Task: Each group should investigate the response variable life expectancy in the year 2019 and use other indicators (predictor variables) of the dataset to develop a linear model which explains the life expectancies in 2019. The report should propose a model which explains life expectancy in the world for 2019. You should also discuss if and how the model can be used to predict life expectancies for countries which have not provided data on life expectancy. You should use R in order to conduct your statistical analysis. You should include the R code as part of an Appendix of your report which should run without errors. You should submit your report in pdf format. Zipped folders e.g. .zip or 7z will not be accepted. When answering the questions you should explain the statistical methods used and justify your answers. In order to analyse life expectancy complete the following tasks: 1. Analyse using descriptive statistics (both graphical and numerical representations) and R the Life Expectancy data1.csv dataset. [14 marks] 2. Many predictors in the dataset contain missing values. Is deleting predictor variables with many missing values an appropriate method to deal with missing values? Choose a method to deal with the missing values and then employ this method to the life expectancy data. Justify your choice. Additionally, there are some countries (cases) where the value of Life expectancy is missing. Explain how you will handle this problem. [14 marks] 3. Collinearity increases the variance of the estimators and hence, reduces the adequacy of the model. When collinearity is present, how do you solve this problem? Investigate collinearity between the predictor variables in the LifeExpectancyData1.csv dataset. [14 marks] 4. To understand better life expectancy and the factors that affect it, suggest the best model which predicts life expectancy in 2019. Evaluate the suggested model. [14 marks] 1 of 4 5. Using the same dataset (Life Expectancy data1.csv) and using the new additional feature Continent, employ an appropriate experimental design to study differences of average life expectancies across the continents : Asia, Europe, North America, South America, Africa, Australia/Oceania. Justify your choice of experimental design and methods. [14 marks]

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
df <- read.csv("Life_Expectancy_Data1.csv")
df[is.na(df)]<-0
summary(df)
##  Country.Name       Country.Code        Continent         SP.DYN.LE00.IN 
##  Length:217         Length:217         Length:217         Min.   : 0.00  
##  Class :character   Class :character   Class :character   1st Qu.:64.83  
##  Mode  :character   Mode  :character   Mode  :character   Median :73.18  
##                                                           Mean   :66.54  
##                                                           3rd Qu.:77.86  
##                                                           Max.   :85.08  
##  EG.ELC.ACCS.ZS   NY.ADJ.NNTY.KD.ZG NY.ADJ.NNTY.PC.KD.ZG SH.HIV.INCD.14   
##  Min.   :  0.00   Min.   :-30.792   Min.   :-32.5432     Min.   :    0.0  
##  1st Qu.: 84.05   1st Qu.:  0.000   1st Qu.:  0.0000     1st Qu.:    0.0  
##  Median :100.00   Median :  1.105   Median :  0.3211     Median :    0.0  
##  Mean   : 86.07   Mean   :  2.563   Mean   :  1.6907     Mean   :  684.5  
##  3rd Qu.:100.00   3rd Qu.:  4.825   3rd Qu.:  3.6564     3rd Qu.:  200.0  
##  Max.   :100.00   Max.   : 50.172   Max.   : 47.2518     Max.   :20000.0  
##   SE.PRM.UNER      SE.PRM.CUAT.ZS   SE.TER.CUAT.BA.ZS SP.DYN.IMRT.IN 
##  Min.   :      0   Min.   :  0.00   Min.   : 0.000    Min.   : 0.00  
##  1st Qu.:      0   1st Qu.:  0.00   1st Qu.: 0.000    1st Qu.: 3.50  
##  Median :    187   Median :  0.00   Median : 0.000    Median :12.30  
##  Mean   :  53644   Mean   : 14.56   Mean   : 3.478    Mean   :18.65  
##  3rd Qu.:  12511   3rd Qu.:  0.00   3rd Qu.: 0.000    3rd Qu.:29.80  
##  Max.   :1712650   Max.   :100.00   Max.   :46.631    Max.   :82.40  
##  SE.PRM.CMPT.ZS   SE.ADT.LITR.ZS   FR.INR.RINR       SP.POP.GROW     
##  Min.   :  0.00   Min.   :  0.0   Min.   :-78.518   Min.   :-1.6095  
##  1st Qu.:  0.00   1st Qu.:  0.0   1st Qu.:  0.000   1st Qu.: 0.3716  
##  Median : 78.94   Median :  0.0   Median :  0.000   Median : 1.0914  
##  Mean   : 54.88   Mean   : 10.6   Mean   :  3.239   Mean   : 1.1862  
##  3rd Qu.: 98.55   3rd Qu.:  0.0   3rd Qu.:  6.428   3rd Qu.: 1.9537  
##  Max.   :120.45   Max.   :100.0   Max.   : 39.877   Max.   : 4.4687  
##   EN.POP.DNST        SP.POP.TOTL        SH.XPD.CHEX.PC.CD  SH.XPD.CHEX.GD.ZS
##  Min.   :    0.00   Min.   :0.000e+00   Min.   :    0.00   Min.   : 0.000   
##  1st Qu.:   37.86   1st Qu.:7.631e+05   1st Qu.:   51.16   1st Qu.: 3.595   
##  Median :   92.72   Median :6.546e+06   Median :  264.06   Median : 5.618   
##  Mean   :  443.99   Mean   :3.528e+07   Mean   :  980.32   Mean   : 5.653   
##  3rd Qu.:  231.99   3rd Qu.:2.537e+07   3rd Qu.:  972.61   3rd Qu.: 7.753   
##  Max.   :19466.44   Max.   :1.408e+09   Max.   :10921.01   Max.   :23.962   
##  SL.UEM.TOTL.NE.ZS NY.GDP.MKTP.KD.ZG NY.GDP.PCAP.CD   SP.DYN.CBRT.IN 
##  Min.   : 0.000    Min.   :-11.143   Min.   :     0   Min.   : 0.00  
##  1st Qu.: 0.000    1st Qu.:  0.734   1st Qu.:  1856   1st Qu.:10.17  
##  Median : 2.930    Median :  2.375   Median :  6223   Median :16.40  
##  Mean   : 4.279    Mean   :  2.630   Mean   : 17577   Mean   :18.21  
##  3rd Qu.: 6.310    3rd Qu.:  4.601   3rd Qu.: 20660   3rd Qu.:25.88  
##  Max.   :28.470    Max.   : 19.536   Max.   :189487   Max.   :45.64  
##  EG.FEC.RNEW.ZS  SH.HIV.INCD     SH.H2O.SMDW.ZS    SI.POV.LMIC    
##  Min.   :0      Min.   :     0   Min.   :  0.00   Min.   : 0.000  
##  1st Qu.:0      1st Qu.:     0   1st Qu.:  0.00   1st Qu.: 0.000  
##  Median :0      Median :   200   Median : 29.69   Median : 0.000  
##  Mean   :0      Mean   :  4503   Mean   : 43.47   Mean   : 1.027  
##  3rd Qu.:0      3rd Qu.:  1800   3rd Qu.: 94.25   3rd Qu.: 0.000  
##  Max.   :0      Max.   :210000   Max.   :100.00   Max.   :63.800  
##   SE.COM.DURS    
##  Min.   : 0.000  
##  1st Qu.: 8.000  
##  Median :10.000  
##  Mean   : 9.051  
##  3rd Qu.:12.000  
##  Max.   :17.000
str(df)
## 'data.frame':    217 obs. of  29 variables:
##  $ Country.Name        : chr  "Afghanistan" "Albania" "Algeria" "American Samoa" ...
##  $ Country.Code        : chr  "AFG" "ALB" "DZA" "ASM" ...
##  $ Continent           : chr  "Asia" "Europe" "Africa" "Australia/Oceania" ...
##  $ SP.DYN.LE00.IN      : num  64.8 78.6 76.9 0 0 ...
##  $ EG.ELC.ACCS.ZS      : num  97.7 100 99.5 0 100 ...
##  $ NY.ADJ.NNTY.KD.ZG   : num  0 0.146 2.938 0 0 ...
##  $ NY.ADJ.NNTY.PC.KD.ZG: num  0 0.574 0.966 0 0 ...
##  $ SH.HIV.INCD.14      : num  200 0 200 0 0 6200 0 100 100 0 ...
##  $ SE.PRM.UNER         : num  0 3359 12511 0 0 ...
##  $ SE.PRM.CUAT.ZS      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ SE.TER.CUAT.BA.ZS   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ SP.DYN.IMRT.IN      : num  46.4 8.6 20 0 2.5 49.9 5.6 8.1 10.2 0 ...
##  $ SE.PRM.CMPT.ZS      : num  84.3 103.3 101.4 0 0 ...
##  $ SE.ADT.LITR.ZS      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FR.INR.RINR         : num  0 4.99 8.51 0 0 ...
##  $ SP.POP.GROW         : num  2.313 -0.426 1.934 -0.269 0.179 ...
##  $ EN.POP.DNST         : num  58.3 104.2 18.1 276.6 164.1 ...
##  $ SP.POP.TOTL         : num  38041757 2854191 43053054 55312 77146 ...
##  $ SH.XPD.CHEX.PC.CD   : num  65.8 0 248.2 0 2744.2 ...
##  $ SH.XPD.CHEX.GD.ZS   : num  13.24 0 6.24 0 6.71 ...
##  $ SL.UEM.TOTL.NE.ZS   : num  0 11.5 0 0 0 ...
##  $ NY.GDP.MKTP.KD.ZG   : num  3.912 2.113 1 -0.488 2.016 ...
##  $ NY.GDP.PCAP.CD      : num  494 5396 3990 11715 40897 ...
##  $ SP.DYN.CBRT.IN      : num  31.8 11.6 23.6 0 7 ...
##  $ EG.FEC.RNEW.ZS      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ SH.HIV.INCD         : num  1300 100 1400 0 0 16000 0 5300 500 0 ...
##  $ SH.H2O.SMDW.ZS      : num  26.8 70.7 73.1 98.4 90.6 ...
##  $ SI.POV.LMIC         : num  0 0 0 0 0 0 0 4.9 9.8 0 ...
##  $ SE.COM.DURS         : num  9 9 10 0 10 6 11 14 12 13 ...
df$Country.Name<-as.factor(df$Country.Name)
df$Continent<-as.factor(df$Continent)

