library(WDI)
df<- WDI(country = "IN", indicator = c("nufus"= "SP.POP.TOTL", "gsyh"= "NY.GDP.MKTP.CD"), end = 2022)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(explore)
describe_all(df)
## # A tibble: 6 × 8
##   variable type     na na_pct unique          min          mean      max
##   <chr>    <chr> <int>  <dbl>  <int>        <dbl>         <dbl>    <dbl>
## 1 country  chr       0      0      1          NA            NA  NA      
## 2 iso2c    chr       0      0      1          NA            NA  NA      
## 3 iso3c    chr       0      0      1          NA            NA  NA      
## 4 year     int       0      0     63        1960          1991   2.02e 3
## 5 nufus    dbl       0      0     63   445954579     907933406.  1.42e 9
## 6 gsyh     dbl       0      0     63 37029883876. 741932340366.  3.42e12
ggplot(df, aes(x =year  ,y = nufus)) + geom_smooth(binwidth=39, colour="red") + theme_dark()
## Warning in geom_smooth(binwidth = 39, colour = "red"): Ignoring unknown
## parameters: `binwidth`
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

df<- df %>% mutate(kbgsyh= gsyh/nufus)
ggplot(df, aes(kbgsyh)) + geom_histogram(binwidth = 39, colour= "red ", fill= "gray ") + theme_classic()

ARDL

ARDL Sınır Testi veya gecikmesi dağıtılmış otoregresif sınır testi, Mohammad Hashem Pesaran ve Yongcheol Shin tarafından 2001 yılında geliştirilen test, seviyelerinde durağan olmayan en az iki serinin durağan bir bileşimi olduğunu ifade eden eşbütünleşme kavramını test etmek amacıyla kullanılan modeldir. Özetle uzun ve kısa dönem nedensellik ilişkilerini yakalamaya yarayan modeldir. Bu eşbütünleşme testinde, diğer eşbütünleşme testlerinde olduğu gibi aralarındaki eşbütünleşme ilişkisi incelenen serilerin aynı dereceden durağan olmaları şartı bulunmamaktadır.

attach(df)
library(ARDL)
## To cite the ARDL package in publications:
## 
## Use this reference to refer to the validity of the ARDL package.
## 
##   Natsiopoulos, Kleanthis, and Tzeremes, Nickolaos G. (2022). ARDL
##   bounds test for cointegration: Replicating the Pesaran et al. (2001)
##   results for the UK earnings equation using R. Journal of Applied
##   Econometrics, 37(5), 1079-1090. https://doi.org/10.1002/jae.2919
## 
## Use this reference to cite this specific version of the ARDL package.
## 
##   Kleanthis Natsiopoulos and Nickolaos Tzeremes (2023). ARDL: ARDL, ECM
##   and Bounds-Test for Cointegration. R package version 0.2.4.
##   https://CRAN.R-project.org/package=ARDL
library(vars)
## Zorunlu paket yükleniyor: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Zorunlu paket yükleniyor: strucchange
## Zorunlu paket yükleniyor: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Zorunlu paket yükleniyor: sandwich
## 
## Attaching package: 'strucchange'
## The following object is masked from 'package:stringr':
## 
##     boundary
## Zorunlu paket yükleniyor: urca
## Zorunlu paket yükleniyor: lmtest
library(dLagM)
## Zorunlu paket yükleniyor: nardl
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Zorunlu paket yükleniyor: dynlm
library(tseries)
ardlBound(data = df, formula =gsyh~nufus, case = 3, max.p = 3, max.q = 3)
