Goal is to automate building and tuning a classification model to predict employee attrition, using the h2o::h2o.automl.

Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## Warning: package 'h2o' was built under R version 4.2.3
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## Warning: package 'tidymodels' was built under R version 4.2.3
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.0
## ✔ dials        1.2.0     ✔ tune         1.1.2
## ✔ infer        1.0.6     ✔ workflows    1.1.3
## ✔ modeldata    1.3.0     ✔ workflowsets 1.0.1
## ✔ parsnip      1.1.1     ✔ yardstick    1.3.0
## ✔ recipes      1.0.9
## Warning: package 'broom' was built under R version 4.2.3
## Warning: package 'dials' was built under R version 4.2.3
## Warning: package 'infer' was built under R version 4.2.3
## Warning: package 'modeldata' was built under R version 4.2.3
## Warning: package 'parsnip' was built under R version 4.2.3
## Warning: package 'recipes' was built under R version 4.2.3
## Warning: package 'rsample' was built under R version 4.2.3
## Warning: package 'tune' was built under R version 4.2.3
## Warning: package 'workflows' was built under R version 4.2.3
## Warning: package 'workflowsets' was built under R version 4.2.3
## Warning: package 'yardstick' was built under R version 4.2.3
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Dig deeper into tidy modeling with R at https://www.tmwr.org
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## 
## Attaching package: 'TTR'
## 
## The following object is masked from 'package:dials':
## 
##     momentum
## 
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl  (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl  (6): hired, success, solo, oxygen_used, died, injured
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Split data

set.seed(1234)

data_split <- initial_split(members, strata = "died")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(died ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize h2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 minutes 18 seconds 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    4 months and 5 days 
##     H2O cluster name:           H2O_started_from_R_aesim_zyd177 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.84 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.2.2 (2022-10-31 ucrt)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (4 months and 5 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2567)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o  <- as.h2o(test_tbl)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
y <- "died"
x <- setdiff(names(train_tbl), y)

auto_ml_models_h2o <- h2o.automl(
    x = x, 
    y = y, 
    training_frame    = train_h2o, 
    validation_frame  = valid_h2o, 
    leaderboard_frame = test_h2o, 
    max_runtime_secs  = 30, 
    nfolds            = 5, 
    seed              = 3456)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |====                                                                  |   5%
## 19:47:17.855: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 19:47:17.863: AutoML: XGBoost is not available; skipping it.
## 19:47:17.874: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |==================                                                    |  26%
## 19:47:25.916: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |======================================                                |  55%
  |                                                                            
  |=============================================                         |  64%
## 19:47:36.444: _train param, Dropping unused columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |==============================================================        |  89%
## 19:47:43.629: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
## 19:47:44.595: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
## 19:47:45.680: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |===================================================================== |  98%
## 19:47:46.549: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
## 19:47:47.255: _train param, Dropping unused columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |======================================================================| 100%
auto_ml_models_h2o@leaderboard