df<-df[,-2]

df %>%select( Continent, SP.DYN.LE00.IN) %>% 
  group_by(Continent) %>% 
  summarise_all(list(mean = mean), na.rm=TRUE) %>% arrange(desc(mean))
## # A tibble: 6 × 2
##   Continent          mean
##   <fct>             <dbl>
## 1 South America      75.1
## 2 Asia               74.6
## 3 Europe             71.0
## 4 Africa             64.1
## 5 North America      58.3
## 6 Australia/Oceania  50.3
df %>%select( Continent, SP.DYN.LE00.IN) %>% 
  group_by(Continent) %>% 
  summarise_all(list(mean = mean), na.rm=TRUE) %>% arrange(desc(mean)) %>% 
  ggplot() +
  aes(x = Continent,weight = mean) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Continent", 
                                     y = "Life Expectancy", 
            title = "Comparison of Life expectancy at 
            birth, total (years) with Continent")

df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "South America") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN))
## # A tibble: 12 × 3
## # Groups:   Country.Name [12]
##    Continent     Country.Name  SP.DYN.LE00.IN
##    <fct>         <fct>                  <dbl>
##  1 South America Chile                   80.2
##  2 South America Uruguay                 77.9
##  3 South America Colombia                77.3
##  4 South America Ecuador                 77.0
##  5 South America Peru                    76.7
##  6 South America Argentina               76.7
##  7 South America Brazil                  75.9
##  8 South America Paraguay                74.3
##  9 South America Venezuela, RB           72.1
## 10 South America Suriname                71.7
## 11 South America Bolivia                 71.5
## 12 South America Guyana                  69.9
df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "South America") %>% 
  group_by(Country.Name) %>% 
  ggplot() +
  aes(x = Country.Name,weight = SP.DYN.LE00.IN) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Country Name", 
                                     y = "Life Expectancy", 
   title = "Comparison of Life expectancy at birth, 
            total (years) in South America")

df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Asia") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN)) %>% top_n(20)
## Selecting by SP.DYN.LE00.IN
## # A tibble: 50 × 3
## # Groups:   Country.Name [50]
##    Continent Country.Name         SP.DYN.LE00.IN
##    <fct>     <fct>                         <dbl>
##  1 Asia      Hong Kong SAR, China           85.1
##  2 Asia      Japan                          84.4
##  3 Asia      Macao SAR, China               84.2
##  4 Asia      Singapore                      83.5
##  5 Asia      Korea, Rep.                    83.2
##  6 Asia      Israel                         82.8
##  7 Asia      Cyprus                         81.0
##  8 Asia      Qatar                          80.2
##  9 Asia      Lebanon                        78.9
## 10 Asia      Maldives                       78.9
## # ℹ 40 more rows
df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Asia") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN))%>% top_n(20) %>% 
  ggplot() +
  aes(x = Country.Name,weight = SP.DYN.LE00.IN) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Country Name", 
                                     y = "Life Expectancy", 
  title = "Comparison of Life expectancy at birth, 
  total (years) in Asia")
## Selecting by SP.DYN.LE00.IN

df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Europe") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN)) %>% top_n(20)
## Selecting by SP.DYN.LE00.IN
## # A tibble: 48 × 3
## # Groups:   Country.Name [48]
##    Continent Country.Name    SP.DYN.LE00.IN
##    <fct>     <fct>                    <dbl>
##  1 Europe    Switzerland               83.7
##  2 Europe    Spain                     83.5
##  3 Europe    Italy                     83.2
##  4 Europe    Channel Islands           83.1
##  5 Europe    Liechtenstein             83.0
##  6 Europe    Sweden                    83.0
##  7 Europe    Norway                    82.9
##  8 Europe    Faroe Islands             82.7
##  9 Europe    Malta                     82.6
## 10 Europe    France                    82.6
## # ℹ 38 more rows
df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Europe") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN))%>% top_n(20) %>% 
  ggplot() +
  aes(x = Country.Name,weight = SP.DYN.LE00.IN) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Country Name", 
                                     y = "Life Expectancy", 
  title = "Comparison of Life expectancy at birth, 
  total (years) in Europe")
## Selecting by SP.DYN.LE00.IN

df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Africa") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN)) %>% top_n(20)
## Selecting by SP.DYN.LE00.IN
## # A tibble: 54 × 3
## # Groups:   Country.Name [54]
##    Continent Country.Name          SP.DYN.LE00.IN
##    <fct>     <fct>                          <dbl>
##  1 Africa    Algeria                         76.9
##  2 Africa    Tunisia                         76.7
##  3 Africa    Morocco                         76.7
##  4 Africa    Mauritius                       74.2
##  5 Africa    Seychelles                      73.9
##  6 Africa    Cabo Verde                      73.0
##  7 Africa    Libya                           72.9
##  8 Africa    Egypt, Arab Rep.                72.0
##  9 Africa    Sao Tome and Principe           70.4
## 10 Africa    Botswana                        69.6
## # ℹ 44 more rows
df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Africa") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN))%>% top_n(20) %>% 
  ggplot() +
  aes(x = Country.Name,weight = SP.DYN.LE00.IN) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Country Name", 
                                     y = "Life Expectancy", 
  title = "Comparison of Life expectancy at birth, 
  total (years) in Africa")
## Selecting by SP.DYN.LE00.IN

df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "North America") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN)) %>% top_n(20)
## Selecting by SP.DYN.LE00.IN
## # A tibble: 34 × 3
## # Groups:   Country.Name [34]
##    Continent     Country.Name             SP.DYN.LE00.IN
##    <fct>         <fct>                             <dbl>
##  1 North America Canada                             82.0
##  2 North America Bermuda                            81.9
##  3 North America Costa Rica                         80.3
##  4 North America St. Martin (French part)           80.0
##  5 North America Puerto Rico                        79.9
##  6 North America Virgin Islands (U.S.)              79.7
##  7 North America Barbados                           79.2
##  8 North America Cuba                               78.8
##  9 North America United States                      78.8
## 10 North America Panama                             78.5
## # ℹ 24 more rows
df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "North America") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN))%>% top_n(20) %>% 
  ggplot() +
  aes(x = Country.Name,weight = SP.DYN.LE00.IN) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Country Name", 
                                     y = "Life Expectancy", 
  title = "Comparison of Life expectancy at birth, 
  total (years) in North America")
## Selecting by SP.DYN.LE00.IN

