請讀入「MS.csv」資料。將Y當成反應變數,X1, X2, X3, X4, X5為解釋變數。
MS <- read.csv('MS.csv')
head(MS)
## Time Y Y1 X1 X2 X3 X4 X5 X6
## 1 1999/12/31 2477386 2466906 3694036 0.072009 0.072976 0.000157 0.0786 290351
## 2 2000/1/31 2493525 2477386 3733085 0.033724 0.072252 0.000155 0.0786 293420
## 3 2000/2/29 2511507 2493525 3805669 0.066437 0.071374 0.000569 0.0773 294178
## 4 2000/3/31 2502434 2511507 3781284 0.065821 0.072481 0.000538 0.0773 292293
## 5 2000/4/30 2494887 2502434 3792181 0.068475 0.070920 0.000648 0.0773 293136
## 6 2000/5/31 2510839 2494887 3799946 0.074182 0.071335 0.000608 0.0764 290316
## X7 X8 X9 X10 liquidity equity revenue
## 1 0.005660 0.005736 1.2e-05 1 266005 269575 579
## 2 0.002651 0.005679 1.2e-05 2 125896 269722 579
## 3 0.005136 0.005517 4.4e-05 3 252839 271626 2165
## 4 0.005088 0.005603 4.2e-05 4 248889 274070 2035
## 5 0.005293 0.005482 5.0e-05 5 259670 268940 2456
## 6 0.005667 0.005450 4.6e-05 6 281887 271070 2312
none=lm(Y~1,data=MS)
full=lm(Y~X1+X2+X3+X4+X5,data = MS)
step(full,
scope=list(upper=full,lower=none),direction = 'backward')
## Start: AIC=1652.91
## Y ~ X1 + X2 + X3 + X4 + X5
##
## Df Sum of Sq RSS AIC
## - X4 1 4.1476e+09 4.2630e+11 1651.6
## <none> 4.2216e+11 1652.9
## - X3 1 2.3181e+10 4.4534e+11 1654.8
## - X5 1 1.0263e+11 5.2478e+11 1666.8
## - X2 1 2.4003e+11 6.6218e+11 1683.8
## - X1 1 2.6017e+11 6.8232e+11 1686.0
##
## Step: AIC=1651.62
## Y ~ X1 + X2 + X3 + X5
##
## Df Sum of Sq RSS AIC
## <none> 4.2630e+11 1651.6
## - X3 1 2.3863e+10 4.5017e+11 1653.6
## - X5 1 1.0533e+11 5.3163e+11 1665.7
## - X2 1 2.5753e+11 6.8383e+11 1684.1
## - X1 1 2.6535e+11 6.9166e+11 1685.0
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3 + X5, data = MS)
##
## Coefficients:
## (Intercept) X1 X2 X3 X5
## -1.254e+06 7.222e-01 -2.037e+06 7.654e+06 8.007e+06none=lm(Y~1,data = MS)
full=lm(Y~X1+X2+X3+X4+X5,data = MS)
step(none,
scope=list(upper=full,lower=none),direction = 'forward')
## Start: AIC=1736.99
## Y ~ 1
##
## Df Sum of Sq RSS AIC
## + X2 1 8.0223e+11 7.2952e+11 1684.8
## + X1 1 2.3004e+11 1.3017e+12 1727.1
## + X4 1 8.6172e+10 1.4456e+12 1734.8
## <none> 1.5318e+12 1737.0
## + X3 1 3.2355e+10 1.4994e+12 1737.4
## + X5 1 2.1392e+10 1.5104e+12 1738.0
##
## Step: AIC=1684.84
## Y ~ X2
##
## Df Sum of Sq RSS AIC
## + X3 1 3.7368e+10 6.9215e+11 1683.0
## + X5 1 3.5202e+10 6.9432e+11 1683.2
## <none> 7.2952e+11 1684.8
## + X4 1 1.4101e+10 7.1542e+11 1685.4
## + X1 1 1.8884e+08 7.2933e+11 1686.8
##
## Step: AIC=1683
## Y ~ X2 + X3
##
## Df Sum of Sq RSS AIC
## + X1 1 1.6052e+11 5.3163e+11 1665.7
## <none> 6.9215e+11 1683.0
## + X4 1 9.4304e+09 6.8272e+11 1684.0
## + X5 1 4.9720e+08 6.9166e+11 1685.0
##