##                                                  model_id       auc     logloss
## 1 StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717 0.9948424 0.021773852
## 2                          GBM_1_AutoML_2_20240425_194717 0.9948087 0.002921935
## 3 StackedEnsemble_BestOfFamily_1_AutoML_2_20240425_194717 0.9947989 0.003008795
## 4                          DRF_1_AutoML_2_20240425_194717 0.9946281 0.004457692
## 5                          GBM_3_AutoML_2_20240425_194717 0.9918184 0.013381651
## 6                          GBM_2_AutoML_2_20240425_194717 0.9896567 0.011187667
##       aucpr mean_per_class_error       rmse          mse
## 1 0.9858480          0.016666667 0.06556630 0.0042989393
## 2 0.9856255          0.009312282 0.02091913 0.0004376100
## 3 0.9856224          0.009312282 0.02104494 0.0004428894
## 4 0.9833868          0.016666667 0.02696857 0.0007273040
## 5 0.9790450          0.016666667 0.02458285 0.0006043165
## 6 0.9822232          0.016666667 0.02336205 0.0005457855
## 
## [8 rows x 7 columns]
auto_ml_models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              2/3
## 3      # GBM base models (used / total)              1/1
## 4      # DRF base models (used / total)              1/1
## 5      # GLM base models (used / total)              0/1
## 6                 Metalearner algorithm              GLM
## 7    Metalearner fold assignment scheme           Random
## 8                    Metalearner nfolds                5
## 9               Metalearner fold_column               NA
## 10   Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.00407101
## RMSE:  0.06380447
## LogLoss:  0.02131811
## Mean Per-Class Error:  0.01868477
## AUC:  0.9992293
## AUCPR:  0.987983
## Gini:  0.9984587
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   9759    1 0.000102  =1/9760
## TRUE       6  155 0.037267   =6/161
## Totals  9765  156 0.000706  =7/9921
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.025260    0.977918 111
## 2                       max f2  0.021330    0.971357 114
## 3                 max f0point5  0.042401    0.988296 108
## 4                 max accuracy  0.025260    0.999294 111
## 5                max precision  0.723764    1.000000   0
## 6                   max recall  0.006293    1.000000 206
## 7              max specificity  0.723764    1.000000   0
## 8             max absolute_mcc  0.025260    0.977685 111
## 9   max min_per_class_accuracy  0.012572    0.987578 133
## 10 max mean_per_class_accuracy  0.012572    0.991688 133
## 11                     max tns  0.723764 9760.000000   0
## 12                     max fns  0.723764  160.000000   0
## 13                     max fps  0.005408 9760.000000 399
## 14                     max tps  0.006293  161.000000 206
## 15                     max tnr  0.723764    1.000000   0
## 16                     max fnr  0.723764    0.993789   0
## 17                     max fpr  0.005408    1.000000 399
## 18                     max tpr  0.006293    1.000000 206
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.003973735
## RMSE:  0.06303757
## LogLoss:  0.02098925
## Mean Per-Class Error:  0.0141844
## AUC:  0.9941931
## AUCPR:  0.9797678
## Gini:  0.9883863
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   8536    0 0.000000  =0/8536
## TRUE       4  137 0.028369   =4/141
## Totals  8540  137 0.000461  =4/8677
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.037257    0.985612 101
## 2                       max f2  0.037257    0.977175 101
## 3                 max f0point5  0.037257    0.994194 101
## 4                 max accuracy  0.037257    0.999539 101
## 5                max precision  0.724954    1.000000   0
## 6                   max recall  0.005802    1.000000 307
## 7              max specificity  0.724954    1.000000   0
## 8             max absolute_mcc  0.037257    0.985483 101
## 9   max min_per_class_accuracy  0.012572    0.978723 123
## 10 max mean_per_class_accuracy  0.012572    0.987312 123
## 11                     max tns  0.724954 8536.000000   0
## 12                     max fns  0.724954  140.000000   0
## 13                     max fps  0.005405 8536.000000 399
## 14                     max tps  0.005802  141.000000 307
## 15                     max tnr  0.724954    1.000000   0
## 16                     max fnr  0.724954    0.992908   0
## 17                     max fpr  0.005405    1.000000 399
## 18                     max tpr  0.005802    1.000000 307
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.002666812
## RMSE:  0.05164119
## LogLoss:  0.01968123
## Mean Per-Class Error:  0.05755396
## AUC:  0.9870595
## AUCPR:  0.9328614
## Gini:  0.974119
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error       Rate
## FALSE  48017    0 0.000000   =0/48017
## TRUE      80  615 0.115108    =80/695
## Totals 48097  615 0.001642  =80/48712
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.303636     0.938931  80
