Read in processed filtered data. Remove doublets and reprocess. Check resolutions and save object.

Libraris, paths, colors

Read in object

# read object
dataObject <- readRDS(file = paste0("../rObjects/", treatment, "_unannotated_doublets_removed.rds"))
DefaultAssay(dataObject) <- "RNA"
dataObject <- NormalizeData(dataObject)
dataObject <- FindVariableFeatures(dataObject)
dataObject <- ScaleData(dataObject)
dataObject <- JoinLayers(dataObject)

# inspect
dataObject
## An object of class Seurat 
## 16144 features across 3376 samples within 2 assays 
## Active assay: RNA (8072 features, 2000 variable features)
##  3 layers present: counts, data, scale.data
##  1 other assay present: SCT
##  2 dimensional reductions calculated: pca, umap

Unannotated

UMAP

ditto_umap <- dittoDimPlot(object = dataObject,
             var = "seurat_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = TRUE)
ditto_umap

### Cluster tree

dataObject <- BuildClusterTree(
  object = dataObject,
  dims = 1:30,
  reorder = FALSE,
  reorder.numeric = FALSE
)

tree <- dataObject@tools$BuildClusterTree
tree$tip.label <- paste0("Cluster ", tree$tip.label)
nClusters <- length(tree$tip.label)

tree_graph <- ggtree::ggtree(tree, aes(x, y)) +
  scale_y_reverse() +
  ggtree::geom_tree() +
  ggtree::theme_tree() +
  ggtree::geom_tiplab(offset = 1) +
  ggtree::geom_tippoint(color = color.panel[1:nClusters],
                        shape = 16,
                        size = 5) +
  coord_cartesian(clip = 'off') +
  theme(plot.margin = unit(c(0, 2.5, 0, 0), 'cm'))
tree_graph

Nuclei count per cluster

count_per_cluster <- FetchData(dataObject,
                               vars = c("ident", "orig.ident")) %>%
  dplyr::count(ident, orig.ident) %>%
  tidyr::spread(ident, n)
count_per_cluster
##      orig.ident   0   1   2   3   4   5   6  7
## 1 SeuratProject 811 578 558 514 481 233 135 66
count_melt <- reshape2::melt(count_per_cluster)
colnames(count_melt) <- c("ident", "cluster", "number of nuclei")
count_max <- count_melt[which.max(count_melt$`number of nuclei`), ]
count_max_value <- count_max$`number of nuclei`
cellmax <- count_max_value + 200 # so that the figure doesn't cut off the text
count_bar <- ggplot(count_melt, aes(x = factor(cluster), y = `number of nuclei`, fill = `ident`)) +
  geom_bar(
    stat = "identity",
    colour = "black",
    width = 1,
    position = position_dodge(width = 0.8)
  ) +
  geom_text(
    aes(label = `number of nuclei`),
    position = position_dodge(width = 0.9),
    vjust = -0.25,
    angle = 45,
    hjust = -.01
  ) +
  theme_classic() + scale_fill_manual(values = sample_colors) +
  ggtitle("Number of nuclei per cluster") +  xlab("cluster") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  scale_y_continuous(limits = c(0, cellmax))
count_bar

Violins

# Astrocytes
VlnPlot(dataObject,
        features = c("AQP4","CLU", "GFAP"))

# Oligodendrocyte
VlnPlot(dataObject,
        features = c("PLP1","MBP", "MOG"))

# OPC
VlnPlot(dataObject,
        features = c("PDGFRA", "VCAN", "TNR"))

# Neurons
VlnPlot(dataObject,
        features = c("RBFOX3", "GAD1", "GAD2"))

DotPlot

markers.to.plot <-
  c(
"CLU", 
"GFAP", 
"AQP4", 
"GJA1",
"CLDN5", 
"ADGRF5", 
"FLT1",
"COL1A1", 
"COL1A2", 
"DCN",
"HEXB", 
"C1QA", 
"C1QC", 
"C1QB", 
"TMEM119", 
"ITGAM", 
"TYROBP",
"P2RY12", 
"AIF1",
"RBFOX3", 
"SNAP25",
"SYT1", 
"GAD1", 
"GAD2",
"PLP1",
"MBP", 
"MOG",
"OLIG1",
"PDGFRA", 
"VCAN", 
"TNR",
"ACTA2",
"RGS5", 
"VTN", 
"MYL5"
  )

dot_ind <- DotPlot(dataObject, 
                   features = markers.to.plot, 
                   cluster.idents = TRUE,
                   dot.scale = 8) + RotatedAxis()
dot_ind

