\[ \int 4e^{-7x} \, dx \]
Let:
\[ u = -7x \]
Compute \(du\):
\[ du = -7dx \]
and dx:
\[ dx = -\frac{1}{7}du \]
Substitute \(u\) and \(dx\):
\[ \int 4e^u \cdot -\frac{1}{7}du \]
This simplifies to:
\[ -\frac{4}{7} \int e^u \, du \]
The integral of \(e^u\) with respect to \(u\) is \(e^u\):
\[ -\frac{4}{7}e^u + c \]
Replace \(u\) with the original function of \(x\):
\[ -\frac{4}{7}e^{-7x} + c \]
The integral of \(4e^{-7x}\) with respect to \(x\) is:
\[ F(x) = -\frac{4}{7}e^{-7x} + c \]
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt} = -\frac{3150}{t^4} - 220.\) bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a dt t4 function N( t ) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
We integrate the rate of change: \[ \frac{dN}{dt} = -\frac{3150}{t^4} - 220. \]
We integrate term by term:
\[ \int -\frac{3150}{t^4} \, dt = -3150 \int t^{-4} \, dt. \] Using the power rule for integration, we get: \[ -3150 \left( \frac{t^{-3}}{-3} \right) = 1050t^{-3} + c \]
\[ \int -220 \, dt = -220t + c \]
We combine the results: \[ F(t) = 1050t^{-3} - 220t + c \]
To find the area of the yellow shaded triangular region below the line using integration, we need to set up the integral with the given function and limits:
To find the area, we integrate the function from \(x = 4\) to \(x = 8\).
\[ \text{Area} = \int_{4}^{8} f(x) \, dx = \int_{4}^{8} (2x - 9) \, dx \]
\[ \int (2x - 9) \, dx = x^2 - 9x + C \]
\[ \text{Area} = \left[ (8)^2 - 9 \times 8 + C \right] - \left[ (4)^2 - 9 \times 4 + C \right] \] \[ = (64 - 72 + C) - (16 - 36 + C) \] \[ = -8 - (-20) \] \[ = 12 \text{ square units} \]
The area of the yellow shaded triangular region below the line \(f(x) = 2x - 9\), between \(x = 4\) and \(x = 8\), is 12 square units.
# Create a sequence of x values
x <- seq(-10, 10, by = 0.1)
# Calculate y values
y1_values <- x^2 - 2 * x - 2
y2_values <- x + 2
# Set limits for the plot
x_lim <- range(x)
y_lim <- c(-10, 10)
# Plot the first function
plot(x, y1_values, type = 'l', col = 'red', ylim = y_lim, xlim = x_lim, xlab = '', ylab = '', main = 'Graphs of y = x^2 - 2x - 2 and y = x + 2', axes = FALSE)
# Add the second function to the plot
lines(x, y2_values, type = 'l', col = 'blue')
# Add axes at the origin
axis(side = 1, at = seq(floor(x_lim[1]), ceiling(x_lim[2]), by = 1), pos = 0)
axis(side = 2, at = seq(y_lim[1], y_lim[2], by = 1), pos = 0)
# Add legend
legend('bottomright', legend = c('y = x^2 - 2x - 2', 'y = x + 2'), col = c('red', 'blue'), lty = 1)
The intersection point are the limits of the integration. For this calculation, I used the uniroot function which identifies the roots by determining where the difference between the functions is zero over a given interval.
# Equations
f1 <- function(x) { x^2 - 2 * x - 2 }
f2 <- function(x) { x + 2 }
# Find the intersections by solving f1(x) - f2(x) = 0
solved_function <- function(x) { f1(x) - f2(x) }
# Find the first intersection point
root1 <- round(uniroot(solved_function, interval = c(-10, 0))$root)
# Find the second intersection point
root2 <- round(uniroot(solved_function, interval = c(0, 10))$root)
# Return the rounded roots
c(root1, root2)
## [1] -1 4
To evaluate the integral between the curves for the functions \(y = x^2 - 2x - 2\) and \(y = x + 2\) between the intersection points \(x = -1\) and \(x = 4\), we compute the integral. This represents the area between the two curves from \(x = -1\) to \(x = 4\).