df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Australia/Oceania") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN)) %>% top_n(20)
## Selecting by SP.DYN.LE00.IN
## # A tibble: 19 × 3
## # Groups:   Country.Name [19]
##    Continent         Country.Name             SP.DYN.LE00.IN
##    <fct>             <fct>                             <dbl>
##  1 Australia/Oceania Australia                          82.9
##  2 Australia/Oceania New Zealand                        81.7
##  3 Australia/Oceania Guam                               80.1
##  4 Australia/Oceania French Polynesia                   77.7
##  5 Australia/Oceania New Caledonia                      77.6
##  6 Australia/Oceania Samoa                              73.3
##  7 Australia/Oceania Solomon Islands                    73.0
##  8 Australia/Oceania Tonga                              70.9
##  9 Australia/Oceania Vanuatu                            70.5
## 10 Australia/Oceania Kiribati                           68.4
## 11 Australia/Oceania Micronesia, Fed. Sts.              67.9
## 12 Australia/Oceania Fiji                               67.4
## 13 Australia/Oceania Papua New Guinea                   64.5
## 14 Australia/Oceania American Samoa                      0  
## 15 Australia/Oceania Marshall Islands                    0  
## 16 Australia/Oceania Nauru                               0  
## 17 Australia/Oceania Northern Mariana Islands            0  
## 18 Australia/Oceania Palau                               0  
## 19 Australia/Oceania Tuvalu                              0
df %>%select( Continent,Country.Name, SP.DYN.LE00.IN) %>%
  filter(Continent== "Australia/Oceania") %>% 
  group_by(Country.Name) %>% arrange(desc(SP.DYN.LE00.IN))%>% top_n(20) %>% 
  ggplot() +
  aes(x = Country.Name,weight = SP.DYN.LE00.IN) +
  geom_bar() + scale_fill_hue(direction = 1) +
  coord_flip() +theme_minimal()+labs(x = "Country Name", 
                                     y = "Life Expectancy", 
  title = "Comparison of Life expectancy at birth, 
  total (years) in Australia/Oceania")
## Selecting by SP.DYN.LE00.IN

a<-df %>%select( Continent,Country.Name, SP.DYN.LE00.IN)  %>% 
  group_by(Continent) %>% slice_max(SP.DYN.LE00.IN)
b<-df %>%select( Continent,Country.Name, SP.DYN.LE00.IN)  %>% 
  group_by(Continent) %>% slice_min(SP.DYN.LE00.IN)
a<-rbind(a,b)

ggplot(a) +
  aes(x = Country.Name,fill = Continent, weight = SP.DYN.LE00.IN
  ) +geom_bar() +scale_fill_hue(direction = 1) +
  coord_flip() + theme_minimal()+theme(legend.position="bottom")

