    0.237    0.067    3.565    0.000
##   M1 ~                                                
##     X         (a1)    0.850    0.101    8.373    0.000
##   M2 ~                                                
##     X         (a2)    0.814    0.103    7.888    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .M1 ~~                                               
##    .M2                1.222    0.088   13.874    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Y                 0.890    0.042   21.024    0.000
##    .M1                2.275    0.108   21.024    0.000
##    .M2                2.356    0.112   21.024    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     indirect1         0.668    0.082    8.096    0.000
##     indirect2         0.123    0.025    4.883    0.000
##     total             1.028    0.109    9.406    0.000
as.data.frame(parameterestimates(fit)) %>%
  dplyr::filter(lhs == "indirect1" | lhs == "indirect2" | lhs == "total") %>%
  dplyr::select(label, est, se, ci.lower, ci.upper)

Moderated mediation

modmed <- '

  M ~ a1*X + a2*W + a3*X:W
  Y ~ cdash1*X + cdash2*W + cdash3*X:W + b1*M
  
  #Mean of centered W (for use in simple slopes)
  #This is making a coefficient labeled "W" which equals the intercept because of the "1"
  #(Y~1) gives you the intercept, which is the mean for our W variable
  
  W ~ W.mean*1
  
  #Variance of centered W (for use in simple slopes)
  #This is making a coefficient labeled "W.var" which equals the variance because of the "~~"
  #Two tildes separating the same variable gives you the variance
  
  W ~~ W.var*W
  
  
  #Indirect effects conditional on moderator (a1 + a3*ModValue)*b1
  
  indirect.SDbelow := (a1 + a3*(W.mean-sqrt(W.var)))*b1
  indirect.SDabove := (a1 + a3*(W.mean+sqrt(W.var)))*b1
  
  #Direct effects conditional on moderator (cdash1 + cdash3*ModValue)
  #We have to do it this way because you cannot call the mean and sd functions in lavaan package
  direct.SDbelow := cdash1 + cdash3*(W.mean-sqrt(W.var)) 
  direct.SDabove := cdash1 + cdash3*(W.mean+sqrt(W.var))
  
  #Total effects conditional on moderator
  total.SDbelow := direct.SDbelow + indirect.SDbelow
  total.SDabove := direct.SDabove + indirect.SDabove
  
  #Proportion mediated conditional on moderator
  #To match the output of "mediate" package
  prop.mediated.SDbelow := indirect.SDbelow / total.SDbelow
  prop.mediated.SDabove := indirect.SDabove / total.SDabove
  
  #Index of moderated mediation
  #An alternative way of testing if conditional indirect effects are significantly different from each other
  
  index.mod.med := a3*b1
'

Rank as DV

VQ as mediator

nonebacklash_long1 <- nonebacklash_long1 %>%
  mutate(
    deiexpert_num = case_when(
      deiexpert == "DEI" ~ 1,
      deiexpert == "Trad" ~ 0),
    gendertarget_num = case_when(
      gendertarget == "Man trgt" ~ 0,
      gendertarget == "Woman trgt" ~ 1
    ))

modmed_vq_rank <- data.frame(
  X = nonebacklash_long1$gendertarget_num,
  M = scale(nonebacklash_long1$vq, scale = F),
  W = nonebacklash_long1$deiexpert_num,
  Y = scale(nonebacklash_long1$rank_r, scale = F),
  pid = nonebacklash_long1$pid
)