## 2                       max f2  0.303636     0.905744  80
## 3                 max f0point5  0.303636     0.974643  80
## 4                 max accuracy  0.303636     0.998358  80
## 5                max precision  0.996247     1.000000   0
## 6                   max recall  0.005847     1.000000 399
## 7              max specificity  0.996247     1.000000   0
## 8             max absolute_mcc  0.303636     0.939904  80
## 9   max min_per_class_accuracy  0.022833     0.969386 227
## 10 max mean_per_class_accuracy  0.030719     0.973936 193
## 11                     max tns  0.996247 48017.000000   0
## 12                     max fns  0.996247   691.000000   0
## 13                     max fps  0.005847 48017.000000 399
## 14                     max tps  0.005847   695.000000 399
## 15                     max tnr  0.996247     1.000000   0
## 16                     max fnr  0.996247     0.994245   0
## 17                     max fpr  0.005847     1.000000 399
## 18                     max tpr  0.005847     1.000000 399
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##               mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy  0.999486 0.000128   0.999386   0.999483   0.999695   0.999380
## auc       0.988085 0.003713   0.984202   0.991024   0.991949   0.989099
## err       0.000514 0.000128   0.000614   0.000517   0.000305   0.000620
## err_count 5.000000 1.224745   6.000000   5.000000   3.000000   6.000000
## f0point5  0.992533 0.001967   0.990566   0.991525   0.995671   0.991848
##           cv_5_valid
## accuracy    0.999487
## auc         0.984153
## err         0.000513
## err_count   5.000000
## f0point5    0.993056
## 
## ---
##                         mean       sd cv_1_valid cv_2_valid cv_3_valid
## precision           1.000000 0.000000   1.000000   1.000000   1.000000
## r2                  0.693159 0.020661   0.673253   0.672139   0.692413
## recall              0.963806 0.009325   0.954545   0.959016   0.978723
## residual_deviance 441.750460 9.672743 450.239170 426.167880 445.265870
## rmse                0.065536 0.000992   0.065995   0.063879   0.065915
## specificity         1.000000 0.000000   1.000000   1.000000   1.000000
##                   cv_4_valid cv_5_valid
## precision           1.000000   1.000000
## r2                  0.714485   0.713506
## recall              0.960526   0.966216
## residual_deviance 448.045930 439.033500
## rmse                0.066446   0.065443
## specificity         1.000000   1.000000
best_model <- auto_ml_models_h2o@leader

best_model
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              2/3
## 3      # GBM base models (used / total)              1/1
## 4      # DRF base models (used / total)              1/1
## 5      # GLM base models (used / total)              0/1
## 6                 Metalearner algorithm              GLM
## 7    Metalearner fold assignment scheme           Random
## 8                    Metalearner nfolds                5
## 9               Metalearner fold_column               NA
## 10   Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.00407101
## RMSE:  0.06380447
## LogLoss:  0.02131811
## Mean Per-Class Error:  0.01868477
## AUC:  0.9992293
## AUCPR:  0.987983
## Gini:  0.9984587
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   9759    1 0.000102  =1/9760
## TRUE       6  155 0.037267   =6/161
## Totals  9765  156 0.000706  =7/9921
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.025260    0.977918 111
## 2                       max f2  0.021330    0.971357 114
## 3                 max f0point5  0.042401    0.988296 108
## 4                 max accuracy  0.025260    0.999294 111
## 5                max precision  0.723764    1.000000   0
## 6                   max recall  0.006293    1.000000 206
## 7              max specificity  0.723764    1.000000   0
## 8             max absolute_mcc  0.025260    0.977685 111
## 9   max min_per_class_accuracy  0.012572    0.987578 133
## 10 max mean_per_class_accuracy  0.012572    0.991688 133
## 11                     max tns  0.723764 9760.000000   0
## 12                     max fns  0.723764  160.000000   0
## 13                     max fps  0.005408 9760.000000 399
## 14                     max tps  0.006293  161.000000 206
## 15                     max tnr  0.723764    1.000000   0
## 16                     max fnr  0.723764    0.993789   0
## 17                     max fpr  0.005408    1.000000 399
## 18                     max tpr  0.006293    1.000000 206
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.003973735
## RMSE:  0.06303757
## LogLoss:  0.02098925
## Mean Per-Class Error:  0.0141844
## AUC:  0.9941931
## AUCPR:  0.9797678
## Gini:  0.9883863
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   8536    0 0.000000  =0/8536