df <- read.csv("Life_Expectancy_Data1.csv")
df$SP.DYN.LE00.IN[is.na(df$SP.DYN.LE00.IN)] <- mean(df$SP.DYN.LE00.IN, na.rm = TRUE)
df[is.na(df)]<-0
x<-df[,-c(1:3,25)]
cor(df[,-c(1:3,25)])
##                      SP.DYN.LE00.IN EG.ELC.ACCS.ZS NY.ADJ.NNTY.KD.ZG
## SP.DYN.LE00.IN          1.000000000     0.76210680      -0.142910265
## EG.ELC.ACCS.ZS          0.762106796     1.00000000      -0.128416559
## NY.ADJ.NNTY.KD.ZG      -0.142910265    -0.12841656       1.000000000
## NY.ADJ.NNTY.PC.KD.ZG   -0.056162396    -0.03028956       0.979376349
## SH.HIV.INCD.14         -0.446203601    -0.42648913       0.087064518
## SE.PRM.UNER            -0.256622339    -0.32785330       0.125010790
## SE.PRM.CUAT.ZS          0.215687072     0.20552726       0.016104012
## SE.TER.CUAT.BA.ZS       0.270740889     0.20643856       0.004606558
## SP.DYN.IMRT.IN         -0.897536450    -0.77029705       0.178174868
## SE.PRM.CMPT.ZS          0.254779994     0.23916812       0.173400190
## SE.ADT.LITR.ZS          0.025665668     0.11301552       0.026432587
## FR.INR.RINR             0.010883701     0.03707547       0.076887435
## SP.POP.GROW            -0.510730030    -0.53582925       0.152914099
## EN.POP.DNST             0.156256779     0.09378245      -0.068611664
## SP.POP.TOTL            -0.007261648     0.04139386       0.053456099
## SH.XPD.CHEX.PC.CD       0.514664184     0.29064840      -0.043109963
## SH.XPD.CHEX.GD.ZS       0.142205661     0.11463776       0.049262821
## SL.UEM.TOTL.NE.ZS       0.128832358     0.15413000      -0.036879594
## NY.GDP.MKTP.KD.ZG      -0.178888192    -0.08168349       0.588836455
## NY.GDP.PCAP.CD          0.512433298     0.32146150      -0.118813043
## SP.DYN.CBRT.IN         -0.773668023    -0.72101631       0.221088770
## SH.HIV.INCD            -0.276740764    -0.22233468       0.003064933
## SH.H2O.SMDW.ZS          0.562674930     0.39719985      -0.094495706
## SI.POV.LMIC            -0.052929097    -0.03327650      -0.007203884
## SE.COM.DURS             0.262130840     0.35921315      -0.026062482
##                      NY.ADJ.NNTY.PC.KD.ZG SH.HIV.INCD.14  SE.PRM.UNER
## SP.DYN.LE00.IN               -0.056162396   -0.446203601 -0.256622339
## EG.ELC.ACCS.ZS               -0.030289564   -0.426489132 -0.327853300
## NY.ADJ.NNTY.KD.ZG             0.979376349    0.087064518  0.125010790
## NY.ADJ.NNTY.PC.KD.ZG          1.000000000    0.016441256  0.060432454
## SH.HIV.INCD.14                0.016441256    1.000000000  0.324587555
## SE.PRM.UNER                   0.060432454    0.324587555  1.000000000
## SE.PRM.CUAT.ZS                0.048854956   -0.056152689  0.018786885
## SE.TER.CUAT.BA.ZS             0.029828822   -0.092512725 -0.040564158
## SP.DYN.IMRT.IN                0.079410047    0.437707894  0.231833412
## SE.PRM.CMPT.ZS                0.169641996   -0.130004300  0.091049543
## SE.ADT.LITR.ZS                0.030979337   -0.005803928  0.064960517
## FR.INR.RINR                   0.044304242   -0.003266622 -0.049280355
## SP.POP.GROW                  -0.008832112    0.347119666  0.278075448
## EN.POP.DNST                  -0.051531726   -0.052049273 -0.048907149
## SP.POP.TOTL                   0.050762195    0.070763190  0.012513999
## SH.XPD.CHEX.PC.CD            -0.022848088   -0.149894858 -0.081304866
## SH.XPD.CHEX.GD.ZS             0.064585263   -0.054259977  0.008203986
## SL.UEM.TOTL.NE.ZS            -0.002452958    0.072924173  0.024317408
## NY.GDP.MKTP.KD.ZG             0.568636550    0.029707165  0.109136968
## NY.GDP.PCAP.CD               -0.084400596   -0.171299544 -0.127957637
## SP.DYN.CBRT.IN                0.093976742    0.429349131  0.330169362
## SH.HIV.INCD                  -0.036949717    0.754966989  0.376347042
## SH.H2O.SMDW.ZS               -0.040699986   -0.227881720 -0.165910563
## SI.POV.LMIC                  -0.005718627    0.087056251  0.105991834
## SE.COM.DURS                   0.002191125   -0.129190459 -0.084787295
##                      SE.PRM.CUAT.ZS SE.TER.CUAT.BA.ZS SP.DYN.IMRT.IN
## SP.DYN.LE00.IN           0.21568707       0.270740889   -0.897536450
## EG.ELC.ACCS.ZS           0.20552726       0.206438564   -0.770297048
## NY.ADJ.NNTY.KD.ZG        0.01610401       0.004606558    0.178174868
## NY.ADJ.NNTY.PC.KD.ZG     0.04885496       0.029828822    0.079410047
## SH.HIV.INCD.14          -0.05615269      -0.092512725    0.437707894
## SE.PRM.UNER              0.01878689      -0.040564158    0.231833412
## SE.PRM.CUAT.ZS           1.00000000       0.750329267   -0.198892795
## SE.TER.CUAT.BA.ZS        0.75032927       1.000000000   -0.232458010
## SP.DYN.IMRT.IN          -0.19889279      -0.232458010    1.000000000
## SE.PRM.CMPT.ZS           0.13077902       0.149201829   -0.209851628
## SE.ADT.LITR.ZS           0.57590047       0.452117947   -0.034411510
## FR.INR.RINR              0.02236831      -0.004049383    0.007352259
## SP.POP.GROW             -0.23001122      -0.175342305    0.598182331
## EN.POP.DNST              0.02714290       0.002302600   -0.145610331
## SP.POP.TOTL             -0.02163243      -0.045382539    0.027107184
## SH.XPD.CHEX.PC.CD        0.10211697       0.307751286   -0.367409327
## SH.XPD.CHEX.GD.ZS        0.09787465       0.176268758   -0.015888262
## SL.UEM.TOTL.NE.ZS        0.11149844       0.072319359   -0.096961532
## NY.GDP.MKTP.KD.ZG        0.01355567       0.019636195    0.212528659
## NY.GDP.PCAP.CD           0.04620446       0.161408769   -0.453428722
## SP.DYN.CBRT.IN          -0.19214567      -0.208634697    0.817470114
## SH.HIV.INCD              0.07605194      -0.021144860    0.231153496
## SH.H2O.SMDW.ZS           0.19645745       0.209232909   -0.524703176
## SI.POV.LMIC              0.08773380       0.057060926    0.021349529
## SE.COM.DURS              0.15493797       0.148409003   -0.219257279
##                      SE.PRM.CMPT.ZS SE.ADT.LITR.ZS  FR.INR.RINR  SP.POP.GROW
## SP.DYN.LE00.IN          0.254779994    0.025665668  0.010883701 -0.510730030
## EG.ELC.ACCS.ZS          0.239168125    0.113015521  0.037075469 -0.535829248
## NY.ADJ.NNTY.KD.ZG       0.173400190    0.026432587  0.076887435  0.152914099
## NY.ADJ.NNTY.PC.KD.ZG    0.169641996    0.030979337  0.044304242 -0.008832112
## SH.HIV.INCD.14         -0.130004300   -0.005803928 -0.003266622  0.347119666
## SE.PRM.UNER             0.091049543    0.064960517 -0.049280355  0.278075448
## SE.PRM.CUAT.ZS          0.130779021    0.575900473  0.022368312 -0.230011218
## SE.TER.CUAT.BA.ZS       0.149201829    0.452117947 -0.004049383 -0.175342305
## SP.DYN.IMRT.IN         -0.209851628   -0.034411510  0.007352259  0.598182331
## SE.PRM.CMPT.ZS          1.000000000    0.079713358  0.059859475 -0.021483774
## SE.ADT.LITR.ZS          0.079713358    1.000000000  0.081273251 -0.017439763
## FR.INR.RINR             0.059859475    0.081273251  1.000000000  0.120174771
## SP.POP.GROW            -0.021483774   -0.017439763  0.120174771  1.000000000
## EN.POP.DNST             0.038814236    0.015301532 -0.015265318 -0.013068676
## SP.POP.TOTL            -0.024439184    0.006225201  0.048872841 -0.028318345
## SH.XPD.CHEX.PC.CD       0.187678934   -0.094097434 -0.083782042 -0.182129566
## SH.XPD.CHEX.GD.ZS       0.232380298   -0.016526855  0.029063560 -0.104095969
## SL.UEM.TOTL.NE.ZS       0.130919946    0.180639536 -0.050424133 -0.177967657
## NY.GDP.MKTP.KD.ZG       0.154547908    0.081060424  0.221721299  0.217856451
## NY.GDP.PCAP.CD          0.057775008   -0.102056423 -0.111416728 -0.214110218
## SP.DYN.CBRT.IN         -0.141807397   -0.007151255  0.076305330  0.730707788
## SH.HIV.INCD            -0.009808778    0.141938861  0.015335516  0.185150355
## SH.H2O.SMDW.ZS          0.194050064   -0.007511715 -0.072686896 -0.324549792
## SI.POV.LMIC             0.077596070    0.133314885 -0.440532819  0.007249693
## SE.COM.DURS             0.184902534    0.115569005 -0.013032653 -0.241175497
##                      EN.POP.DNST   SP.POP.TOTL SH.XPD.CHEX.PC.CD
## SP.DYN.LE00.IN        0.15625678 -0.0072616479        0.51466418
## EG.ELC.ACCS.ZS        0.09378245  0.0413938574        0.29064840
## NY.ADJ.NNTY.KD.ZG    -0.06861166  0.0534560995       -0.04310996
## NY.ADJ.NNTY.PC.KD.ZG -0.05153173  0.0507621947       -0.02284809
## SH.HIV.INCD.14       -0.05204927  0.0707631898       -0.14989486
## SE.PRM.UNER          -0.04890715  0.0125139990       -0.08130487
## SE.PRM.CUAT.ZS        0.02714290 -0.0216324293        0.10211697
## SE.TER.CUAT.BA.ZS     0.00230260 -0.0453825387        0.30775129
## SP.DYN.IMRT.IN       -0.14561033  0.0271071837       -0.36740933
## SE.PRM.CMPT.ZS        0.03881424 -0.0244391840        0.18767893
## SE.ADT.LITR.ZS        0.01530153  0.0062252012       -0.09409743
## FR.INR.RINR          -0.01526532  0.0488728406       -0.08378204
## SP.POP.GROW          -0.01306868 -0.0283183449       -0.18212957
## EN.POP.DNST           1.00000000 -0.0274392727        0.02820049
## SP.POP.TOTL          -0.02743927  1.0000000000        0.01833672
## SH.XPD.CHEX.PC.CD     0.02820049  0.0183367163        1.00000000
## SH.XPD.CHEX.GD.ZS    -0.17735731 -0.0000488106        0.50901728
## SL.UEM.TOTL.NE.ZS    -0.07672291  0.0322618898        0.05851973
## NY.GDP.MKTP.KD.ZG    -0.04856852  0.0825563419       -0.07685633
## NY.GDP.PCAP.CD        0.44979650 -0.0588816414        0.56653754
## SP.DYN.CBRT.IN       -0.18603715 -0.0073325442       -0.37279116
## SH.HIV.INCD          -0.04539133  0.0691063411       -0.05692940
## SH.H2O.SMDW.ZS        0.17551390 -0.0804710086        