## Step: AIC=1665.74
## Y ~ X2 + X3 + X1
##
## Df Sum of Sq RSS AIC
## + X5 1 1.0533e+11 4.2630e+11 1651.6
## <none> 5.3163e+11 1665.7
## + X4 1 6.8475e+09 5.2478e+11 1666.8
##
## Step: AIC=1651.62
## Y ~ X2 + X3 + X1 + X5
##
## Df Sum of Sq RSS AIC
## <none> 4.2630e+11 1651.6
## + X4 1 4147621971 4.2216e+11 1652.9
##
## Call:
## lm(formula = Y ~ X2 + X3 + X1 + X5, data = MS)
##
## Coefficients:
## (Intercept) X2 X3 X1 X5
## -1.254e+06 -2.037e+06 7.654e+06 7.222e-01 8.007e+06none=lm(Y~1,data = MS)
full=lm(Y~X1+X2+X3+X4+X5,data = MS)
step(none,
scope=list(upper=full,lower=none),direction = 'both')
## Start: AIC=1736.99
## Y ~ 1
##
## Df Sum of Sq RSS AIC
## + X2 1 8.0223e+11 7.2952e+11 1684.8
## + X1 1 2.3004e+11 1.3017e+12 1727.1
## + X4 1 8.6172e+10 1.4456e+12 1734.8
## <none> 1.5318e+12 1737.0
## + X3 1 3.2355e+10 1.4994e+12 1737.4
## + X5 1 2.1392e+10 1.5104e+12 1738.0
##
## Step: AIC=1684.84
## Y ~ X2
##
## Df Sum of Sq RSS AIC
## + X3 1 3.7368e+10 6.9215e+11 1683.0
## + X5 1 3.5202e+10 6.9432e+11 1683.2
## <none> 7.2952e+11 1684.8
## + X4 1 1.4101e+10 7.1542e+11 1685.4
## + X1 1 1.8884e+08 7.2933e+11 1686.8
## - X2 1 8.0223e+11 1.5318e+12 1737.0
##
## Step: AIC=1683
## Y ~ X2 + X3
##
## Df Sum of Sq RSS AIC
## + X1 1 1.6052e+11 5.3163e+11 1665.7
## <none> 6.9215e+11 1683.0
## + X4 1 9.4304e+09 6.8272e+11 1684.0
## - X3 1 3.7368e+10 7.2952e+11 1684.8
## + X5 1 4.9720e+08 6.9166e+11 1685.0
## - X2 1 8.0724e+11 1.4994e+12 1737.4
##
## Step: AIC=1665.74
## Y ~ X2 + X3 + X1
##
## Df Sum of Sq RSS AIC
## + X5 1 1.0533e+11 4.2630e+11 1651.6
## <none> 5.3163e+11 1665.7
## + X4 1 6.8475e+09 5.2478e+11 1666.8
## - X1 1 1.6052e+11 6.9215e+11 1683.0
## - X3 1 1.9770e+11 7.2933e+11 1686.8
## - X2 1 4.2847e+11 9.6010e+11 1706.9
##
## Step: AIC=1651.62
## Y ~ X2 + X3 + X1 + X5
##
## Df Sum of Sq RSS AIC
## <none> 4.2630e+11 1651.6
## + X4 1 4.1476e+09 4.2216e+11 1652.9
## - X3 1 2.3863e+10 4.5017e+11 1653.6
## - X5 1 1.0533e+11 5.3163e+11 1665.7
## - X2 1 2.5753e+11 6.8383e+11 1684.1
## - X1 1 2.6535e+11 6.9166e+11 1685.0
##
## Call:
## lm(formula = Y ~ X2 + X3 + X1 + X5, data = MS)
##
## Coefficients:
## (Intercept) X2 X3 X1 X5
## -1.254e+06 -2.037e+06 7.654e+06 7.222e-01 8.007e+06source('criteria.best.R')
library(knitr)
bestsubset(as.matrix(MS[,4:8]),MS$Y)
