Your task this week is to: prepare your own descriptive analysis for the “CreditCard” dataset (AER package). It is a cross-sectional dataframe on the credit history for a sample of applicants for a type of credit card.

Are the yearly incomes (in USD 10,000), credit card expenditures, age, ratio of monthly credit card expenditure to yearly income - significantly different for applicants for customers with different credit risk (“card” variable - factor)?

Prepare a professional data visualizations, descriptive statistics’ tables and interpret them.

Summary:

selected_data <- CreditCard %>%
  select(card, income, expenditure, age) %>%
  mutate(expenditure_income_ratio = expenditure / (income * 10000 / 12))

(stats_by_rooms <- stby(data      = selected_data, INDICES   = selected_data$card, FUN       = descr, stats     = "common", transpose = TRUE))
## Non-numerical variable(s) ignored: card
## Descriptive Statistics  
## selected_data  
## Group: card = no  
## N: 296  
## 
##                                   Mean   Std.Dev    Min   Median     Max   N.Valid   Pct.Valid
## ------------------------------ ------- --------- ------ -------- ------- --------- -----------
##                            age   33.20      9.92   0.75    31.83   80.17    296.00      100.00
##                    expenditure    0.00      0.00   0.00     0.00    0.00    296.00      100.00
##       expenditure_income_ratio    0.00      0.00   0.00     0.00    0.00    296.00      100.00
##                         income    3.07      1.62   0.49     2.59   11.00    296.00      100.00
## 
## Group: card = yes  
## N: 1023  
## 
##                                    Mean   Std.Dev    Min   Median       Max   N.Valid   Pct.Valid
## ------------------------------ -------- --------- ------ -------- --------- --------- -----------
##                            age    33.22     10.21   0.17    31.08     83.50   1023.00      100.00
##                    expenditure   238.60    287.71   0.00   150.18   3099.50   1023.00      100.00
##       expenditure_income_ratio     0.09      0.10   0.00     0.06      0.91   1023.00      100.00
##                         income     3.45      1.71   0.21     3.00     13.50   1023.00      100.00

Yearly incomes:

library(ggplot2)


ggplot(CreditCard, aes(x = card, y = income, fill = card)) +
  geom_boxplot() +
  labs(x = "Card Status", y = "Yearly Income (USD 10,000)",
       title = "Yearly Income by Card Status") +
  theme_minimal()

ggplot(CreditCard, aes(x = income, fill = card)) +
  geom_histogram(position = "dodge", bins = 30) +
  labs(title = "Income Distribution by Card Status:",
       x = "Yearly Income ($10,000)",
       y = "Frequency",
       fill = "Card Status")

Credit cardholders typically exhibit higher average incomes compared to individuals without credit cards.

Expenditures, and ratio:

Credit card expenditures, and ratio of monthly credit card expenditure to yearly income:

ggplot(CreditCard, aes(x = card, y = expenditure, fill = card)) +
  geom_boxplot() +
  labs(x = "Card Status", y = "Credit Card Expenditure",
       title = "Credit Card Expenditure by Card Status") +
  theme_minimal()

ggplot(CreditCard, aes(x = card, y = expenditure / (income * 10000 / 12), fill = card)) +
  geom_boxplot() +
  labs(x = "Card Status", y = "Ratio of Monthly Expenditure to Yearly Income",
       title = "Ratio of Monthly Expenditure to Yearly Income by Card Status") +
  theme_minimal()

ggplot(CreditCard, aes(x = expenditure / (income * 10000 / 12), fill = card)) +
  geom_histogram(position = "dodge", bins = 30) +
  labs(title = "Monthly Expenditure to Yearly Income Ratio by Card Status:",
       x = "Expenditure to Income Ratio",
       y = "Frequency",
       fill = "Card Status")

Expenditures of all people who did not get accepted, are equal to 0, so is the ratio of expenditures to income.

Age:

ggplot(CreditCard, aes(x = card, y = age, fill = card)) +
  geom_boxplot() +
  labs(x = "Card Status", y = "Age",
       title = "Age by Card Status") +
  theme_minimal()

ggplot(CreditCard, aes(x = age, fill = card)) +
  geom_histogram(position = "dodge", bins = 30) +
  labs(title = "Age Distribution by Card Status:",
       x = "Years",
       y = "Frequency",
       fill = "Card Status")

We found no significant difference in mean age between individuals with and without credit cards, suggesting age does not impact credit card ownership.