\[ \int_{-1}^{4} ((x + 2) - (x^2 - 2x - 2)) \, dx \]
We evaluate the integral of the difference between the functions \(y = x^2 - 2x - 2\) and \(y = x + 2\) from \(x = -1\) to \(x = 4\):
\[ \int_{-1}^{4} [(x + 2) - (x^2 - 2x - 2)] \, dx \]
This simplifies to:
\[ \int_{-1}^{4} [-x^2 + 3x + 4] \, dx \]
To compute this integral, we’ll find the antiderivative
\[ \int [-x^2 + 3x + 4] \, dx = \left[-\frac{1}{3}x^3 + \frac{3}{2}x^2 + 4x\right] \]
Evaluate the antiderivative from \(x = -1\) to \(x = 4\):
\[ \left[-\frac{1}{3}(4)^3 + \frac{3}{2}(4)^2 + 4(4)\right] - \left[-\frac{1}{3}(-1)^3 + \frac{3}{2}(-1)^2 + 4(-1)\right] \]
After performing the calculations for each term:
\[ \left[-\frac{1}{3}(64) + 24 + 16\right] - \left[\frac{1}{3} + 1.5 - 4\right] \]
This simplifies to:
\[ \left[-\frac{64}{3} + 24 + 16\right] + \left[-\frac{1}{3} - 1.5 + 4\right] \]
Combine like terms:
\[ \left[-\frac{64}{3} + 24 + 16\right] + \left[-\frac{1}{3} - 1.5 + 4\right] \]
\[ = -\frac{64}{3} + 40 - \frac{1}{3} - 1.5 + 4 \]
\[ = -\frac{65}{3} + 42.5 \]
\[ = -21.6667 + 42.5 = 20.8333 \]
The area between the curves from \(x = -1\) to \(x = 4\) is \(20.8333\) square units. We confirm using pracma R module.
library(pracma)
# Define the function
integrand <- function(x) { (x + 2) - (x^2 - 2*x - 2) }
# Calculate the integral from x = -1 to x = 4
area <- integral(integrand, -1, 4)
area
## [1] 20.83333
\[ \int \ln(9x) \cdot x^6 \, dx \]
Let:
\[ u = \ln(9x) \]
and
\[ dv = x^6 \, dx \]
Compute \(du\):
\[ du = \frac{1}{x} \, dx \]
and \(v\) (the integral of \(dv\)):
\[ v = \frac{x^7}{7} \]
\[ \int u \, dv = uv - \int v \, du \]
Substitute \(u\), \(du\), and \(v\) into the formula:
\[ \int \ln(9x) \cdot x^6 \, dx = \ln(9x) \cdot \frac{x^7}{7} - \int \frac{x^7}{7} \cdot \frac{1}{x} \, dx \]
Simplify the integral on the right:
\[ \int \frac{x^7}{7} \cdot \frac{1}{x} \, dx = \frac{1}{7} \int x^6 \, dx = \frac{x^7}{49} \]
\[ \int \ln(9x) \cdot x^6 \, dx = \ln(9x) \cdot \frac{x^7}{7} - \frac{x^7}{49} + C \]
The integral of \(\ln(9x) \cdot x^6\) with respect to \(x\) is:
\[ F(x) = \ln(9x) \cdot \frac{x^7}{7} - \frac{x^7}{49} + C \]
For the function \(f(x) = \frac{1}{6x}\) to be a probability density function (PDF) over a certain interval, it needs to satisfy two conditions:
Since \(x\) is in the interval \([1, e^6]\), \(x\) is always positive. Therefore, \(\frac{1}{6x}\) is also always positive on this interval.
The integral \(\int_{1}^{e^6} \frac{1}{6x} \, dx\) should result in 1 for \(f(x)\) to be a probability density function.
The integral of \(\frac{1}{x}\) with respect to \(x\) is \(\ln(x)\). We can write the integral as:
\[ \int_{1}^{e^6} \frac{1}{6x} \, dx = \frac{1}{6} \int_{1}^{e^6} \frac{1}{x} \, dx = \frac{1}{6} \left[ \ln(x) \right]_{1}^{e^6} \]
\[ \frac{1}{6} \left[ \ln(e^6) - \ln(1) \right] = \frac{1}{6} [6 - 0] = 1 \]
Since the integral over the interval \([1, e^6]\) equals 1 and the function is non-negative over the interval, \(f(x) = \frac{1}{6x}\) is a probability density function.