Mod.Med.SEM_vqrank <- sem(model = modmed,
                   data = modmed_vq_rank,
                   bootstrap = 100, cluster = "pid")

summary(Mod.Med.SEM_vqrank,
        fit.measures = FALSE,
        standardize = TRUE,
        rsquare = TRUE)
## lavaan 0.6.17 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                          1812        1820
##   Number of clusters [pid]                         453            
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1255.983          NA
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000          NA
##   Scaling correction factor                                     NA
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   M ~                                                                   
##     X         (a1)    0.061    0.082    0.741    0.459    0.061    0.020
##     W         (a2)   -0.305    0.128   -2.388    0.017   -0.305   -0.098
##     X:W       (a3)    0.796    0.140    5.676    0.000    0.796    0.219
##   Y ~                                                                   
##     X       (cds1)    0.000    0.075    0.002    0.998    0.000    0.000
##     W       (cds2)   -0.336    0.061   -5.548    0.000   -0.336   -0.145
##     X:W     (cds3)    0.620    0.108    5.726    0.000    0.620    0.229
##     M         (b1)    0.278    0.016   17.542    0.000    0.278    0.374
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.mn)    0.483    0.024   20.568    0.000    0.483    0.967
##    .M                -0.076    0.080   -0.952    0.341   -0.076   -0.049
##    .Y                 0.013    0.042    0.300    0.764    0.013    0.011
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.vr)    0.250    0.001  320.854    0.000    0.250    1.000
##    .M                 2.272    0.103   22.134    0.000    2.272    0.937
##    .Y                 0.985    0.022   44.422    0.000    0.985    0.736
## 
## R-Square:
##                    Estimate
##     M                 0.063
##     Y                 0.264
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect.SDblw    0.013    0.024    0.561    0.575    0.013    0.005
##     indirect.SDabv    0.235    0.034    6.970    0.000    0.235    0.169
##     direct.SDbelow   -0.010    0.077   -0.128    0.898   -0.010   -0.007
##     direct.SDabove    0.610    0.079    7.686    0.000    0.610    0.451
##     total.SDbelow     0.003    0.090    0.038    0.970    0.003   -0.003
##     total.SDabove     0.844    0.090    9.400    0.000    0.844    0.620
##     prp.mdtd.SDblw    3.927   99.980    0.039    0.969    3.927   -1.687
##     prop.mdtd.SDbv    0.278    0.036    7.623    0.000    0.278    0.272
##     index.mod.med     0.222    0.041    5.438    0.000    0.222    0.082
parameterEstimates(Mod.Med.SEM_vqrank,
                   boot.ci.type = "bca.simple",
                   level = .95, ci = TRUE,
                   standardized = FALSE)[c(19:27),c(4:10)] #We index the matrix to only display columns we are interested in

Interest as mediator

modmed_interest_rank <- data.frame(
  X = nonebacklash_long1$gendertarget_num,
  M = scale(nonebacklash_long1$interest, scale = F),
  W = nonebacklash_long1$deiexpert_num,
  Y = scale(nonebacklash_long1$rank_r, scale = F),
  pid = nonebacklash_long1$pid
)


Mod.Med.SEM_interestrank <- sem(model = modmed,
                   data = modmed_interest_rank,
                   bootstrap = 100, cluster = "pid")