## TRUE       4  137 0.028369   =4/141
## Totals  8540  137 0.000461  =4/8677
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.037257    0.985612 101
## 2                       max f2  0.037257    0.977175 101
## 3                 max f0point5  0.037257    0.994194 101
## 4                 max accuracy  0.037257    0.999539 101
## 5                max precision  0.724954    1.000000   0
## 6                   max recall  0.005802    1.000000 307
## 7              max specificity  0.724954    1.000000   0
## 8             max absolute_mcc  0.037257    0.985483 101
## 9   max min_per_class_accuracy  0.012572    0.978723 123
## 10 max mean_per_class_accuracy  0.012572    0.987312 123
## 11                     max tns  0.724954 8536.000000   0
## 12                     max fns  0.724954  140.000000   0
## 13                     max fps  0.005405 8536.000000 399
## 14                     max tps  0.005802  141.000000 307
## 15                     max tnr  0.724954    1.000000   0
## 16                     max fnr  0.724954    0.992908   0
## 17                     max fpr  0.005405    1.000000 399
## 18                     max tpr  0.005802    1.000000 307
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.002666812
## RMSE:  0.05164119
## LogLoss:  0.01968123
## Mean Per-Class Error:  0.05755396
## AUC:  0.9870595
## AUCPR:  0.9328614
## Gini:  0.974119
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error       Rate
## FALSE  48017    0 0.000000   =0/48017
## TRUE      80  615 0.115108    =80/695
## Totals 48097  615 0.001642  =80/48712
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.303636     0.938931  80
## 2                       max f2  0.303636     0.905744  80
## 3                 max f0point5  0.303636     0.974643  80
## 4                 max accuracy  0.303636     0.998358  80
## 5                max precision  0.996247     1.000000   0
## 6                   max recall  0.005847     1.000000 399
## 7              max specificity  0.996247     1.000000   0
## 8             max absolute_mcc  0.303636     0.939904  80
## 9   max min_per_class_accuracy  0.022833     0.969386 227
## 10 max mean_per_class_accuracy  0.030719     0.973936 193
## 11                     max tns  0.996247 48017.000000   0
## 12                     max fns  0.996247   691.000000   0
## 13                     max fps  0.005847 48017.000000 399
## 14                     max tps  0.005847   695.000000 399
## 15                     max tnr  0.996247     1.000000   0
## 16                     max fnr  0.996247     0.994245   0
## 17                     max fpr  0.005847     1.000000 399
## 18                     max tpr  0.005847     1.000000 399
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##               mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy  0.999486 0.000128   0.999386   0.999483   0.999695   0.999380
## auc       0.988085 0.003713   0.984202   0.991024   0.991949   0.989099
## err       0.000514 0.000128   0.000614   0.000517   0.000305   0.000620
## err_count 5.000000 1.224745   6.000000   5.000000   3.000000   6.000000
## f0point5  0.992533 0.001967   0.990566   0.991525   0.995671   0.991848
##           cv_5_valid
## accuracy    0.999487
## auc         0.984153
## err         0.000513
## err_count   5.000000
## f0point5    0.993056
## 
## ---
##                         mean       sd cv_1_valid cv_2_valid cv_3_valid
## precision           1.000000 0.000000   1.000000   1.000000   1.000000
## r2                  0.693159 0.020661   0.673253   0.672139   0.692413
## recall              0.963806 0.009325   0.954545   0.959016   0.978723
## residual_deviance 441.750460 9.672743 450.239170 426.167880 445.265870
## rmse                0.065536 0.000992   0.065995   0.063879   0.065915
## specificity         1.000000 0.000000   1.000000   1.000000   1.000000
##                   cv_4_valid cv_5_valid
## precision           1.000000   1.000000
## r2                  0.714485   0.713506
## recall              0.960526   0.966216
## residual_deviance 448.045930 439.033500
## rmse                0.066446   0.065443
## specificity         1.000000   1.000000

Examine the output of h2o.automl

auto_ml_models_h2o %>% typeof()
## [1] "S4"
auto_ml_models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
auto_ml_models_h2o@leaderboard