Markers per cluster

markers <- SeuratWrappers::RunPrestoAll(
  object = dataObject,
  assay = "RNA",
  slot = "counts",
  only.pos = FALSE
)
write.table(markers, 
            paste0("../results/markers/", treatment, "_markers.tsv"),
            quote = FALSE,
            row.names = FALSE)
saveRDS(markers, paste0("../rObjects/", treatment, "_wilcox_markers.rds"))

# rearrange to order by cluster & filter to only include log2FC > 1 & FDR < 0.05
 all.markers.strict <- markers %>%
   group_by(cluster) %>%
   dplyr::filter(avg_log2FC > 1 & p_val_adj < 0.05)
saveRDS(all.markers.strict, paste0("../rObjects/", treatment,"_wilcox_markers_log2FC1_q0.01.rds"))

Get markers for each cluster

# unique clusters variable
unique_clusters <- unique(all.markers.strict$cluster)

# empty list to store individual cluster data frames
cluster_list <- list()

# loop through each cluster and create a data frame
for (i in unique_clusters) {
  cluster_name <- paste0("cluster", i)
  cluster_data <- all.markers.strict[all.markers.strict$cluster == i, ]
  assign(cluster_name, cluster_data)
  cluster_list[[cluster_name]] <- cluster_data
}

Cluster Annotation

Cluster 0 - oligodendrocyte

# Number of cells per condition
count_per_cluster[,c(1,2)]
##      orig.ident   0
## 1 SeuratProject 811
# UMAP with only cluster 0
DimPlot(object = subset(dataObject, seurat_clusters == "0"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[1])

VlnPlot(dataObject,
        features = cluster0$gene[1:10],
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster0$gene[1:10]
##  [1] "MBP"                "DLC1"               "ENSSSCG00000061137"
##  [4] "PRR5L"              "PEX5L"              "EVA1C"             
##  [7] "PDE8A"              "SLC24A2"            "FMNL2"             
## [10] "ANO4"

Cluster 1 - noise

count_per_cluster[,c(1,3)]
##      orig.ident   1
## 1 SeuratProject 578
DimPlot(object = subset(dataObject, seurat_clusters == "1"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[2])

VlnPlot(dataObject,
        features = cluster1$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster1$gene[1:10]
##  [1] "ENSSSCG00000058036" "IFNAR2"             "ARHGAP24"          
##  [4] "PRKCB"              "ENSSSCG00000007520" "CALCR"             
##  [7] "TMCC3"              "RNF128"             "ANK1"              
## [10] "DPP10"

Cluster 2 - oligodendrocyte

count_per_cluster[,c(1,4)]
##      orig.ident   2
## 1 SeuratProject 558
DimPlot(object = subset(dataObject, seurat_clusters == "2"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[3])

VlnPlot(dataObject,
        features = cluster2$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster2$gene[1:10]
##  [1] "NKAIN2"             "ENSSSCG00000010212" "DOCK10"            
##  [4] "SH3GL3"             "NFASC"              "SIK3"              
##  [7] "ERBB4"              "YPEL2"              "AUTS2"             
## [10] "OPALIN"

Cluster 3 - noise

count_per_cluster[,c(1,4)]
##      orig.ident   2
## 1 SeuratProject 558
DimPlot(object = subset(dataObject, seurat_clusters == "3"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols =  color.panel[4])

VlnPlot(dataObject,
        features = cluster3$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster3$gene[1:10]
##  [1] "ENSSSCG00000033805" "ENSSSCG00000058255" "ITGA2B"            
##  [4] "ENSSSCG00000055221" "EDIL3"              NA                  
##  [7] NA                   NA                   NA                  
## [10] NA