0.46258692
## SI.POV.LMIC          -0.03665684  0.0159407128       -0.07532069
## SE.COM.DURS           0.02526914  0.0267539070        0.24188112
##                      SH.XPD.CHEX.GD.ZS SL.UEM.TOTL.NE.ZS NY.GDP.MKTP.KD.ZG
## SP.DYN.LE00.IN            0.1422056608       0.128832358      -0.178888192
## EG.ELC.ACCS.ZS            0.1146377641       0.154129999      -0.081683486
## NY.ADJ.NNTY.KD.ZG         0.0492628208      -0.036879594       0.588836455
## NY.ADJ.NNTY.PC.KD.ZG      0.0645852631      -0.002452958       0.568636550
## SH.HIV.INCD.14           -0.0542599774       0.072924173       0.029707165
## SE.PRM.UNER               0.0082039865       0.024317408       0.109136968
## SE.PRM.CUAT.ZS            0.0978746503       0.111498443       0.013555672
## SE.TER.CUAT.BA.ZS         0.1762687583       0.072319359       0.019636195
## SP.DYN.IMRT.IN           -0.0158882622      -0.096961532       0.212528659
## SE.PRM.CMPT.ZS            0.2323802979       0.130919946       0.154547908
## SE.ADT.LITR.ZS           -0.0165268552       0.180639536       0.081060424
## FR.INR.RINR               0.0290635604      -0.050424133       0.221721299
## SP.POP.GROW              -0.1040959686      -0.177967657       0.217856451
## EN.POP.DNST              -0.1773573073      -0.076722907      -0.048568523
## SP.POP.TOTL              -0.0000488106       0.032261890       0.082556342
## SH.XPD.CHEX.PC.CD         0.5090172832       0.058519728      -0.076856334
## SH.XPD.CHEX.GD.ZS         1.0000000000       0.194374585       0.058839395
## SL.UEM.TOTL.NE.ZS         0.1943745848       1.000000000      -0.017663622
## NY.GDP.MKTP.KD.ZG         0.0588393952      -0.017663622       1.000000000
## NY.GDP.PCAP.CD           -0.0183278394      -0.086422962      -0.122073583
## SP.DYN.CBRT.IN           -0.1208045073      -0.078919525       0.197439828
## SH.HIV.INCD               0.0527881586       0.248560596      -0.026119423
## SH.H2O.SMDW.ZS            0.1510553934       0.109781117      -0.138196980
## SI.POV.LMIC               0.0770675389       0.201930795      -0.130893634
## SE.COM.DURS               0.2685326658       0.063902825      -0.002794672
##                      NY.GDP.PCAP.CD SP.DYN.CBRT.IN  SH.HIV.INCD SH.H2O.SMDW.ZS
## SP.DYN.LE00.IN           0.51243330   -0.773668023 -0.276740764    0.562674930
## EG.ELC.ACCS.ZS           0.32146150   -0.721016313 -0.222334679    0.397199848
## NY.ADJ.NNTY.KD.ZG       -0.11881304    0.221088770  0.003064933   -0.094495706
## NY.ADJ.NNTY.PC.KD.ZG    -0.08440060    0.093976742 -0.036949717   -0.040699986
## SH.HIV.INCD.14          -0.17129954    0.429349131  0.754966989   -0.227881720
## SE.PRM.UNER             -0.12795764    0.330169362  0.376347042   -0.165910563
## SE.PRM.CUAT.ZS           0.04620446   -0.192145665  0.076051940    0.196457453
## SE.TER.CUAT.BA.ZS        0.16140877   -0.208634697 -0.021144860    0.209232909
## SP.DYN.IMRT.IN          -0.45342872    0.817470114  0.231153496   -0.524703176
## SE.PRM.CMPT.ZS           0.05777501   -0.141807397 -0.009808778    0.194050064
## SE.ADT.LITR.ZS          -0.10205642   -0.007151255  0.141938861   -0.007511715
## FR.INR.RINR             -0.11141673    0.076305330  0.015335516   -0.072686896
## SP.POP.GROW             -0.21411022    0.730707788  0.185150355   -0.324549792
## EN.POP.DNST              0.44979650   -0.186037151 -0.045391325    0.175513898
## SP.POP.TOTL             -0.05888164   -0.007332544  0.069106341   -0.080471009
## SH.XPD.CHEX.PC.CD        0.56653754   -0.372791157 -0.056929400    0.462586918
## SH.XPD.CHEX.GD.ZS       -0.01832784   -0.120804507  0.052788159    0.151055393
## SL.UEM.TOTL.NE.ZS       -0.08642296   -0.078919525  0.248560596    0.109781117
## NY.GDP.MKTP.KD.ZG       -0.12207358    0.197439828 -0.026119423   -0.138196980
## NY.GDP.PCAP.CD           1.00000000   -0.463579620 -0.111592544    0.432508796
## SP.DYN.CBRT.IN          -0.46357962    1.000000000  0.230146870   -0.469135815
## SH.HIV.INCD             -0.11159254    0.230146870  1.000000000   -0.165420992
## SH.H2O.SMDW.ZS           0.43250880   -0.469135815 -0.165420992    1.000000000
## SI.POV.LMIC             -0.09520013    0.059076502  0.066545227   -0.040489372
## SE.COM.DURS              0.13713070   -0.279460293 -0.063901509    0.100802828
##                       SI.POV.LMIC  SE.COM.DURS
## SP.DYN.LE00.IN       -0.052929097  0.262130840
## EG.ELC.ACCS.ZS       -0.033276501  0.359213146
## NY.ADJ.NNTY.KD.ZG    -0.007203884 -0.026062482
## NY.ADJ.NNTY.PC.KD.ZG -0.005718627  0.002191125
## SH.HIV.INCD.14        0.087056251 -0.129190459
## SE.PRM.UNER           0.105991834 -0.084787295
## SE.PRM.CUAT.ZS        0.087733805  0.154937967
## SE.TER.CUAT.BA.ZS     0.057060926  0.148409003
## SP.DYN.IMRT.IN        0.021349529 -0.219257279
## SE.PRM.CMPT.ZS        0.077596070  0.184902534
## SE.ADT.LITR.ZS        0.133314885  0.115569005
## FR.INR.RINR          -0.440532819 -0.013032653
## SP.POP.GROW           0.007249693 -0.241175497
## EN.POP.DNST          -0.036656839  0.025269137
## SP.POP.TOTL           0.015940713  0.026753907
## SH.XPD.CHEX.PC.CD    -0.075320690  0.241881119
## SH.XPD.CHEX.GD.ZS     0.077067539  0.268532666
## SL.UEM.TOTL.NE.ZS     0.201930795  0.063902825
## NY.GDP.MKTP.KD.ZG    -0.130893634 -0.002794672
## NY.GDP.PCAP.CD       -0.095200132  0.137130699
## SP.DYN.CBRT.IN        0.059076502 -0.279460293
## SH.HIV.INCD           0.066545227 -0.063901509
## SH.H2O.SMDW.ZS       -0.040489372  0.100802828
## SI.POV.LMIC           1.000000000  0.077119535
## SE.COM.DURS           0.077119535  1.000000000
model<-lm(log(SP.DYN.LE00.IN)~., x)
summary.aov(model)
##                       Df Sum Sq Mean Sq  F value   Pr(>F)    
## EG.ELC.ACCS.ZS         1 1.3544  1.3544 1014.488  < 2e-16 ***
## NY.ADJ.NNTY.KD.ZG      1 0.0038  0.0038    2.835  0.09386 .  
## NY.ADJ.NNTY.PC.KD.ZG   1 0.0104  0.0104    7.817  0.00570 ** 
## SH.HIV.INCD.14         1 0.0362  0.0362   27.132 4.87e-07 ***
## SE.PRM.UNER            1 0.0032  0.0032    2.410  0.12218    
## SE.PRM.CUAT.ZS         1 0.0073  0.0073    5.467  0.02041 *  
## SE.TER.CUAT.BA.ZS      1 0.0196  0.0196   14.710  0.00017 ***
## SP.DYN.IMRT.IN         1 0.4710  0.4710  352.793  < 2e-16 ***
## SE.PRM.CMPT.ZS         1 0.0036  0.0036    2.682  0.10310    
## SE.ADT.LITR.ZS         1 0.0037  0.0037    2.788  0.09658 .  
## FR.INR.RINR            1 0.0004  0.0004    0.283  0.59557    
## SP.POP.GROW            1 0.0048  0.0048    3.607  0.05905 .  
## EN.POP.DNST            1 0.0006  0.0006    0.450  0.50325    
## SP.POP.TOTL            1 0.0009  0.0009    0.646  0.42238    
## SH.XPD.CHEX.PC.CD      1 0.0531  0.0531   39.798 1.90e-09 ***
## SH.XPD.CHEX.GD.ZS      1 0.0003  0.0003    0.207  0.64994    
## SL.UEM.TOTL.NE.ZS      1 0.0026  0.0026    1.917  0.16776    
## NY.GDP.MKTP.KD.ZG      1 0.0010  0.0010    0.727  0.39482    
## NY.GDP.PCAP.CD         1 0.0012  0.0012    0.872  0.35152    
## SP.DYN.CBRT.IN         1 0.0024  0.0024    1.764  0.18572    
## SH.HIV.INCD            1 0.0089  0.0089    6.677  0.01051 *  
## SH.H2O.SMDW.ZS         1 0.0003  0.0003    0.252  0.61611    
## SI.POV.LMIC            1 0.0003  0.0003    0.242  0.62319    
## SE.COM.DURS            1 0.0000  0.0000    0.020  0.88722    
## Residuals            192 0.2563  0.0013                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model)
## 
## Call:
## lm(formula = log(SP.DYN.LE00.IN) ~ ., data = x)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.094563 -0.020273  0.001651  0.021741  0.074856 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           4.279e+00  2.061e-02 207.597  < 2e-16 ***
## EG.ELC.ACCS.ZS        6.048e-04  1.797e-04   3.366 0.000922 ***
## NY.ADJ.NNTY.KD.ZG    -3.080e-03  3.897e-03  -0.790 0.430293    
## NY.ADJ.NNTY.PC.KD.ZG  3.781e-03  4.094e-03   0.924 0.356824    
## SH.HIV.INCD.14        7.412e-07  1.950e-06   0.380 0.704304    
## SE.PRM.UNER           1.278e-09  1.511e-08   0.085 0.932689    
## SE.PRM.CUAT.ZS        2.036e-04  1.309e-04   1.556 0.121303    
## SE.TER.CUAT.BA.ZS    -3.292e-04  4.810e-04  -0.684 0.494497    
## SP.DYN.IMRT.IN       -3.577e-03  2.912e-04 -12.285  < 2e-16 ***
## SE.PRM.CMPT.ZS        5.111e-05  6.058e-05   0.844 0.399910    
## SE.ADT.LITR.ZS       -4.260e-05  1.113e-04  -0.383 0.702335    
## FR.INR.RINR           4.369e-04  3.699e-04   1.181 0.239007    
## SP.POP.GROW           1.264e-02  4.691e-03   2.695 0.007666 ** 
## EN.POP.DNST           4.028e-08  1.514e-06   0.027 0.978801    
## SP.POP.TOTL           1.277e-11  1.858e-11   0.688 0.492582    
## SH.XPD.CHEX.PC.CD     8.382e-06  2.553e-06   3.283 0.001222 ** 
## SH.XPD.CHEX.GD.ZS     5.406e-04  9.758e-04   0.554 0.580217    
## SL.UEM.TOTL.NE.ZS     1.070e-03  5.028e-04   2.128 0.034600 *  
## NY.GDP.MKTP.KD.ZG    -1.272e-03  1.048e-03  -1.214 0.226253    
## NY.GDP.PCAP.CD        1.154e-07  1.494e-07   0.773 0.440639    
## SP.DYN.CBRT.IN       -7.858e-04  5.433e-04  -1.446 0.149688    
## SH.HIV.INCD          -6.304e-07  2.501e-07  -2.521 0.012522 *  
## SH.H2O.SMDW.ZS        3.672e-05  7.632e-05   0.481 0.631005    
## SI.POV.LMIC          -2.872e-04  5.729e-04  -0.501 0.616716    
## SE.COM.DURS           1.085e-04  7.641e-04   0.142 0.887221    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03654 on 192 degrees of freedom
## Multiple R-squared:  0.8859, Adjusted R-squared:  0.8716 
## F-statistic: 62.11 on 24 and 192 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model)