##                                                  model_id       auc     logloss
## 1 StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717 0.9948424 0.021773852
## 2                          GBM_1_AutoML_2_20240425_194717 0.9948087 0.002921935
## 3 StackedEnsemble_BestOfFamily_1_AutoML_2_20240425_194717 0.9947989 0.003008795
## 4                          DRF_1_AutoML_2_20240425_194717 0.9946281 0.004457692
## 5                          GBM_3_AutoML_2_20240425_194717 0.9918184 0.013381651
## 6                          GBM_2_AutoML_2_20240425_194717 0.9896567 0.011187667
##       aucpr mean_per_class_error       rmse          mse
## 1 0.9858480          0.016666667 0.06556630 0.0042989393
## 2 0.9856255          0.009312282 0.02091913 0.0004376100
## 3 0.9856224          0.009312282 0.02104494 0.0004428894
## 4 0.9833868          0.016666667 0.02696857 0.0007273040
## 5 0.9790450          0.016666667 0.02458285 0.0006043165
## 6 0.9822232          0.016666667 0.02336205 0.0005457855
## 
## [8 rows x 7 columns]
auto_ml_models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              2/3
## 3      # GBM base models (used / total)              1/1
## 4      # DRF base models (used / total)              1/1
## 5      # GLM base models (used / total)              0/1
## 6                 Metalearner algorithm              GLM
## 7    Metalearner fold assignment scheme           Random
## 8                    Metalearner nfolds                5
## 9               Metalearner fold_column               NA
## 10   Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.00407101
## RMSE:  0.06380447
## LogLoss:  0.02131811
## Mean Per-Class Error:  0.01868477
## AUC:  0.9992293
## AUCPR:  0.987983
## Gini:  0.9984587
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   9759    1 0.000102  =1/9760
## TRUE       6  155 0.037267   =6/161
## Totals  9765  156 0.000706  =7/9921
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.025260    0.977918 111
## 2                       max f2  0.021330    0.971357 114
## 3                 max f0point5  0.042401    0.988296 108
## 4                 max accuracy  0.025260    0.999294 111
## 5                max precision  0.723764    1.000000   0
## 6                   max recall  0.006293    1.000000 206
## 7              max specificity  0.723764    1.000000   0
## 8             max absolute_mcc  0.025260    0.977685 111
## 9   max min_per_class_accuracy  0.012572    0.987578 133
## 10 max mean_per_class_accuracy  0.012572    0.991688 133
## 11                     max tns  0.723764 9760.000000   0
## 12                     max fns  0.723764  160.000000   0
## 13                     max fps  0.005408 9760.000000 399
## 14                     max tps  0.006293  161.000000 206
## 15                     max tnr  0.723764    1.000000   0
## 16                     max fnr  0.723764    0.993789   0
## 17                     max fpr  0.005408    1.000000 399
## 18                     max tpr  0.006293    1.000000 206
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.003973735
## RMSE:  0.06303757
## LogLoss:  0.02098925
## Mean Per-Class Error:  0.0141844
## AUC:  0.9941931
## AUCPR:  0.9797678
## Gini:  0.9883863
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   8536    0 0.000000  =0/8536
## TRUE       4  137 0.028369   =4/141
## Totals  8540  137 0.000461  =4/8677
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.037257    0.985612 101
## 2                       max f2  0.037257    0.977175 101
## 3                 max f0point5  0.037257    0.994194 101
## 4                 max accuracy  0.037257    0.999539 101
## 5                max precision  0.724954    1.000000   0
## 6                   max recall  0.005802    1.000000 307
## 7              max specificity  0.724954    1.000000   0
## 8             max absolute_mcc  0.037257    0.985483 101
## 9   max min_per_class_accuracy  0.012572    0.978723 123
## 10 max mean_per_class_accuracy  0.012572    0.987312 123
## 11                     max tns  0.724954 8536.000000   0
## 12                     max fns  0.724954  140.000000   0
## 13                     max fps  0.005405 8536.000000 399
## 14                     max tps  0.005802  141.000000 307
## 15                     max tnr  0.724954    1.000000   0
## 16                     max fnr  0.724954    0.992908   0
## 17                     max fpr  0.005405    1.000000 399
## 18                     max tpr  0.005802    1.000000 307
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.002666812
## RMSE:  0.05164119
## LogLoss:  0.01968123
## Mean Per-Class Error:  0.05755396
## AUC:  0.9870595
## AUCPR:  0.9328614
## Gini:  0.974119
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error       Rate
## FALSE  48017    0 0.000000   =0/48017
## TRUE      80  615 0.115108    =80/695
## Totals 48097  615 0.001642  =80/48712
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.303636     0.938931  80