summary(Mod.Med.SEM_interestrank,
        fit.measures = FALSE,
        standardize = TRUE,
        rsquare = TRUE)
## lavaan 0.6.17 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##                                                   Used       Total
##   Number of observations                          1812        1820
##   Number of clusters [pid]                         453            
## 
## Model Test User Model:
##                                               Standard            Scaled
##   Test Statistic                              1255.983 2114646736595.255
##   Degrees of freedom                                 2                 2
##   P-value (Chi-square)                           0.000             0.000
##   Scaling correction factor                                        0.000
##     Yuan-Bentler correction (Mplus variant)                             
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   M ~                                                                   
##     X         (a1)    0.085    0.080    1.069    0.285    0.085    0.027
##     W         (a2)   -0.285    0.134   -2.118    0.034   -0.285   -0.089
##     X:W       (a3)    0.736    0.141    5.226    0.000    0.736    0.196
##   Y ~                                                                   
##     X       (cds1)    0.002    0.080    0.022    0.983    0.002    0.001
##     W       (cds2)   -0.370    0.062   -5.957    0.000   -0.370   -0.160
##     X:W     (cds3)    0.709    0.118    6.032    0.000    0.709    0.262
##     M         (b1)    0.179    0.015   12.048    0.000    0.179    0.249
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.mn)    0.483    0.024   20.568    0.000    0.483    0.967
##    .M                -0.084    0.087   -0.972    0.331   -0.084   -0.052
##    .Y                 0.007    0.044    0.150    0.881    0.007    0.006
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.vr)    0.250    0.001  320.854    0.000    0.250    1.000
##    .M                 2.440    0.102   23.882    0.000    2.440    0.947
##    .Y                 1.082    0.021   52.624    0.000    1.082    0.809
## 
## R-Square:
##                    Estimate
##     M                 0.053
##     Y                 0.191
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect.SDblw    0.013    0.015    0.886    0.376    0.013    0.005
##     indirect.SDabv    0.145    0.024    5.946    0.000    0.145    0.103
##     direct.SDbelow   -0.010    0.083   -0.118    0.906   -0.010   -0.008
##     direct.SDabove    0.699    0.086    8.141    0.000    0.699    0.517
##     total.SDbelow     0.003    0.090    0.038    0.970    0.003   -0.003
##     total.SDabove     0.844    0.090    9.400    0.000    0.844    0.620
##     prp.mdtd.SDblw    3.883  100.806    0.039    0.969    3.883   -1.826
##     prop.mdtd.SDbv    0.172    0.029    5.864    0.000    0.172    0.166
##     index.mod.med     0.132    0.028    4.689    0.000    0.132    0.049
parameterEstimates(Mod.Med.SEM_interestrank,
                   boot.ci.type = "bca.simple",
                   level = .95, ci = TRUE,
                   standardized = FALSE)[c(19:27),c(4:10)] #We index the matrix to only display columns we are interested in

VS as DV

VQ as mediator

modmed_vq_vs <- data.frame(
  X = nonebacklash_long1$gendertarget_num,
  M = scale(nonebacklash_long1$vq, scale = F),
  W = nonebacklash_long1$deiexpert_num,
  Y = scale(nonebacklash_long1$vs, scale = F),
  pid = nonebacklash_long1$pid
)

Mod.Med.SEM_vsrank <- sem(model = modmed,
                   data = modmed_vq_vs,
                   bootstrap = 100, cluster = "pid")

summary(Mod.Med.SEM_vsrank,
        fit.measures = FALSE,
        standardize = TRUE,
        rsquare = TRUE)
## lavaan 0.6.17 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                          1820
##   Number of clusters [pid]                         455
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1261.528          NA
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000          NA
##   Scaling correction factor                                     NA
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   M ~                                                                   
##     X         (a1)    0.061    0.082    0.741    0.459    0.061    0.020
##     W         (a2)   -0.300    0.127   -2.361    0.018   -0.300   -0.097
##     X:W       (a3)    0.789    0.140    5.650    0.000    0.789    0.217
##   Y ~                                                                   
##     X       (cds1)    0.109    0.063    1.735    0.083    0.109    0.032
##     W       (cds2)   -0.057    0.091   -0.632    0.528   -0.057   -0.017
##     X:W     (cds3)    0.199    0.089    2.230    0.026    0.199    0.050
##     M         (b1)    0.848    0.021   39.481    0.000    0.848    0.771
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.mn)    0.486    0.023   20.707    0.000    0.486    0.972
##    .M                -0.076    0.080   -0.952    0.341   -0.076   -0.049
##    .Y                -0.075    0.065   -1.148    0.251   -0.075   -0.044
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.vr)    0.250    0.001  372.725    0.000    0.250    1.000
##    .M                 2.269    0.102   22.208    0.000    2.269    0.938
##    .Y                 1.092    0.077   14.132    0.000    1.092    0.373
## 
## R-Square:
##                    Estimate
##     M                 0.062
##     Y                 0.627
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect.SDblw    0.042    0.072    0.583    0.560    0.042    0.010
##     indirect.SDabv    0.711    0.099    7.189    0.000    0.711    0.346
##     direct.SDbelow    0.106    0.064    1.663    0.096    0.106    0.030
##     direct.SDabove    0.305    0.063    4.854    0.000    0.305    0.130
##     total.SDbelow     0.148    0.088    1.675    0.094    0.148    0.041
##     total.SDabove     1.016    0.120    8.494    0.000    1.016    0.476
##     prp.mdtd.SDblw    0.285    0.388    0.734    0.463    0.285    0.255
##     prop.mdtd.SDbv    0.700    0.051   13.693    0.000    0.700    0.726
##     index.mod.med     0.669    0.120    5.550    0.000    0.669    0.168
parameterEstimates(Mod.Med.SEM_vsrank,
                   boot.ci.type = "bca.simple",
                   level = .95, ci = TRUE,
                   standardized = FALSE)[c(19:27),c(4:10)] #We index the matrix to only display columns we are interested in