Cluster 4 - astrocyte

count_per_cluster[,c(1,5)]
##      orig.ident   3
## 1 SeuratProject 514
DimPlot(object = subset(dataObject, seurat_clusters == "4"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[5])

VlnPlot(dataObject,
        features = cluster4$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster4$gene[1:10]
##  [1] "SLC1A2"             "PITPNC1"            "ETNPPL"            
##  [4] "FRMD4A"             "CTNND2"             "ENSSSCG00000059499"
##  [7] "ENSSSCG00000058517" "TRPM3"              "PLCB4"             
## [10] "GLIS3"

Cluster 5 - polydendrocyte

count_per_cluster[,c(1,6)]
##      orig.ident   4
## 1 SeuratProject 481
DimPlot(object = subset(dataObject, seurat_clusters == "5"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[6])

VlnPlot(dataObject,
        features = cluster5$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster5$gene[1:10]
##  [1] "XYLT1"              "TNR"                "OPCML"             
##  [4] "MMP16"              "ITGA9"              "LHFPL3"            
##  [7] "KIF26B"             "SEMA5A"             "ENSSSCG00000033643"
## [10] "ATCAY"

Cluster 6 - neuron

count_per_cluster[,c(1,7)]
##      orig.ident   5
## 1 SeuratProject 233
DimPlot(object = subset(dataObject, seurat_clusters == "6"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[7])

VlnPlot(dataObject,
        features = cluster6$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster6$gene[1:10]
##  [1] "ENSSSCG00000058036" "PRKCB"              "ENSSSCG00000007520"
##  [4] "CALCR"              "ANK1"               "IL1RAPL2"          
##  [7] "DPP10"              "SLC8A1"             "TMCC3"             
## [10] "RCSD1"

Cluster 7 - polydendrocyte

count_per_cluster[,c(1,8)]
##      orig.ident   6
## 1 SeuratProject 135
DimPlot(object = subset(dataObject, seurat_clusters == "7"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[8])

VlnPlot(dataObject,
        features = cluster7$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster6$gene[1:10]
##  [1] "ENSSSCG00000058036" "PRKCB"              "ENSSSCG00000007520"
##  [4] "CALCR"              "ANK1"               "IL1RAPL2"          
##  [7] "DPP10"              "SLC8A1"             "TMCC3"             
## [10] "RCSD1"

Assign identities

Individual

dataObject.annotated <- RenameIdents(object = dataObject, 
                               "0" = "oligodendrocyte",
                               "1" = "noise",
                               "2" = "oligodendrocyte",
                               "3" = "noise",
                               "4" = "astrocyte",
                               "5" = "polydendrocyte",
                               "6" = "neuron",
                               "7" = "polydendrocyte")
dataObject.annotated$individual_clusters <- factor(Idents(dataObject.annotated))

UMAP_ind <- dittoDimPlot(object = dataObject.annotated,
             var = "individual_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = TRUE)
UMAP_ind

## png 
##   2

Remove noise

# filter
dataObject.no_noise <- subset(dataObject.annotated, subset = 
    (individual_clusters != "noise") 
)

UMAP_ind <- dittoDimPlot(object = dataObject.no_noise,
             var = "individual_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = TRUE)
UMAP_ind

# Clean up

rm(all.markers.strict, cluster_data, cluster_list, cluster0, cluster1, cluster2,
   cluster3, cluster4, cluster5, cluster6, cluster7, count_bar, count_max, count_melt,
   count_per_clsuter, ditto_umap, makers, tree_graph, tree, umap_feature, UMAP_ind, umap0.2,
   umap0.4, cellmax, nClusters, cluster_name, count_per_cluster, markers, s2)
rm(dataObject.annotated)

Reprocess post-noise removal

# save singlets as the new dataObject
dataObject <- dataObject.no_noise

# transform
dataObject <- SCTransform(dataObject, verbose = FALSE)

# run PCA on the merged object
dataObject <- RunPCA(object = dataObject)
Idents(dataObject) <- "sample"

# Determine the K-nearest neighbor graph
dataObject <- FindNeighbors(object = dataObject, 
                                 assay = "SCT", 
                                 reduction = "pca",
                                 dims = 1:15)
# Run UMAP
dataObject <- RunUMAP(dataObject,
                           dims = 1:15,
                           reduction = "pca",
                           n.components = 3) 