## 2                       max f2  0.303636     0.905744  80
## 3                 max f0point5  0.303636     0.974643  80
## 4                 max accuracy  0.303636     0.998358  80
## 5                max precision  0.996247     1.000000   0
## 6                   max recall  0.005847     1.000000 399
## 7              max specificity  0.996247     1.000000   0
## 8             max absolute_mcc  0.303636     0.939904  80
## 9   max min_per_class_accuracy  0.022833     0.969386 227
## 10 max mean_per_class_accuracy  0.030719     0.973936 193
## 11                     max tns  0.996247 48017.000000   0
## 12                     max fns  0.996247   691.000000   0
## 13                     max fps  0.005847 48017.000000 399
## 14                     max tps  0.005847   695.000000 399
## 15                     max tnr  0.996247     1.000000   0
## 16                     max fnr  0.996247     0.994245   0
## 17                     max fpr  0.005847     1.000000 399
## 18                     max tpr  0.005847     1.000000 399
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##               mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy  0.999486 0.000128   0.999386   0.999483   0.999695   0.999380
## auc       0.988085 0.003713   0.984202   0.991024   0.991949   0.989099
## err       0.000514 0.000128   0.000614   0.000517   0.000305   0.000620
## err_count 5.000000 1.224745   6.000000   5.000000   3.000000   6.000000
## f0point5  0.992533 0.001967   0.990566   0.991525   0.995671   0.991848
##           cv_5_valid
## accuracy    0.999487
## auc         0.984153
## err         0.000513
## err_count   5.000000
## f0point5    0.993056
## 
## ---
##                         mean       sd cv_1_valid cv_2_valid cv_3_valid
## precision           1.000000 0.000000   1.000000   1.000000   1.000000
## r2                  0.693159 0.020661   0.673253   0.672139   0.692413
## recall              0.963806 0.009325   0.954545   0.959016   0.978723
## residual_deviance 441.750460 9.672743 450.239170 426.167880 445.265870
## rmse                0.065536 0.000992   0.065995   0.063879   0.065915
## specificity         1.000000 0.000000   1.000000   1.000000   1.000000
##                   cv_4_valid cv_5_valid
## precision           1.000000   1.000000
## r2                  0.714485   0.713506
## recall              0.960526   0.966216
## residual_deviance 448.045930 439.033500
## rmse                0.066446   0.065443
## specificity         1.000000   1.000000

Save and Load

# h2o.getModel("GBM_grid_1_AutoML_2_20240423_113107_model_1") %>% 
    # h2o.saveModel("h2o_models/")

Make predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
predictions_tbl <- predictions %>% 
    as_tibble()

predictions_tbl %>% 
    bind_cols(test_tbl)
## # A tibble: 19,130 × 24
##    predict FALSE.   TRUE. expedition_id member_id peak_id peak_name  year season
##    <fct>    <dbl>   <dbl> <chr>         <chr>     <chr>   <chr>     <dbl> <chr> 
##  1 FALSE    0.994 0.00585 AMAD78301     AMAD7830… AMAD    Ama Dabl…  1978 Autumn
##  2 FALSE    0.994 0.00583 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  3 FALSE    0.994 0.00592 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  4 FALSE    0.994 0.00598 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  5 FALSE    0.994 0.00594 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  6 FALSE    0.994 0.00580 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  7 FALSE    0.994 0.00581 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  8 FALSE    0.994 0.00581 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  9 FALSE    0.994 0.00592 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
## 10 FALSE    0.994 0.00581 AMAD79301     AMAD7930… AMAD    Ama Dabl…  1979 Autumn
## # ℹ 19,120 more rows
## # ℹ 15 more variables: sex <chr>, age <dbl>, citizenship <chr>,
## #   expedition_role <chr>, hired <lgl>, highpoint_metres <dbl>, success <lgl>,
## #   solo <lgl>, oxygen_used <lgl>, died <lgl>, death_cause <chr>,
## #   death_height_metres <dbl>, injured <lgl>, injury_type <chr>,
## #   injury_height_metres <dbl>

Evaluate model

performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o) 
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_2_AutoML_2_20240425_194717"
## 
## 
## $model_checksum
## [1] "3516566267451993616"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_9c64_3"
## 
## 
## $frame_checksum
## [1] "678340420273909232"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.714089e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.004298939
## 
## $RMSE
## [1] 0.0655663
## 
## $nobs
## [1] 19130
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.6910517