##   
## Orders being calculated with max.p = 3 and max.q = 3 ...
## 
## Autoregressive order: 4 and p-orders: 3 
## ------------------------------------------------------ 
## 
##  Breusch-Godfrey Test for the autocorrelation in residuals:
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  modelFull$model
## LM test = 0.0093592, df1 = 1, df2 = 49, p-value = 0.9233
## 
## ------------------------------------------------------ 
## 
##  Ljung-Box Test for the autocorrelation in residuals:
## 
##  Box-Ljung test
## 
## data:  res
## X-squared = 0.0010806, df = 1, p-value = 0.9738
## 
## ------------------------------------------------------ 
## 
##  Breusch-Pagan Test for the homoskedasticity of residuals:
## 
##  studentized Breusch-Pagan test
## 
## data:  modelFull$model
## BP = 32.084, df = 8, p-value = 8.995e-05
## 
## The p-value of Breusch-Pagan test for the homoskedasticity of residuals:  8.995298e-05 < 0.05!
## ------------------------------------------------------ 
## 
##  Shapiro-Wilk test of normality of residuals:
## 
##  Shapiro-Wilk normality test
## 
## data:  modelFull$model$residual
## W = 0.89261, p-value = 8.154e-05
## 
## The p-value of Shapiro-Wilk test normality of residuals:  8.153834e-05 < 0.05!
## ------------------------------------------------------ 
## 
##  PESARAN, SHIN AND SMITH (2001) COINTEGRATION TEST 
## 
##  Observations: 62 
##  Number of Regressors (k): 1 
##  Case: 3 
## 
##  ------------------------------------------------------ 
##  -                       F-test                       - 
##  ------------------------------------------------------ 
##                  <------- I(0) ------------ I(1) -----> 
##  10% critical value       4.175            4.93 
##  5% critical value        5.13            5.98 
##  1% critical value        7.32            8.435 
##  
## 
##  F-statistic = 7.32420366750023 
##   
##  ------------------------------------------------------ 
##  
##  
## ------------------------------------------------------ 
## 
##  Ramsey's RESET Test for model specification:
## 
##  RESET test
## 
## data:  modelECM$model
## RESET = 6.5283, df1 = 2, df2 = 49, p-value = 0.003065
## 
## the p-value of RESET test:  0.003065452 < 0.05!
## ------------------------------------------------------
## ------------------------------------------------------ 
## Error Correction Model Output: 
## 
## Time series regression with "ts" data:
## Start = 4, End = 62
## 
## Call:
## dynlm(formula = as.formula(model.text), data = data)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -2.781e+11 -3.593e+10 -3.694e+09  2.990e+10  2.146e+11 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.490e+10  6.023e+10   0.911   0.3663    
## ec.1        -1.677e-01  3.562e-02  -4.709 1.95e-05 ***
## dnufus.t    -3.245e+04  4.455e+04  -0.728   0.4697    
## dnufus.1     6.052e+04  8.660e+04   0.699   0.4878    
## dnufus.2    -7.750e+04  5.444e+04  -1.424   0.1606    
## dgsyh.1     -2.103e-01  1.253e-01  -1.678   0.0995 .  
## dgsyh.2     -2.414e-01  1.441e-01  -1.675   0.1000    
## dgsyh.3     -3.510e-01  1.638e-01  -2.143   0.0369 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.644e+10 on 51 degrees of freedom
## Multiple R-squared:  0.5411, Adjusted R-squared:  0.4782 
## F-statistic: 8.592 on 7 and 51 DF,  p-value: 6.418e-07
## 
## ------------------------------------------------------ 
## Long-run coefficients: 
##       gsyh.1      nufus.1 
##   -0.1677445 1030.1792595 
## 
## $model
## $model$modelNull
## $model
## 
## Time series regression with "ts" data:
## Start = 4, End = 62
## 
## Call:
## dynlm(formula = as.formula(model.text), data = data)
## 
## Coefficients:
## (Intercept)     dnufus.t     dnufus.1      dgsyh.1      