Use integration by substitution to solve the integral below.
Sub for dx:
\(∫4e^(-7x) dx\)
\(u = 7x\)
\(\frac{du}{dx} = -7\)
\(du = -7dx\)
\(dx = \frac{du}{-7}\)
Plug in:
\(∫4e^(-7x) dx\) -> \(∫4e^u \frac{du}{-7}\)
Take out integers:
\(-\frac{4}{7}∫e^u du\)
\(-\frac{4}{7}e^u + C\)
Bring back u:
\(-\frac{4}{7}e^(-7x) + C\)
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt} = -\frac{3150}{t^4} - 220\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N(t) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
Get N(t):
\(\frac{dN}{dt} = -\frac{3150}{t^4} -
220\)
\(N(t) = ∫\frac{-3150}{t^4} - 220
dt\)
\(N(t) = \frac{-3150}{-3t^3} -
220t\)
\(N(t) = \frac{1050}{t^3} - 220t +
c\)
Now to solve for c against the outlined variables:
\(N(t) = 6530 & t = 1 day\)
\(6530 = \frac{1050}{1^3} - 220(1) +
c\)
\(6530 = 1050 - 220 + c\)
\(6530 = 830 + c\)
\(5700 = c\)
So, our function is:
\(N(t) = \frac{1050}{t^3} - 220t +
5700\)
Find the total area of the red rectangles in the figure below, where the equation of the line is f(x) = 2x - 9.
The graph shows x at 4.5 and 8.5
\(∫2x - 9 dx\) |8.5 & 4.5
\(x^2 - 9x\) |8.5 & 4.5
\(Area = (x^2 − 9x)|8.5 - (x^2 -
9x)|4.5\)
\(= (8.5^2 − 9(8.5)) - (4.5^2 −
9(4.5))\)
\(= (72.25 − 76.5) - (20.25 −
40.5)\)
\(= (−4.25) − (−20.25)\)
Area = 16
Find the area of the region bounded by the graphs of the given
equations.
\(y = x^2 - 2x - 2, y = x + 2\)
Enter your answer below.
First, we need to find the x bounds by setting the equations equal to
each other and solve for x - the intersections.
\(x^2 - 2x - 2 = x + 2\)
\(x^2 - 3x - 4 = 0\)
\((x - 4)(x + 1)\)
\(x = 4, -1\)
Now, we solve it like question 3.
\(∫(x + 2) - (x^2 - 2x - 2) dx\) |4
& -1
\(∫-x^2 + 3x + 4 dx\) |4 & -1
\(\frac{x^3}{3} + \frac{3x^2}{2} + 4x\)
|4 & -1
\(4(\frac{x^3}{3} + \frac{3x^2}{2} + 4x) -
-1(\frac{x^3}{3} + \frac{3x^2}{2} + 4x)\)
\((\frac{4^3}{3} + \frac{(3*4)^2}{2} + (4*4))
- (\frac{-1^3}{3} + \frac{(3*-1)^2}{2} + (4*-1))\)
\((\frac{64}{3} + \frac{144}{2} + (16)) -
(\frac{-1}{3} + \frac{9}{2} + (-4))\)
\((\frac{64}{3} + 72 + 16) - (\frac{-1}{3} +
4.5 - 4)\)
\((\frac{64}{3} + 88) - (\frac{-1}{3} +
.5)\)
\((\frac{328}{3}) -
(\frac{1}{6})\)
\((\frac{655}{6})\) or 109.166667
A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
To solve this, I will use the economic order quantity formula:
\(EOQ = \sqrt(\frac{2SD}{H})\)
where
S = Fixed cost to purchase = 8.25
D = annual demand = 110
H = inventory carrying cost = 3.75
\(\sqrt(\frac{2*8.25*110}{3.75})\)
\(\sqrt(\frac{1815}{3.75})\)
\(\sqrt(484) = 22\)
So the lot size is 22.
To fix the min number of orders, we can look at how many lots we would
need to sell to break even:
22 * x = 110 -> x = 5
Our min number of orders is 5.
Use integration by parts to solve the integral below.
\(∫ln(9x)·x^6 dx\)
Formula: \(∫i(x)j'(x) dx = ij -
∫i'(x)j(x) dx\)
We need some variables first:
\(i = ln(9x)\)
\(j' = x^6\)
\(i' = \frac{1}{x}\)
\(j = \frac{x^7}{7}\)
\(= ln(9x)*\frac{x^7}{7} -
(∫\frac{1}{x}*\frac{x^7}{7} dx)\)
\(= \frac{x^7ln(9x)}{7} - (∫\frac{x^6}{7}
dx)\)
\(= \frac{x^7ln(9x)}{7} - (\frac{1}{7}∫x^6
dx)\)
\(= \frac{x^7ln(9x)}{7} -
(\frac{1}{7}*\frac{x^7}{7})\)
\(= \frac{x^7ln(9x)}{7} -
\frac{x^7}{49}\)
\(= \frac{x^7ln(9x)}{7} - \frac{x^7}{49} +
c\)
Determine whether f(x) is a probability density function on the
interval \([1,e^6]\). If not, determine
the value of the definite integral.
f(x) = \(\frac{1}{6x}\)
To do this, we check if the probability density function solves to
1:
\(∫\frac{1}{6x} dx\) | \(e^6, 1\)
\(\frac{1}{6}∫\frac{1}{x} dx\) | \(e^6, 1\)
\(\frac{1}{6}*ln(x)\) | \(e^6, 1\)
\(\frac{ln(e^6)}{6} -
\frac{ln(1)}{6}\)
\(\frac{6ln(e)}{6} -
\frac{0}{6}\)
\(\frac{6*1}{6} - 0\)
\(\frac{6}{6} = 1\)
So, f(x) is a probability density function on the interval \([1,e^6]\)