# Determine the clusters for various resolutions
dataObject <- FindClusters(object = dataObject,
                                 algorithm = 1, # 1= Louvain
                                 resolution = seq(0.1,1,by=0.1))
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9622
## Number of communities: 4
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9275
## Number of communities: 4
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8929
## Number of communities: 4
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8582
## Number of communities: 4
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8239
## Number of communities: 5
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7982
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7751
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7522
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7295
## Number of communities: 6
## Elapsed time: 0 seconds
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2284
## Number of edges: 95795
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.7106
## Number of communities: 7
## Elapsed time: 0 seconds

Explore resolutions

ditto_umap <- dittoDimPlot(object = dataObject,
             var = "seurat_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = TRUE)
ditto_umap

# 0.4
umap0.2 <- DimPlot(dataObject,
        group.by = "SCT_snn_res.0.2",
        label = TRUE)
umap0.2

# 0.4
umap0.4 <- DimPlot(dataObject,
        group.by = "SCT_snn_res.0.4",
        label = TRUE)
umap0.4

Set resolution

dataObject$seurat_clusters <- dataObject$SCT_snn_res.0.2
Idents(dataObject) <- dataObject$seurat_clusters
DefaultAssay(dataObject) <- "RNA"
dataObject <- NormalizeData(dataObject)
dataObject <- FindVariableFeatures(dataObject)
dataObject <- ScaleData(dataObject)
dataObject <- JoinLayers(dataObject)

Violins

# Astrocytes
VlnPlot(dataObject,
        features = c("AQP4","CLU", "GFAP"))

# Oligodendrocyte
VlnPlot(dataObject,
        features = c("PLP1","MBP", "MOG"))

# OPC
VlnPlot(dataObject,
        features = c("PDGFRA", "VCAN", "TNR"))

# Neurons
VlnPlot(dataObject,
        features = c("RBFOX3", "GAD1", "GAD2"))

Nuclei count per cluster

count_per_cluster <- FetchData(dataObject,
                               vars = c("ident", "orig.ident")) %>%
  dplyr::count(ident, orig.ident) %>%
  tidyr::spread(ident, n)
count_per_cluster
##      orig.ident    0   1   2   3
## 1 SeuratProject 1370 480 298 136
count_melt <- reshape2::melt(count_per_cluster)
colnames(count_melt) <- c("ident", "cluster", "number of nuclei")
count_max <- count_melt[which.max(count_melt$`number of nuclei`), ]
count_max_value <- count_max$`number of nuclei`
cellmax <- count_max_value + 500 # so that the figure doesn't cut off the text
count_bar <- ggplot(count_melt, aes(x = factor(cluster), y = `number of nuclei`, fill = `cluster`)) +
  geom_bar(
    stat = "identity",
    colour = "black",
    width = 1,
    position = position_dodge(width = 0.8)
  ) +
  geom_text(
    aes(label = `number of nuclei`),
    position = position_dodge(width = 0.9),
    vjust = -0.25,
    angle = 45,
    hjust = -.01
  ) +
  theme_classic() + scale_fill_manual(values = color.panel) +
  ggtitle("Number of nuclei per cluster") +  xlab("cluster") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  scale_y_continuous(limits = c(0, cellmax))
count_bar

rm(count_max, count_melt)

Markers per cluster

markers <- SeuratWrappers::RunPrestoAll(
  object = dataObject,
  assay = "RNA",
  slot = "counts",
  only.pos = FALSE
)
write.table(markers, 
            paste0("../results/markers/", treatment, "_markers_noise_clusters_removed.tsv"),
            quote = FALSE,
            row.names = FALSE)
saveRDS(markers, paste0("../rObjects/", treatment, "_wilcox_markers_noise_clusters_removed.rds"))