dgsyh.2      dgsyh.3  
##   3.477e+10   -1.275e+05    1.286e+05    5.443e-04    5.094e-02   -1.486e-02  
## 
## 
## $order
## [1] 1 3
## 
## $removed
## $removed$p
## $removed$p$ec
## [1] 0
## 
## 
## 
## $formula
## dgsyh ~ +1 + dnufus
## <environment: 0x000001fe760deeb0>
## 
## $data
## Time Series:
## Start = 1 
## End = 62 
## Frequency = 1 
##            gsyh      nufus         dgsyh   dnufus
##  1 3.923244e+10  456351876    2202551908 10397297
##  2 4.216148e+10  467024193    2929046074 10672317
##  3 4.842192e+10  477933619    6260441601 10909426
##  4 5.648029e+10  489059309    8058366482 11125690
##  5 5.955485e+10  500114346    3074564635 11055037
##  6 4.586546e+10  510992617  -13689392542 10878271
##  7 5.013494e+10  521987069    4269480170 10994452
##  8 5.308546e+10  533431909    2950513667 11444840
##  9 5.844800e+10  545314670    5362539147 11882761
## 10 6.242248e+10  557501301    3974488037 12186631
## 11 6.735140e+10  569999178    4928921297 12497877
## 12 7.146319e+10  582837973    4111789479 12838795
## 13 8.551527e+10  596107483   14052075754 13269510
## 14 9.952590e+10  609721951   14010629531 13614468
## 15 9.847280e+10  623524219   -1053102659 13802268
## 16 1.027172e+11  637451448    4244368010 13927229
## 17 1.214866e+11  651685628   18769476975 14234180
## 18 1.373003e+11  666267760   15813653872 14582132
## 19 1.529917e+11  681248383   15691358480 14980623
## 20 1.863253e+11  696828385   33333691293 15580002
## 21 1.934914e+11  712869298    7166023359 16040913
## 22 2.007156e+11  729169466    7224256385 16300168
## 23 2.182621e+11  745826546   17546521582 16657080
## 24 2.121576e+11  762895156   -6104501236 17068610
## 25 2.325116e+11  780242084   20353909663 17346928
## 26 2.489860e+11  797878993   16474439200 17636909
## 27 2.790336e+11  815716125   30047590052 17837132
## 28 2.965897e+11  833729681   17556086804 18013556
## 29 2.960421e+11  852012673    -547617951 18282992
## 30 3.209790e+11  870452165   24936973475 18439492
## 31 2.701053e+11  888941756  -50873684541 18489591
## 32 2.882081e+11  907574049   18102728399 18632293
## 33 2.792956e+11  926351297   -8912421295 18777248
## 34 3.272756e+11  945261958   47979934547 18910661
## 35 3.602819e+11  964279129   33006326113 19017171
## 36 3.928969e+11  983281218   32614956561 19002089
## 37 4.158676e+11 1002335230   22970697388 19054012
## 38 4.213513e+11 1021434576    5483753632 19099346
## 39 4.588204e+11 1040500054   37469100113 19065478
## 40 4.683949e+11 1059633675    9574519918 19133621
## 41 4.854410e+11 1078970907   17046077283 19337232
## 42 5.149379e+11 1098313039   29496934336 19342132
## 43 6.076993e+11 1117415123   92761336562 19102084
## 44 7.091485e+11 1136264583  101449229380 18849460
## 45 8.203816e+11 1154638713  111233080695 18374130
## 46 9.402599e+11 1172373788  119878293284 17735075
## 47 1.216736e+12 1189691809  276476550048 17318021
## 48 1.198895e+12 1206734806  -17841299828 17042997
## 49 1.341888e+12 1223640160  142992877970 16905354
## 50 1.675616e+12 1240613620  333727502505 16973460
## 51 1.823052e+12 1257621191  147436310411 17007571
## 52 1.827638e+12 1274487215    4585760886 16866024
## 53 1.856722e+12 1291132063   29083916894 16644848
## 54 2.039126e+12 1307246509  182404971547 16114446
## 55 2.103588e+12 1322866505   64461880838 15619996
## 56 2.294797e+12 1338636340  191208525616 15769835
## 57 2.651474e+12 1354195680  356677377053 15559340
## 58 2.702930e+12 1369003306   51455378972 14807626
## 59 2.835606e+12 1383112050  132676614909 14108744
## 60 2.671595e+12 1396387127 -164010850629 13275077
## 61 3.150307e+12 1407563842  478711433155 11176715
## 62 3.416646e+12 1417173173  266338986911  9609331
## 
## $call
## ardlDlm.default(formula = formula2, data = data.frame(data), 
##     p = (max.p - 1), q = (p[[vars[1]]] - 1), remove = removeP)
## 
## attr(,"class")
## [1] "ardlDlm" "dLagM"  
## 
## $model$modelFull
## $model
## 
## Time series regression with "ts" data:
## Start = 4, End = 62
## 
## Call:
## dynlm(formula = as.formula(model.text), data = data)
## 
## Coefficients:
## (Intercept)       gsyh.1      nufus.1     dnufus.t     dnufus.1     dnufus.2  
##   5.490e+10   -1.677e-01    1.030e+03   -3.245e+04    6.052e+04   -7.750e+04  
##     dgsyh.1      dgsyh.2      dgsyh.3  
##  -2.103e-01   -2.414e-01   -3.510e-01  
## 
## 
## $order
## [1] 2 3
## 
## $removed
## $removed$p
## $removed$p$gsyh
## [1] 0 2
## 
## $removed$p$nufus
## [1] 0 2
## 
## 
## $removed$q
## NULL
## 
## 
## $formula
## dgsyh ~ gsyh + nufus + dnufus
## <environment: 0x000001fe760deeb0>
## 
## $data
## Time Series:
## Start = 1 
## End = 62 
## Frequency = 1 
##            gsyh      nufus         dgsyh   dnufus
##  1 3.923244e+10  456351876    2202551908 10397297
##  2 4.216148e+10  467024193    2929046074 10672317
##  3 4.842192e+10  477933619    6260441601 10909426
##  4 5.648029e+10  489059309    8058366482 11125690
##  5 5.955485e+10  500114346    3074564635 11055037
##  6 4.586546e+10  510992617  -13689392542 10878271
##  7 5.013494e+10  521987069    4269480170 10994452
##  8 5.308546e+10  533431909    2950513667 11444840
##  9 5.844800e+10  545314670    5362539147 11882761
## 10 6.242248e+10  557501301    3974488037 12186631
## 11 6.735140e+10  569999178    4928921297 12497877
## 12 7.146319e+10  582837973    4111789479 12838795
## 13 8.551527e+10  596107483   14052075754 13269510
## 14 9.952590e+10  609721951   14010629531 13614468
## 15 9.847280e+10  623524219   -1053102659 13802268
## 16 1.027172e+11  637451448    4244368010 13927229
## 17 1.214866e+11  651685628   18769476975 14234180
## 18 1.373003e+11  666267760   15813653872 14582132
## 19 1.529917e+11  681248383   15691358480 14980623
## 20 1.863253e+11  696828385   33333691293 15580002
## 21 1.934914e+11  712869298    7166023359 16040913
## 22 2.007156e+11  729169466    7224256385 16300168
## 23 2.182621e+11  745826546   17546521582 16657080
## 24 2.121576e+11  762895156   -6104501236 17068610
## 25 2.325116e+11  780242084   20353909663 17346928
## 26 2.489860e+11  797878993   16474439200 17636909
## 27 2.790336e+11  815716125   30047590052 17837132
## 28 2.965897e+11  833729681   17556086804 18013556
## 29 2.960421e+11  852012673    -547617951 18282992
## 30 3.209790e+11  870452165   24936973475 18439492
## 31 2.701053e+11  888941756  -50873684541 18489591
## 32 2.882081e+11  907574049   18102728399 18632293
## 33 2.792956e+11  926351297   -8912421295 18777248
## 34 3.272756e+11  945261958   47979934547 18910661
## 35 3.602819e+11  964279129   33006326113 19017171
## 36 3.928969e+11  983281218   32614956561 19002089
## 37 4.158676e+11 1002335230   22970697388 19054012
## 38 4.213513e+11 1021434576    5483753632 19099346
## 39 4.588204e+11 1040500054   37469100113 19065478
## 40 4.683949e+11 1059633675    9574519918 19133621
## 41 4.854410e+11 1078970907   17046077283 19337232
## 42 5.149379e+11 1098313039   29496934336 19342132
## 43 6.076993e+11 1117415123   92761336562 19102084
## 44 7.091485e+11 1136264583  101449229380 18849460
## 45 8.203816e+11 1154638713  111233080695 18374130
## 46 9.402599e+11 1172373788  119878293284 17735075
## 47 1.216736e+12 1189691809  276476550048 17318021
## 48 1.198895e+12 1206734806  -17841299828 17042997
## 49 1.341888e+12 1223640160  142992877970 16905354
## 50 1.675616e+12 1240613620  333727502505 16973460
## 51 1.823052e+12 1257621191  147436310411 17007571
## 52 1.827638e+12 1274487215    4585760886 16866024