## 
## $logloss
## [1] 0.02177385
## 
## $AUC
## [1] 0.9948424
## 
## $pr_auc
## [1] 0.985848
## 
## $Gini
## [1] 0.9896848
## 
## $mean_per_class_error
## [1] 0.01666667
## 
## $domain
## [1] "FALSE" "TRUE" 
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        FALSE TRUE  Error         Rate
## FALSE  18860    0 0.0000 = 0 / 18,860
## TRUE       9  261 0.0333 =    9 / 270
## Totals 18869  261 0.0005 = 9 / 19,130
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.726341 0.007380 0.004625 0.018248 0.985938  1.000000 0.003704    1.000000
## 2  0.723408 0.014706 0.009242 0.035971 0.985991  1.000000 0.007407    1.000000
## 3  0.722831 0.021978 0.013850 0.053191 0.986043  1.000000 0.011111    1.000000
## 4  0.722788 0.029197 0.018450 0.069930 0.986095  1.000000 0.014815    1.000000
## 5  0.722702 0.036364 0.023041 0.086207 0.986147  1.000000 0.018519    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy   tns fns fps tps
## 1     0.060429               0.003704                0.501852 18860 269   0   1
## 2     0.085461               0.007407                0.503704 18860 268   0   2
## 3     0.104671               0.011111                0.505556 18860 267   0   3
## 4     0.120867               0.014815                0.507407 18860 266   0   4
## 5     0.135137               0.018519                0.509259 18860 265   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996296 0.000000 0.003704   0
## 2 1.000000 0.992593 0.000000 0.007407   1
## 3 1.000000 0.988889 0.000000 0.011111   2
## 4 1.000000 0.985185 0.000000 0.014815   3
## 5 1.000000 0.981481 0.000000 0.018519   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 395  0.005416 0.030037 0.071854 0.018987 0.088447  0.015247 1.000000
## 396  0.005414 0.029591 0.070833 0.018702 0.074281  0.015018 1.000000
## 397  0.005412 0.029074 0.069649 0.018372 0.057344  0.014752 1.000000
## 398  0.005411 0.028475 0.068271 0.017989 0.036905  0.014443 1.000000
## 399  0.005409 0.028075 0.067352 0.017734 0.022791  0.014238 1.000000
## 400  0.005408 0.027835 0.066799 0.017580 0.014114  0.014114 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy
## 395    0.075398     0.033906               0.075398                0.537699
## 396    0.061029     0.030274               0.061029                0.530514
## 397    0.043849     0.025433               0.043849                0.521925
## 398    0.023118     0.018273               0.023118                0.511559
## 399    0.008802     0.011194               0.008802                0.504401
## 400    0.000000     0.000000               0.000000                0.500000
##      tns fns   fps tps      tnr      fnr      fpr      tpr idx
## 395 1422   0 17438 270 0.075398 0.000000 0.924602 1.000000 394
## 396 1151   0 17709 270 0.061029 0.000000 0.938971 1.000000 395
## 397  827   0 18033 270 0.043849 0.000000 0.956151 1.000000 396
## 398  436   0 18424 270 0.023118 0.000000 0.976882 1.000000 397
## 399  166   0 18694 270 0.008802 0.000000 0.991198 1.000000 398
## 400    0   0 18860 270 0.000000 0.000000 1.000000 1.000000 399
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.037257     0.983051 132
## 2                       max f2  0.037257     0.973154 132
## 3                 max f0point5  0.037257     0.993151 132
## 4                 max accuracy  0.037257     0.999530 132
## 5                max precision  0.726341     1.000000   0
## 6                   max recall  0.005454     1.000000 377
## 7              max specificity  0.726341     1.000000   0
## 8             max absolute_mcc  0.037257     0.982958 132
## 9   max min_per_class_accuracy  0.012225     0.988889 174
## 10 max mean_per_class_accuracy  0.012225     0.990786 174
## 11                     max tns  0.726341 18860.000000   0
## 12                     max fns  0.726341   269.000000   0
## 13                     max fps  0.005408 18860.000000 399
## 14                     max tps  0.005454   270.000000 377
## 15                     max tnr  0.726341     1.000000   0
## 16                     max fnr  0.726341     0.996296   0
## 17                     max fpr  0.005408     1.000000 399
## 18                     max tpr  0.005454     1.000000 377
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate:  1.41 %, avg score:  1.35 %