Interest as mediator

modmed_interest_vs <- data.frame(
  X = nonebacklash_long1$gendertarget_num,
  M = scale(nonebacklash_long1$interest, scale = F),
  W = nonebacklash_long1$deiexpert_num,
  Y = scale(nonebacklash_long1$vs, scale = F),
  pid = nonebacklash_long1$pid
)


Mod.Med.SEM_interestvs <- sem(model = modmed,
                   data = modmed_interest_vs,
                   bootstrap = 100, cluster = "pid")

summary(Mod.Med.SEM_interestvs,
        fit.measures = FALSE,
        standardize = TRUE,
        rsquare = TRUE)
## lavaan 0.6.17 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                          1820
##   Number of clusters [pid]                         455
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1261.528          NA
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000          NA
##   Scaling correction factor                                     NA
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Parameter Estimates:
## 
##   Standard errors                        Robust.cluster
##   Information                                  Observed
##   Observed information based on                 Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   M ~                                                                   
##     X         (a1)    0.085    0.080    1.069    0.285    0.085    0.027
##     W         (a2)   -0.279    0.134   -2.085    0.037   -0.279   -0.087
##     X:W       (a3)    0.729    0.140    5.201    0.000    0.729    0.195
##   Y ~                                                                   
##     X       (cds1)    0.113    0.073    1.534    0.125    0.113    0.033
##     W       (cds2)   -0.156    0.123   -1.272    0.203   -0.156   -0.046
##     X:W     (cds3)    0.461    0.131    3.530    0.000    0.461    0.116
##     M         (b1)    0.558    0.035   15.914    0.000    0.558    0.523
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.mn)    0.486    0.023   20.707    0.000    0.486    0.972
##    .M                -0.084    0.087   -0.972    0.331   -0.084   -0.052
##    .Y                -0.092    0.077   -1.199    0.231   -0.092   -0.054
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     W       (W.vr)    0.250    0.001  372.725    0.000    0.250    1.000
##    .M                 2.435    0.102   23.915    0.000    2.435    0.948
##    .Y                 1.965    0.113   17.374    0.000    1.965    0.671
## 
## R-Square:
##                    Estimate
##     M                 0.052
##     Y                 0.329
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     indirect.SDblw    0.042    0.046    0.904    0.366    0.042    0.011
##     indirect.SDabv    0.449    0.072    6.258    0.000    0.449    0.215
##     direct.SDbelow    0.106    0.075    1.412    0.158    0.106    0.030
##     direct.SDabove    0.567    0.108    5.272    0.000    0.567    0.261
##     total.SDbelow     0.148    0.088    1.675    0.094    0.148    0.041
##     total.SDabove     1.016    0.120    8.494    0.000    1.016    0.476
##     prp.mdtd.SDblw    0.284    0.267    1.064    0.287    0.284    0.272
##     prop.mdtd.SDbv    0.442    0.066    6.724    0.000    0.442    0.452
##     index.mod.med     0.407    0.083    4.914    0.000    0.407    0.102
parameterEstimates(Mod.Med.SEM_interestvs,
                   boot.ci.type = "bca.simple",
                   level = .95, ci = TRUE,
                   standardized = FALSE)[c(19:27),c(4:10)] #We index the matrix to only display columns we are interested in