## $model
## $model$R2
## [1] 32
##
## $model$R2a
## [1] 24
##
## $model$Cp
## [1] 24
##
## $model$AIC
## [1] 24
##
## $model$BIC
## [1] 20
##
##
## $stat
## p X1 X2 X3 X4 X5 SSE R2 R2a Cp AIC
## [1,] 1 0 0 0 0 0 1.531751e+12 3.330669e-16 4.440892e-16 172.1026 1736.989
## [2,] 2 1 0 0 0 0 1.30171e+12 0.1501821 0.1382128 137.593 1727.11
## [3,] 2 0 1 0 0 0 729521590534 0.5237337 0.5170257 46.7816 1684.839
## [4,] 3 1 1 0 0 0 729332746107 0.523857 0.5102529 48.75163 1686.82
## [5,] 2 0 0 1 0 0 1.499396e+12 0.02112287 0.007335867 168.9676 1737.431
## [6,] 3 1 0 1 0 0 9.601e+11 0.3732011 0.3552926 85.37646 1706.889
## [7,] 3 0 1 1 0 0 692153316384 0.5481295 0.5352189 42.85092 1683.001
## [8,] 4 1 1 1 0 0 531631647071 0.6529256 0.6378354 19.3747 1665.739
## [9,] 2 0 0 0 1 0 1.44558e+12 0.05625693 0.04296477 160.4264 1734.762
## [10,] 3 1 0 0 1 0 1.224151e+12 0.2008163 0.1779825 127.2837 1724.625
## [11,] 3 0 1 0 1 0 715420706028 0.5329394 0.5195948 46.54366 1685.414
## [12,] 4 1 1 0 1 0 714844305236 0.5333157 0.5130251 48.45218 1687.356
## [13,] 3 0 0 1 1 0 1.410535e+12 0.07913551 0.0528251 156.8646 1734.971
## [14,] 4 1 0 1 1 0 916863893384 0.4014277 0.3754028 80.5145 1705.525
## [15,] 4 0 1 1 1 0 682722898480 0.5542861 0.5349072 43.35423 1683.999
## [16,] 5 1 1 1 1 0 524784178354 0.657396 0.6372428 20.28794 1666.793
## [17,] 2 0 0 0 0 1 1.51036e+12 0.01396546 7.765025e-05 170.7076 1737.962
## [18,] 3 1 0 0 0 1 699473781829 0.5433503 0.5303032 44.01274 1683.769
## [19,] 3 0 1 0 0 1 694319912330 0.546715 0.533764 43.19478 1683.229
## [20,] 4 1 1 0 0 1 4.50167e+11 0.7061096 0.6933318 6.445521 1653.597
## [21,] 3 0 0 1 0 1 1.495332e+12 0.02377602 -0.004116094 170.3226 1739.232
## [22,] 4 1 0 1 0 1 683834841352 0.5535602 0.5341497 43.5307 1684.118
## [23,] 4 0 1 1 0 1 691656112559 0.5484541 0.5288216 44.77201 1684.948
## [24,] 5 1 1 1 0 1 426304054504 0.7216885 0.7053172 4.658265 1651.621
## [25,] 3 0 0 0 1 1 1.421038e+12 0.07227866 0.04577233 158.5315 1735.512
## [26,] 4 1 0 0 1 1 676972905195 0.55804 0.5388243 42.44165 1683.382
## [27,] 4 0 1 0 1 1 684783054037 0.5529411 0.5335038 43.68119 1684.219
## [28,] 5 1 1 0 1 1 445337353183 0.7092626 0.6921604 7.679019 1654.81
## [29,] 4 0 0 1 1 1 1.407659e+12 0.08101343 0.04105749 158.4081 1736.822
## [30,] 5 1 0 1 1 1 662183464630 0.5676952 0.5422655 42.09444 1683.769
## [31,] 5 0 1 1 1 1 682324896084 0.5545459 0.5283427 45.29106 1685.957
## [32,] 6 1 1 1 1 1 422156432533 0.7243962 0.7038288 6 1652.907
## BIC
## [1,] 1739.28
## [2,] 1731.69
## [3,] 1689.42
## [4,] 1693.692
## [5,] 1742.011
## [6,] 1713.76
## [7,] 1689.872
## [8,] 1674.901
## [9,] 1739.343
## [10,] 1731.496
## [11,] 1692.286
## [12,] 1696.517
## [13,] 1741.842
## [14,] 1714.687
## [15,] 1693.161
## [16,] 1678.245
## [17,] 1742.543
## [18,] 1690.64
## [19,] 1690.1
## [20,] 1662.759
## [21,] 1746.104
## [22,] 1693.28
## [23,] 1694.11
## [24,] 1663.073
## [25,] 1742.384
## [26,] 1692.544
## [27,] 1693.381
## [28,] 1666.262
## [29,] 1745.984
## [30,] 1695.222
## [31,] 1697.409
## [32,] 1666.65