## 53 1.856722e+12 1291132063   29083916894 16644848
## 54 2.039126e+12 1307246509  182404971547 16114446
## 55 2.103588e+12 1322866505   64461880838 15619996
## 56 2.294797e+12 1338636340  191208525616 15769835
## 57 2.651474e+12 1354195680  356677377053 15559340
## 58 2.702930e+12 1369003306   51455378972 14807626
## 59 2.835606e+12 1383112050  132676614909 14108744
## 60 2.671595e+12 1396387127 -164010850629 13275077
## 61 3.150307e+12 1407563842  478711433155 11176715
## 62 3.416646e+12 1417173173  266338986911  9609331
## 
## $call
## ardlDlm.default(formula = formula1, data = data.frame(data), 
##     p = (max.p - 1), q = (p[[vars[1]]] - 1), remove = removeP2)
## 
## attr(,"class")
## [1] "ardlDlm" "dLagM"  
## 
## 
## $F.stat
## [1] 7.324204
## 
## $p
##   gsyh nufus
## 1    4     3
## 
## $k
## [1] 1
## 
## $bg
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  modelFull$model
## LM test = 0.0093592, df1 = 1, df2 = 49, p-value = 0.9233
## 
## 
## $lb
## 
##  Box-Ljung test
## 
## data:  res
## X-squared = 0.0010806, df = 1, p-value = 0.9738
## 
## 
## $bp
## 
##  studentized Breusch-Pagan test
## 
## data:  modelFull$model
## BP = 32.084, df = 8, p-value = 8.995e-05
## 
## 
## $sp
## 
##  Shapiro-Wilk normality test
## 
## data:  modelFull$model$residual
## W = 0.89261, p-value = 8.154e-05
## 
## 
## $ECM
## $ECM$EC.t
##  [1] -2.763388e+12 -2.826001e+12 -2.886740e+12 -2.947008e+12 -3.011827e+12
##  [6] -3.092323e+12 -3.155575e+12 -3.222911e+12 -3.290525e+12 -3.361393e+12
## [11] -3.433218e+12 -3.507954e+12 -3.575394e+12 -3.644995e+12 -3.730813e+12
## [16] -3.812101e+12 -3.880748e+12 -3.954489e+12 -4.030799e+12 -4.093147e+12
## [21] -4.184494e+12 -4.277375e+12 -4.362126e+12 -4.473055e+12 -4.559235e+12
## [26] -4.651075e+12 -4.730571e+12 -4.823643e+12 -4.936473e+12 -5.024780e+12
## [31] -5.189204e+12 -5.285529e+12 -5.409760e+12 -5.477917e+12 -5.561702e+12
## [36] -5.645785e+12 -5.739832e+12 -5.851644e+12 -5.931263e+12 -6.039195e+12
## [41] -6.140906e+12 -6.230196e+12 -6.254747e+12 -6.269059e+12 -6.270668e+12
## [46] -6.259708e+12 -6.089587e+12 -6.212096e+12 -6.172925e+12 -5.943437e+12
## [51] -5.900450e+12 -5.999445e+12 -6.072583e+12 -5.989143e+12 -6.020609e+12
## [56] -5.926248e+12 -5.665127e+12 -5.704610e+12 -5.658580e+12 -5.904118e+12
## [61] -5.494047e+12 -5.286722e+12
## 
## $ECM$EC.model
## 
## Time series regression with "ts" data:
## Start = 4, End = 62
## 
## Call:
## dynlm(formula = as.formula(model.text), data = data)
## 
## Coefficients:
## (Intercept)         ec.1     dnufus.t     dnufus.1     dnufus.2      dgsyh.1  
##   5.490e+10   -1.677e-01   -3.245e+04    6.052e+04   -7.750e+04   -2.103e-01  
##     dgsyh.2      dgsyh.3  
##  -2.414e-01   -3.510e-01  
## 
## 
## $ECM$EC.beta
##       ec.1 
## -0.1677445 
## 
## $ECM$EC.data
##            gsyh      nufus         dgsyh   dnufus            ec
## 2  3.923244e+10  456351876    2202551908 10397297 -2.763388e+12
## 3  4.216148e+10  467024193    2929046074 10672317 -2.826001e+12
## 4  4.842192e+10  477933619    6260441601 10909426 -2.886740e+12
## 5  5.648029e+10  489059309    8058366482 11125690 -2.947008e+12
## 6  5.955485e+10  500114346    3074564635 11055037 -3.011827e+12
## 7  4.586546e+10  510992617  -13689392542 10878271 -3.092323e+12
## 8  5.013494e+10  521987069    4269480170 10994452 -3.155575e+12
## 9  5.308546e+10  533431909    2950513667 11444840 -3.222911e+12
## 10 5.844800e+10  545314670    5362539147 11882761 -3.290525e+12
## 11 6.242248e+10  557501301    3974488037 12186631 -3.361393e+12
## 12 6.735140e+10  569999178    4928921297 12497877 -3.433218e+12
## 13 7.146319e+10  582837973    4111789479 12838795 -3.507954e+12
## 14 8.551527e+10  596107483   14052075754 13269510 -3.575394e+12
## 15 9.952590e+10  609721951   14010629531 13614468 -3.644995e+12
## 16 9.847280e+10  623524219   -1053102659 13802268 -3.730813e+12
## 17 1.027172e+11  637451448    4244368010 13927229 -3.812101e+12
## 18 1.214866e+11  651685628   18769476975 14234180 -3.880748e+12
## 19 1.373003e+11  666267760   15813653872 14582132 -3.954489e+12
## 20 1.529917e+11  681248383   15691358480 14980623 -4.030799e+12
## 21 1.863253e+11  696828385   33333691293 15580002 -4.093147e+12
## 22 1.934914e+11  712869298    7166023359 16040913 -4.184494e+12
## 23 2.007156e+11  729169466    7224256385 16300168 -4.277375e+12
## 24 2.182621e+11  745826546   17546521582 16657080 -4.362126e+12
## 25 2.121576e+11  762895156   -6104501236 17068610 -4.473055e+12
## 26 2.325116e+11  780242084   20353909663 17346928 -4.559235e+12
## 27 2.489860e+11  797878993   16474439200 17636909 -4.651075e+12
## 28 2.790336e+11  815716125   30047590052 17837132 -4.730571e+12
## 29 2.965897e+11  833729681   17556086804 18013556 -4.823643e+12
## 30 2.960421e+11  852012673    -547617951 18282992 -4.936473e+12
## 31 3.209790e+11  870452165   24936973475 18439492 -5.024780e+12
## 32 2.701053e+11  888941756  -50873684541 18489591 -5.189204e+12
## 33 2.882081e+11  907574049   18102728399 18632293 -5.285529e+12
## 34 2.792956e+11  926351297   -8912421295 18777248 -5.409760e+12
## 35 3.272756e+11  945261958   47979934547 18910661 -5.477917e+12
## 36 3.602819e+11  964279129   33006326113 19017171 -5.561702e+12
## 37 3.928969e+11  983281218   32614956561 19002089 -5.645785e+12
## 38 4.158676e+11 1002335230   22970697388 19054012 -5.739832e+12
## 39 4.213513e+11 1021434576    5483753632 19099346 -5.851644e+12
## 40 4.588204e+11 1040500054   37469100113 19065478 -5.931263e+12
## 41 4.683949e+11 1059633675    9574519918 19133621 -6.039195e+12
## 42 4.854410e+11 1078970907   17046077283 19337232 -6.140906e+12
## 43 5.149379e+11 1098313039   29496934336 19342132 -6.230196e+12
## 44 6.076993e+11 1117415123   92761336562 19102084 -6.254747e+12
## 45 7.091485e+11 1136264583  101449229380 18849460 -6.269059e+12
## 46 8.203816e+11 1154638713  111233080695 18374130 -6.270668e+12
## 47 9.402599e+11 1172373788  119878293284 17735075 -6.259708e+12
## 48 1.216736e+12 1189691809  276476550048 17318021 -6.089587e+12
## 49 1.198895e+12 1206734806  -17841299828 17042997 -6.212096e+12
## 50 1.341888e+12 1223640160  142992877970 16905354 -6.172925e+12
## 51 1.675616e+12 1240613620  333727502505 16973460 -5.943437e+12
## 52 1.823052e+12 1257621191  147436310411 17007571 -5.900450e+12
## 53 1.827638e+12 1274487215    4585760886 16866024 -5.999445e+12
## 54 1.856722e+12 1291132063   29083916894 16644848 -6.072583e+12
## 55 2.039126e+12 1307246509  182404971547 16114446 -5.989143e+12
## 56 2.103588e+12 1322866505   64461880838 15619996 -6.020609e+12
## 57 2.294797e+12 1338636340  191208525616 15769835 -5.926248e+12
## 58 2.651474e+12 1354195680  356677377053 15559340 -5.665127e+12
## 59 2.702930e+12 1369003306   51455378972 14807626 -5.704610e+12
## 60 2.835606e+12 1383112050  132676614909 14108744 -5.658580e+12
## 61 2.671595e+12 1396387127 -164010850629 13275077 -5.904118e+12
## 62 3.150307e+12 1407563842  478711433155 11176715 -5.494047e+12
## 63 3.416646e+12 1417173173  266338986911  9609331 -5.286722e+12
## 
## 
## $ARDL.model
## 
## Time series regression with "ts" data:
## Start = 4, End = 62
## 
## Call:
## dynlm(formula = as.formula(model.text), data = data)
## 
## Coefficients:
## (Intercept)       gsyh.1      nufus.1     dnufus.t     dnufus.1     dnufus.2  
##   5.490e+10   -1.677e-01    1.030e+03   -3.245e+04    6.052e+04   -7.750e+04  
##     dgsyh.1      dgsyh.2      dgsyh.3  
##  -2.103e-01   -2.414e-01   -3.510e-01