vif(model)
##       EG.ELC.ACCS.ZS    NY.ADJ.NNTY.KD.ZG NY.ADJ.NNTY.PC.KD.ZG 
##             3.282301            79.519392            77.872386 
##       SH.HIV.INCD.14          SE.PRM.UNER       SE.PRM.CUAT.ZS 
##             3.209458             1.422803             3.067127 
##    SE.TER.CUAT.BA.ZS       SP.DYN.IMRT.IN       SE.PRM.CMPT.ZS 
##             2.783986             5.103899             1.308061 
##       SE.ADT.LITR.ZS          FR.INR.RINR          SP.POP.GROW 
##             1.763430             1.500228             4.245955 
##          EN.POP.DNST          SP.POP.TOTL    SH.XPD.CHEX.PC.CD 
##             1.471774             1.065360             3.222259 
##    SH.XPD.CHEX.GD.ZS    SL.UEM.TOTL.NE.ZS    NY.GDP.MKTP.KD.ZG 
##             2.032846             1.317309             1.819289 
##       NY.GDP.PCAP.CD       SP.DYN.CBRT.IN          SH.HIV.INCD 
##             2.696223             5.265360             3.098953 
##       SH.H2O.SMDW.ZS          SI.POV.LMIC          SE.COM.DURS 
##             1.736031             1.491778             1.323535
cor(x)
##                      SP.DYN.LE00.IN EG.ELC.ACCS.ZS NY.ADJ.NNTY.KD.ZG
## SP.DYN.LE00.IN          1.000000000     0.76210680      -0.142910265
## EG.ELC.ACCS.ZS          0.762106796     1.00000000      -0.128416559
## NY.ADJ.NNTY.KD.ZG      -0.142910265    -0.12841656       1.000000000
## NY.ADJ.NNTY.PC.KD.ZG   -0.056162396    -0.03028956       0.979376349
## SH.HIV.INCD.14         -0.446203601    -0.42648913       0.087064518
## SE.PRM.UNER            -0.256622339    -0.32785330       0.125010790
## SE.PRM.CUAT.ZS          0.215687072     0.20552726       0.016104012
## SE.TER.CUAT.BA.ZS       0.270740889     0.20643856       0.004606558
## SP.DYN.IMRT.IN         -0.897536450    -0.77029705       0.178174868
## SE.PRM.CMPT.ZS          0.254779994     0.23916812       0.173400190
## SE.ADT.LITR.ZS          0.025665668     0.11301552       0.026432587
## FR.INR.RINR             0.010883701     0.03707547       0.076887435
## SP.POP.GROW            -0.510730030    -0.53582925       0.152914099
## EN.POP.DNST             0.156256779     0.09378245      -0.068611664
## SP.POP.TOTL            -0.007261648     0.04139386       0.053456099
## SH.XPD.CHEX.PC.CD       0.514664184     0.29064840      -0.043109963
## SH.XPD.CHEX.GD.ZS       0.142205661     0.11463776       0.049262821
## SL.UEM.TOTL.NE.ZS       0.128832358     0.15413000      -0.036879594
## NY.GDP.MKTP.KD.ZG      -0.178888192    -0.08168349       0.588836455
## NY.GDP.PCAP.CD          0.512433298     0.32146150      -0.118813043
## SP.DYN.CBRT.IN         -0.773668023    -0.72101631       0.221088770
## SH.HIV.INCD            -0.276740764    -0.22233468       0.003064933
## SH.H2O.SMDW.ZS          0.562674930     0.39719985      -0.094495706
## SI.POV.LMIC            -0.052929097    -0.03327650      -0.007203884
## SE.COM.DURS             0.262130840     0.35921315      -0.026062482
##                      NY.ADJ.NNTY.PC.KD.ZG SH.HIV.INCD.14  SE.PRM.UNER
## SP.DYN.LE00.IN               -0.056162396   -0.446203601 -0.256622339
## EG.ELC.ACCS.ZS               -0.030289564   -0.426489132 -0.327853300
## NY.ADJ.NNTY.KD.ZG             0.979376349    0.087064518  0.125010790
## NY.ADJ.NNTY.PC.KD.ZG          1.000000000    0.016441256  0.060432454
## SH.HIV.INCD.14                0.016441256    1.000000000  0.324587555
## SE.PRM.UNER                   0.060432454    0.324587555  1.000000000
## SE.PRM.CUAT.ZS                0.048854956   -0.056152689  0.018786885
## SE.TER.CUAT.BA.ZS             0.029828822   -0.092512725 -0.040564158
## SP.DYN.IMRT.IN                0.079410047    0.437707894  0.231833412
## SE.PRM.CMPT.ZS                0.169641996   -0.130004300  0.091049543
## SE.ADT.LITR.ZS                0.030979337   -0.005803928  0.064960517
## FR.INR.RINR                   0.044304242   -0.003266622 -0.049280355
## SP.POP.GROW                  -0.008832112    0.347119666  0.278075448
## EN.POP.DNST                  -0.051531726   -0.052049273 -0.048907149
## SP.POP.TOTL                   0.050762195    0.070763190  0.012513999
## SH.XPD.CHEX.PC.CD            -0.022848088   -0.149894858 -0.081304866
## SH.XPD.CHEX.GD.ZS             0.064585263   -0.054259977  0.008203986
## SL.UEM.TOTL.NE.ZS            -0.002452958    0.072924173  0.024317408
## NY.GDP.MKTP.KD.ZG             0.568636550    0.029707165  0.109136968
## NY.GDP.PCAP.CD               -0.084400596   -0.171299544 -0.127957637
## SP.DYN.CBRT.IN                0.093976742    0.429349131  0.330169362
## SH.HIV.INCD                  -0.036949717    0.754966989  0.376347042
## SH.H2O.SMDW.ZS               -0.040699986   -0.227881720 -0.165910563
## SI.POV.LMIC                  -0.005718627    0.087056251  0.105991834
## SE.COM.DURS                   0.002191125   -0.129190459 -0.084787295
##                      SE.PRM.CUAT.ZS SE.TER.CUAT.BA.ZS SP.DYN.IMRT.IN
## SP.DYN.LE00.IN           0.21568707       0.270740889   -0.897536450
## EG.ELC.ACCS.ZS           0.20552726       0.206438564   -0.770297048
## NY.ADJ.NNTY.KD.ZG        0.01610401       0.004606558    0.178174868
## NY.ADJ.NNTY.PC.KD.ZG     0.04885496       0.029828822    0.079410047
## SH.HIV.INCD.14          -0.05615269      -0.092512725    0.437707894
## SE.PRM.UNER              0.01878689      -0.040564158    0.231833412
## SE.PRM.CUAT.ZS           1.00000000       0.750329267   -0.198892795
## SE.TER.CUAT.BA.ZS        0.75032927       1.000000000   -0.232458010
## SP.DYN.IMRT.IN          -0.19889279      -0.232458010    1.000000000
## SE.PRM.CMPT.ZS           0.13077902       0.149201829   -0.209851628
## SE.ADT.LITR.ZS           0.57590047       0.452117947   -0.034411510
## FR.INR.RINR              0.02236831      -0.004049383    0.007352259
## SP.POP.GROW             -0.23001122      -0.175342305    0.598182331
## EN.POP.DNST              0.02714290       0.002302600   -0.145610331
## SP.POP.TOTL             -0.02163243      -0.045382539    0.027107184
## SH.XPD.CHEX.PC.CD        0.10211697       0.307751286   -0.367409327
## SH.XPD.CHEX.GD.ZS        0.09787465       0.176268758   -0.015888262
## SL.UEM.TOTL.NE.ZS        0.11149844       0.072319359   -0.096961532
## NY.GDP.MKTP.KD.ZG        0.01355567       0.019636195    0.212528659
## NY.GDP.PCAP.CD           0.04620446       0.161408769   -0.453428722
## SP.DYN.CBRT.IN          -0.19214567      -0.208634697    0.817470114
## SH.HIV.INCD              0.07605194      -0.021144860    0.231153496
## SH.H2O.SMDW.ZS           0.19645745       0.209232909   -0.524703176
## SI.POV.LMIC              0.08773380       0.057060926    0.021349529
## SE.COM.DURS              0.15493797       0.148409003   -0.219257279
##                      SE.PRM.CMPT.ZS SE.ADT.LITR.ZS  FR.INR.RINR  SP.POP.GROW
## SP.DYN.LE00.IN          0.254779994    0.025665668  0.010883701 -0.510730030
## EG.ELC.ACCS.ZS          0.239168125    0.113015521  0.037075469 -0.535829248
## NY.ADJ.NNTY.KD.ZG       0.173400190    0.026432587  0.076887435  0.152914099
## NY.ADJ.NNTY.PC.KD.ZG    0.169641996    0.030979337  0.044304242 -0.008832112
## SH.HIV.INCD.14         -0.130004300   -0.005803928 -0.003266622  0.347119666
## SE.PRM.UNER             0.091049543    0.064960517 -0.049280355  0.278075448
## SE.PRM.CUAT.ZS          0.130779021    0.575900473  0.022368312 -0.230011218
## SE.TER.CUAT.BA.ZS       0.149201829    0.452117947 -0.004049383 -0.175342305
## SP.DYN.IMRT.IN         -0.209851628   -0.034411510  0.007352259  0.598182331
## SE.PRM.CMPT.ZS          1.000000000    0.079713358  0.059859475 -0.021483774
## SE.ADT.LITR.ZS          0.079713358    1.000000000  0.081273251 -0.017439763
## FR.INR.RINR             0.059859475    0.081273251  1.000000000  0.120174771
## SP.POP.GROW            -0.021483774   -0.017439763  0.120174771  1.000000000
## EN.POP.DNST             0.038814236    0.015301532 -0.015265318 -0.013068676
## SP.POP.TOTL            -0.024439184    0.006225201  0.048872841 -0.028318345
## SH.XPD.CHEX.PC.CD       0.187678934   -0.094097434 -0.083782042 -0.182129566
## SH.XPD.CHEX.GD.ZS       0.232380298   -0.016526855  0.029063560 -0.104095969
## SL.UEM.TOTL.NE.ZS       0.130919946    0.180639536 -0.050424133 -0.177967657
## NY.GDP.MKTP.KD.ZG       0.154547908    0.081060424  0.221721299  0.217856451
## NY.GDP.PCAP.CD          0.057775008   -0.102056423 -0.111416728 -0.214110218
## SP.DYN.CBRT.IN         -0.141807397   -0.007151255  0.076305330  0.730707788
## SH.HIV.INCD            -0.009808778    0.141938861  0.015335516  0.185150355
## SH.H2O.SMDW.ZS          0.194050064   -0.007511715 -0.072686896 -0.324549792
## SI.POV.LMIC             0.077596070    0.133314885 -0.440532819  0.007249693
## SE.COM.DURS             0.184902534    0.115569005 -0.013032653 -0.241175497
##                      EN.POP.DNST   SP.POP.TOTL SH.XPD.CHEX.PC.CD
## SP.DYN.LE00.IN        0.15625678 -0.0072616479        0.51466418
## EG.ELC.ACCS.ZS        0.09378245  0.0413938574        0.29064840
## NY.ADJ.NNTY.KD.ZG    -0.06861166  0.0534560995       -0.04310996
## NY.ADJ.NNTY.PC.KD.ZG -0.05153173  0.0507621947       -0.02284809
## SH.HIV.INCD.14       -0.05204927  0.0707631898       -0.14989486
## SE.PRM.UNER          -0.04890715  0.0125139990       -0.08130487
## SE.PRM.CUAT.ZS        0.02714290 -0.0216324293        0.10211697
## SE.TER.CUAT.BA.ZS     0.00230260 -0.0453825387        0.30775129
## SP.DYN.IMRT.IN       -0.14561033  0.0271071837       -0.36740933
## SE.PRM.CMPT.ZS        0.03881424 -0.0244391840        0.18767893
## SE.ADT.LITR.ZS        0.01530153  0.0062252012       -0.09409743
## FR.INR.RINR          -0.01526532  0.0488728406       -0.08378204
## SP.POP.GROW          -0.01306868 -0.0283183449       -0.18212957
## EN.POP.DNST           1.00000000 -0.0274392727        0.02820049
## SP.POP.TOTL          -0.02743927  1.0000000000        0.01833672
## SH.XPD.CHEX.PC.CD     0.02820049  0.0183367163        1.00000000
## SH.XPD.CHEX.GD.ZS    -0.17735731 -0.0000488106        0.50901728
## SL.UEM.TOTL.NE.ZS    -0.07672291  0.0322618898        0.05851973
## NY.GDP.MKTP.KD.ZG    -0.04856852  0.0825563419       -0.07685633
## NY.GDP.PCAP.CD        0.44979650 -0.0588816414        0.56653754
## SP.DYN.CBRT.IN       -0.18603715 -0.0073325442       -0.37279116
## SH.HIV.INCD          -0.04539133  0.0691063411       -0.05692940
## SH.H2O.SMDW.ZS        0.17551390 -0.0804710086        0.46258692
## SI.POV.LMIC          -0.03665684  0.0159407128       -0.07532069
## SE.COM.DURS           0.02526914  0.0267539070        0.24188112
##                      SH.XPD.CHEX.GD.ZS SL.UEM.TOTL.NE.ZS NY.GDP.MKTP.KD.ZG
## SP.DYN.LE00.IN            0.1422056608       0.128832358      -0.178888192
## EG.ELC.ACCS.ZS            0.1146377641       0.154129999      -0.081683486
## NY.ADJ.NNTY.KD.ZG         0.0492628208      -0.036879594       0.588836455
## NY.ADJ.NNTY.PC.KD.ZG      0.0645852631      -0.002452958       0.568636550
## SH.HIV.INCD.14           -0.0542599774       0.072924173       0.029707165
## SE.PRM.UNER               0.0082039865       0.024317408       0.109136968
## SE.PRM.CUAT.ZS            0.0978746503       0.111498443       0.013555672
## SE.TER.CUAT.BA.ZS         0.1762687583       0.072319359       0.019636195
## SP.DYN.IMRT.IN           -0.0158882622      -0.096961532       0.212528659
## SE.PRM.CMPT.ZS            0.2323802979       0.130919946       0.154547908
## SE.ADT.LITR.ZS           -0.0165268552       0.180639536       0.081060424
## FR.INR.RINR               0.0290635604      -0.050424133       0.221721299
## SP.POP.GROW              -0.1040959686      -0.177967657       0.217856451
## EN.POP.DNST              -0.1773573073      -0.076722907      -0.048568523
## SP.POP.TOTL              -0.0000488106       0.032261890       0.082556342
## SH.XPD.CHEX.PC.CD         0.5090172832       0.058519728      -0.076856334
## SH.XPD.CHEX.GD.ZS         1.0000000000       0.194374585       0.058839395
## SL.UEM.TOTL.NE.ZS         0.1943745848       1.000000000      -0.017663622
## NY.GDP.MKTP.KD.ZG         0.0588393952      -0.017663622       1.000000000
## NY.GDP.PCAP.CD           -0.0183278394      -0.086422962      -0.122073583
## SP.DYN.CBRT.IN           -0.1208045073      -0.078919525       0.197439828
## SH.HIV.INCD               0.0527881586       0.248560596      -0.026119423
## SH.H2O.SMDW.ZS            0.1510553934       0.109781117      -0.138196980
## SI.POV.LMIC               0.0770675389       0.201930795      -0.130893634
## SE.COM.DURS               0.2685326658       0.063902825      -0.002794672
##                      NY.GDP.PCAP.CD SP.DYN.CBRT.IN  SH.HIV.INCD SH.H2O.SMDW.ZS
## SP.DYN.LE00.IN           0.51243330   -0.773668023 -0.276740764    0.562674930
## EG.ELC.ACCS.ZS           0.32146150   -0.721016313 -0.222334679    0.397199848
## NY.ADJ.NNTY.KD.ZG       -0.11881304    0.221088770  0.003064933   -0.094495706
## NY.ADJ.NNTY.PC.KD.ZG    -0.08440060    0.093976742 -0.036949717   -0.040699986
## SH.HIV.INCD.14          -0.17129954    0.429349131  0.754966989   -0.227881720
## SE.PRM.UNER             -0.12795764    0.330169362  0.376347042   -0.165910563
## SE.PRM.CUAT.ZS           0.04620446   -0.192145665  0.076051940    0.196457453
## SE.TER.CUAT.BA.ZS        0.16140877   -0.208634697 -0.021144860    0.209232909
## SP.DYN.IMRT.IN          -0.45342872    0.817470114  0.231153496   -0.524703176
## SE.PRM.CMPT.ZS           0.05777501   -0.141807397 -0.009808778    0.194050064
## SE.ADT.LITR.ZS          -0.10205642   -0.007151255  0.141938861   -0.007511715
## FR.INR.RINR             -0.11141673    0.076305330  0.015335516   -0.072686896
## SP.POP.GROW             -0.21411022    0.730707788  0.185150355   -0.324549792
## EN.POP.DNST              0.44979650   -0.186037151 -0.045391325    0.175513898
## SP.POP.TOTL             -0.05888164   -0.007332544  0.069106341   -0.080471009
## SH.XPD.CHEX.PC.CD        0.56653754   -0.372791157 -0.056929400    0.462586918
## SH.XPD.CHEX.GD.ZS       -0.01832784   -0.120804507  0.052788159    0.151055393
## SL.UEM.TOTL.NE.ZS       -0.08642296   -0.078919525  0.248560596    0.109781117
## NY.GDP.MKTP.KD.ZG       -0.12207358    0.197439828 -0.026119423   -0.138196980
## NY.GDP.PCAP.CD           1.00000000   -0.463579620 -0.111592544    0.432508796
## SP.DYN.CBRT.IN          -0.46357962    1.000000000  0.230146870   -0.469135815
## SH.HIV.INCD             -0.11159254    0.230146870  1.000000000   -0.165420992
## SH.H2O.SMDW.ZS           0.43250880   -0.469135815 -0.165420992    1.000000000
## SI.POV.LMIC             -0.09520013    0.059076502  0.066545227   -0.040489372
## SE.COM.DURS              0.13713070   -0.279460293 -0.063901509    0.100802828
##                       SI.POV.LMIC  SE.COM.DURS
## SP.DYN.LE00.IN       -0.052929097  0.262130840
## EG.ELC.ACCS.ZS       -0.033276501  0.359213146
## NY.ADJ.NNTY.KD.ZG    -0.007203884 -0.026062482
## NY.ADJ.NNTY.PC.KD.ZG -0.005718627  0.002191125
## SH.HIV.INCD.14        0.087056251 -0.129190459
## SE.PRM.UNER           0.105991834 -0.084787295
## SE.PRM.CUAT.ZS        0.087733805  0.154937967
## SE.TER.CUAT.BA.ZS     0.057060926  0.148409003
## SP.DYN.IMRT.IN        0.021349529 -0.219257279
## SE.PRM.CMPT.ZS        0.077596070  0.184902534
## SE.ADT.LITR.ZS        0.133314885  0.115569005
## FR.INR.RINR          -0.440532819 -0.013032653
## SP.POP.GROW           0.007249693 -0.241175497
## EN.POP.DNST          -0.036656839  0.025269137
## SP.POP.TOTL           0.015940713  0.026753907
## SH.XPD.CHEX.PC.CD    -0.075320690  0.241881119
## SH.XPD.CHEX.GD.ZS     0.077067539  0.268532666
## SL.UEM.TOTL.NE.ZS     0.201930795  0.063902825
## NY.GDP.MKTP.KD.ZG    -0.130893634 -0.002794672
## NY.GDP.PCAP.CD       -0.095200132  0.137130699
## SP.DYN.CBRT.IN        0.059076502 -0.279460293
## SH.HIV.INCD           0.066545227 -0.063901509
## SH.H2O.SMDW.ZS       -0.040489372  0.100802828
## SI.POV.LMIC           1.000000000  0.077119535
## SE.COM.DURS           0.077119535  1.000000000
x<-df[,-c(1:3,25)]