# rearrange to order by cluster & filter to only include log2FC > 1 & FDR < 0.05
 all.markers.strict <- markers %>%
   group_by(cluster) %>%
   dplyr::filter(avg_log2FC > 1 & p_val_adj < 0.05)
saveRDS(all.markers.strict, paste0("../rObjects/", treatment,"_wilcox_markers_noise_clusters_removed_log2FC1_q0.01.rds"))

Get markers for each cluster

# unique clusters variable
unique_clusters <- unique(all.markers.strict$cluster)

# empty list to store individual cluster data frames
cluster_list <- list()

# loop through each cluster and create a data frame
for (i in unique_clusters) {
  cluster_name <- paste0("cluster", i)
  cluster_data <- all.markers.strict[all.markers.strict$cluster == i, ]
  assign(cluster_name, cluster_data)
  cluster_list[[cluster_name]] <- cluster_data
}

Cluster Annotation

Cluster 0 - oligodendrocyte

# Number of cells per condition
count_per_cluster[,c(1,2)]
##      orig.ident    0
## 1 SeuratProject 1370
# UMAP with only cluster 0
DimPlot(object = subset(dataObject, seurat_clusters == "0"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[1])

VlnPlot(dataObject,
        features = cluster0$gene[1:10],
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster0$gene[1:10]
##  [1] "NKAIN2"             "RNF220"             "C10orf90"          
##  [4] "PCDH9"              "MBP"                "OPALIN"            
##  [7] "PLEKHH1"            "ENSSSCG00000010212" "SIK3"              
## [10] "ZFYVE16"

Cluster 1 - astrocyte

count_per_cluster[,c(1,3)]
##      orig.ident   1
## 1 SeuratProject 480
DimPlot(object = subset(dataObject, seurat_clusters == "1"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[2])

VlnPlot(dataObject,
        features = cluster1$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster1$gene[1:10]
##  [1] "SLC1A2"             "PITPNC1"            "FRMD4A"            
##  [4] "ETNPPL"             "CTNND2"             "ENSSSCG00000058517"
##  [7] "ENSSSCG00000059499" "TRPM3"              "PLCB4"             
## [10] "GLIS3"

Cluster 2 - polydendrocyte

count_per_cluster[,c(1,4)]
##      orig.ident   2
## 1 SeuratProject 298
DimPlot(object = subset(dataObject, seurat_clusters == "2"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols = color.panel[3])

VlnPlot(dataObject,
        features = cluster2$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster2$gene[1:10]
##  [1] "TNR"    "OPCML"  "XYLT1"  "MMP16"  "ITGA9"  "LHFPL3" "KIF26B" "LRRTM4"
##  [9] "SEMA5A" "ATCAY"

Cluster 3 - neuron

count_per_cluster[,c(1,4)]
##      orig.ident   2
## 1 SeuratProject 298
DimPlot(object = subset(dataObject, seurat_clusters == "3"),
        reduction = "umap", 
        label = TRUE,
        label.box = TRUE,
        label.size = 3,
        repel = TRUE,
        cols =  color.panel[4])

VlnPlot(dataObject,
        features = cluster3$gene[1:10],
        cols = color.panel,
        stack = TRUE,
        flip = TRUE,
        split.by = "seurat_clusters")

cluster3$gene[1:10]
##  [1] "ENSSSCG00000058036" "CALCR"              "PRKCB"             
##  [4] "ENSSSCG00000007520" "ANK1"               "IFNAR2"            
##  [7] "IL1RAPL2"           "ARHGAP24"           "DPP10"             
## [10] "TMCC3"

Assign identities

Individual

dataObject.annotated <- RenameIdents(object = dataObject, 
                               "0" = "oligodendrocyte",
                               "1" = "astrocyte",
                               "2" = "polydendrocyte",
                               "3" = "neuron")
dataObject.annotated$annotated_clusters <- factor(Idents(dataObject.annotated))

UMAP_ind <- dittoDimPlot(object = dataObject.annotated,
             var = "annotated_clusters",
             reduction.use = "umap",
             do.label = TRUE,
             labels.highlight = TRUE)
UMAP_ind

## png 
##   2

Save

saveRDS(dataObject.annotated, paste0("../rObjects/",treatment,"_unannotated_noise_clusters_removed.rds"))