##    group cumulative_data_fraction lower_threshold      lift cumulative_lift
## 1      1               0.01003659        0.715180 70.851852       70.851852
## 2      2               0.02070047        0.012227 26.048475       47.771324
## 3      3               0.03005750        0.011976  0.000000       32.899903
## 4      4               0.04004182        0.011850  0.000000       24.696403
## 5      5               0.05002614        0.011772  0.000000       19.767445
## 6      6               0.10026137        0.006223  0.000000        9.863110
## 7      7               0.15033978        0.006082  0.000000        6.577693
## 8      8               0.20000000        0.006068  0.000000        4.944444
## 9      9               0.30005227        0.005941  0.037018        3.308066
## 10    10               0.40000000        0.005866  0.000000        2.481481
## 11    11               0.50000000        0.005801  0.000000        1.985185
## 12    12               0.60000000        0.005599  0.037037        1.660494
## 13    13               0.70000000        0.005448  0.037037        1.428571
## 14    14               0.80000000        0.005434  0.000000        1.250000
## 15    15               0.90000000        0.005421  0.000000        1.111111
## 16    16               1.00000000        0.005404  0.000000        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.717382                 1.000000         0.717382
## 2       0.367647 0.047284                 0.674242         0.372180
## 3       0.000000 0.012108                 0.464348         0.260088
## 4       0.000000 0.011912                 0.348564         0.198206
## 5       0.000000 0.011806                 0.278997         0.161004
## 6       0.000000 0.007288                 0.139208         0.083986
## 7       0.000000 0.006141                 0.092837         0.058055
## 8       0.000000 0.006074                 0.069786         0.045148
## 9       0.000522 0.005985                 0.046690         0.032089
## 10      0.000000 0.005889                 0.035024         0.025543
## 11      0.000000 0.005830                 0.028019         0.021600
## 12      0.000523 0.005694                 0.023436         0.018949
## 13      0.000523 0.005499                 0.020163         0.017028
## 14      0.000000 0.005439                 0.017642         0.015579
## 15      0.000000 0.005430                 0.015682         0.014451
## 16      0.000000 0.005413                 0.014114         0.013548
##    capture_rate cumulative_capture_rate        gain cumulative_gain
## 1      0.711111                0.711111 6985.185185     6985.185185
## 2      0.277778                0.988889 2504.847495     4677.132435
## 3      0.000000                0.988889 -100.000000     3189.990338
## 4      0.000000                0.988889 -100.000000     2369.640267
## 5      0.000000                0.988889 -100.000000     1876.744456
## 6      0.000000                0.988889 -100.000000      886.310972
## 7      0.000000                0.988889 -100.000000      557.769278
## 8      0.000000                0.988889 -100.000000      394.444444
## 9      0.003704                0.992593  -96.298231      230.806556
## 10     0.000000                0.992593 -100.000000      148.148148
## 11     0.000000                0.992593 -100.000000       98.518519
## 12     0.003704                0.996296  -96.296296       66.049383
## 13     0.003704                1.000000  -96.296296       42.857143
## 14     0.000000                1.000000 -100.000000       25.000000
## 15     0.000000                1.000000 -100.000000       11.111111
## 16     0.000000                1.000000 -100.000000        0.000000
##    kolmogorov_smirnov
## 1            0.711111
## 2            0.982049
## 3            0.972558
## 4            0.962431
## 5            0.952304
## 6            0.901349
## 7            0.850554
## 8            0.800183
## 9            0.702455
## 10           0.601076
## 11           0.499645
## 12           0.401970
## 13           0.304295
## 14           0.202863
## 15           0.101432
## 16           0.000000
## 
## $residual_deviance
## [1] 833.0676
## 
## $null_deviance
## [1] 2836.923
## 
## $AIC
## [1] 839.0676
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 19129
## 
## $residual_degrees_of_freedom
## [1] 19127
h2o.auc(performance_h2o)
## [1] 0.9948424
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.037257435626137:
##        FALSE TRUE    Error      Rate
## FALSE  18860    0 0.000000  =0/18860
## TRUE       9  261 0.033333    =9/270
## Totals 18869  261 0.000470  =9/19130
h2o.metric(performance_h2o) %>% as_tibble() %>% filter(threshold %>% between (0.41, 0.42))
## # A tibble: 0 × 20
## # ℹ 20 variables: threshold <dbl>, f1 <dbl>, f2 <dbl>, f0point5 <dbl>,
## #   accuracy <dbl>, precision <dbl>, recall <dbl>, specificity <dbl>,
## #   absolute_mcc <dbl>, min_per_class_accuracy <dbl>,
## #   mean_per_class_accuracy <dbl>, tns <dbl>, fns <dbl>, fps <dbl>, tps <dbl>,
## #   tnr <dbl>, fnr <dbl>, fpr <dbl>, tpr <dbl>, idx <int>