model1<-lm(SP.DYN.LE00.IN~EG.ELC.ACCS.ZS+SP.DYN.IMRT.IN+SP.POP.GROW+SH.XPD.CHEX.PC.CD+
             SL.UEM.TOTL.NE.ZS+SH.HIV.INCD,x)
summary(model1)
## 
## Call:
## lm(formula = SP.DYN.LE00.IN ~ EG.ELC.ACCS.ZS + SP.DYN.IMRT.IN + 
##     SP.POP.GROW + SH.XPD.CHEX.PC.CD + SL.UEM.TOTL.NE.ZS + SH.HIV.INCD, 
##     data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.763 -1.590  0.158  1.659  7.585 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        7.239e+01  1.251e+00  57.866  < 2e-16 ***
## EG.ELC.ACCS.ZS     4.576e-02  1.151e-02   3.977 9.61e-05 ***
## SP.DYN.IMRT.IN    -2.619e-01  1.613e-02 -16.236  < 2e-16 ***
## SP.POP.GROW        4.216e-01  2.111e-01   1.998 0.047059 *  
## SH.XPD.CHEX.PC.CD  8.612e-04  1.110e-04   7.762 3.62e-13 ***
## SL.UEM.TOTL.NE.ZS  7.201e-02  3.400e-02   2.118 0.035372 *  
## SH.HIV.INCD       -3.730e-05  1.113e-05  -3.351 0.000955 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.645 on 210 degrees of freedom
## Multiple R-squared:  0.8664, Adjusted R-squared:  0.8626 
## F-statistic: 226.9 on 6 and 210 DF,  p-value: < 2.2e-16
plot(model1)

vif(model1)
##    EG.ELC.ACCS.ZS    SP.DYN.IMRT.IN       SP.POP.GROW SH.XPD.CHEX.PC.CD 
##          2.567748          2.989028          1.640335          1.161115 
## SL.UEM.TOTL.NE.ZS       SH.HIV.INCD 
##          1.149654          1.171668
x<-df[,-c(1:2,25)]
x$Continent<-as.factor(x$Continent)
model2<-lm(SP.DYN.LE00.IN~Continent+EG.ELC.ACCS.ZS+SP.DYN.IMRT.IN+SP.POP.GROW+SH.XPD.CHEX.PC.CD+
             SL.UEM.TOTL.NE.ZS+SH.HIV.INCD,x)
summary.aov(model2)
##                    Df Sum Sq Mean Sq F value   Pr(>F)    
## Continent           5   6167  1233.3 179.098  < 2e-16 ***
## EG.ELC.ACCS.ZS      1   1119  1119.2 162.522  < 2e-16 ***
## SP.DYN.IMRT.IN      1   1806  1805.8 262.236  < 2e-16 ***
## SP.POP.GROW         1     61    60.7   8.814  0.00334 ** 
## SH.XPD.CHEX.PC.CD   1    360   360.0  52.282 9.36e-12 ***
## SL.UEM.TOTL.NE.ZS   1     10    10.0   1.459  0.22854    
## SH.HIV.INCD         1     61    60.7   8.816  0.00334 ** 
## Residuals         205   1412     6.9                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model2)
## 
## Call:
## lm(formula = SP.DYN.LE00.IN ~ Continent + EG.ELC.ACCS.ZS + SP.DYN.IMRT.IN + 
##     SP.POP.GROW + SH.XPD.CHEX.PC.CD + SL.UEM.TOTL.NE.ZS + SH.HIV.INCD, 
##     data = x)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.601 -1.472 -0.045  1.537  7.073 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 7.265e+01  1.330e+00  54.612  < 2e-16 ***
## ContinentAsia               1.819e+00  7.258e-01   2.507  0.01297 *  
## ContinentAustralia/Oceania  4.837e-01  8.618e-01   0.561  0.57526    
## ContinentEurope             1.037e+00  9.037e-01   1.148  0.25244    
## ContinentNorth America      1.243e+00  8.276e-01   1.502  0.13472    
## ContinentSouth America      1.698e+00  1.010e+00   1.682  0.09403 .  
## EG.ELC.ACCS.ZS              3.027e-02  1.278e-02   2.369  0.01879 *  
## SP.DYN.IMRT.IN             -2.579e-01  1.675e-02 -15.396  < 2e-16 ***
## SP.POP.GROW                 4.011e-01  2.315e-01   1.733  0.08468 .  
## SH.XPD.CHEX.PC.CD           8.929e-04  1.209e-04   7.388 3.71e-12 ***
## SL.UEM.TOTL.NE.ZS           7.021e-02  3.473e-02   2.022  0.04450 *  
## SH.HIV.INCD                -3.341e-05  1.125e-05  -2.969  0.00334 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.624 on 205 degrees of freedom
## Multiple R-squared:  0.8716, Adjusted R-squared:  0.8647 
## F-statistic: 126.5 on 11 and 205 DF,  p-value: < 2.2e-16
plot(model2)