LS0tDQp0aXRsZTogIlJlcG9ydCAzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50OiANCiAgICB0aGVtZTogY2VydWxlYW4NCiAgICBoaWdobGlnaHQ6IHRleHRtYXRlDQogICAgZm9udHNpemU6IDhwdA0KICAgIHRvYzogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiBubw0KICAgIGRmX3ByaW50OiBkZWZhdWx0DQogICAgdG9jX2RlcHRoOiA1DQplZGl0b3Jfb3B0aW9uczogDQogIG1hcmtkb3duOiANCiAgICB3cmFwOiA3Mg0KZGF0ZTogIjIwMjQtMDQtMjUiDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9DQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpsaWJyYXJ5KEFFUikNCmxpYnJhcnkoc3VtbWFyeXRvb2xzKQ0KbGlicmFyeShkcGx5cikNCmRhdGEoQ3JlZGl0Q2FyZCkNCmBgYA0KDQpZb3VyIHRhc2sgdGhpcyB3ZWVrIGlzIHRvOiBwcmVwYXJlIHlvdXIgb3duIGRlc2NyaXB0aXZlIGFuYWx5c2lzIGZvciB0aGUg4oCcQ3JlZGl0Q2FyZOKAnSBkYXRhc2V0IChBRVIgcGFja2FnZSkuIEl0IGlzIGEgY3Jvc3Mtc2VjdGlvbmFsIGRhdGFmcmFtZSBvbiB0aGUgY3JlZGl0IGhpc3RvcnkgZm9yIGEgc2FtcGxlIG9mIGFwcGxpY2FudHMgZm9yIGEgdHlwZSBvZiBjcmVkaXQgY2FyZC4NCg0KQXJlIHRoZSB5ZWFybHkgaW5jb21lcyAoaW4gVVNEIDEwLDAwMCksIGNyZWRpdCBjYXJkIGV4cGVuZGl0dXJlcywgYWdlLCByYXRpbyBvZiBtb250aGx5IGNyZWRpdCBjYXJkIGV4cGVuZGl0dXJlIHRvIHllYXJseSBpbmNvbWUgLSBzaWduaWZpY2FudGx5IGRpZmZlcmVudCBmb3IgYXBwbGljYW50cyBmb3IgY3VzdG9tZXJzIHdpdGggZGlmZmVyZW50IGNyZWRpdCByaXNrICjigJxjYXJk4oCdIHZhcmlhYmxlIC0gZmFjdG9yKT8NCg0KUHJlcGFyZSBhIHByb2Zlc3Npb25hbCBkYXRhIHZpc3VhbGl6YXRpb25zLCBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNz4oCZIHRhYmxlcyBhbmQgaW50ZXJwcmV0IHRoZW0uDQoNCiMjIFN1bW1hcnk6DQpgYGB7cn0NCnNlbGVjdGVkX2RhdGEgPC0gQ3JlZGl0Q2FyZCAlPiUNCiAgc2VsZWN0KGNhcmQsIGluY29tZSwgZXhwZW5kaXR1cmUsIGFnZSkgJT4lDQogIG11dGF0ZShleHBlbmRpdHVyZV9pbmNvbWVfcmF0aW8gPSBleHBlbmRpdHVyZSAvIChpbmNvbWUgKiAxMDAwMCAvIDEyKSkNCg0KKHN0YXRzX2J5X3Jvb21zIDwtIHN0YnkoZGF0YSAgICAgID0gc2VsZWN0ZWRfZGF0YSwgSU5ESUNFUyAgID0gc2VsZWN0ZWRfZGF0YSRjYXJkLCBGVU4gICAgICAgPSBkZXNjciwgc3RhdHMgICAgID0gImNvbW1vbiIsIHRyYW5zcG9zZSA9IFRSVUUpKQ0KYGBgDQoNCg0KIyMgWWVhcmx5IGluY29tZXM6DQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCg0KDQpnZ3Bsb3QoQ3JlZGl0Q2FyZCwgYWVzKHggPSBjYXJkLCB5ID0gaW5jb21lLCBmaWxsID0gY2FyZCkpICsNCiAgZ2VvbV9ib3hwbG90KCkgKw0KICBsYWJzKHggPSAiQ2FyZCBTdGF0dXMiLCB5ID0gIlllYXJseSBJbmNvbWUgKFVTRCAxMCwwMDApIiwNCiAgICAgICB0aXRsZSA9ICJZZWFybHkgSW5jb21lIGJ5IENhcmQgU3RhdHVzIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KZ2dwbG90KENyZWRpdENhcmQsIGFlcyh4ID0gaW5jb21lLCBmaWxsID0gY2FyZCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0ocG9zaXRpb24gPSAiZG9kZ2UiLCBiaW5zID0gMzApICsNCiAgbGFicyh0aXRsZSA9ICJJbmNvbWUgRGlzdHJpYnV0aW9uIGJ5IENhcmQgU3RhdHVzOiIsDQogICAgICAgeCA9ICJZZWFybHkgSW5jb21lICgkMTAsMDAwKSIsDQogICAgICAgeSA9ICJGcmVxdWVuY3kiLA0KICAgICAgIGZpbGwgPSAiQ2FyZCBTdGF0dXMiKQ0KDQpgYGANCg0KDQpDcmVkaXQgY2FyZGhvbGRlcnMgdHlwaWNhbGx5IGV4aGliaXQgaGlnaGVyIGF2ZXJhZ2UgaW5jb21lcyBjb21wYXJlZCB0byBpbmRpdmlkdWFscyB3aXRob3V0IGNyZWRpdCBjYXJkcy4NCg0KIyMgRXhwZW5kaXR1cmVzLCBhbmQgcmF0aW86IA0KQ3JlZGl0IGNhcmQgZXhwZW5kaXR1cmVzLCBhbmQgcmF0aW8gb2YgbW9udGhseSBjcmVkaXQgY2FyZCBleHBlbmRpdHVyZSB0byB5ZWFybHkgaW5jb21lOg0KDQpgYGB7cn0NCmdncGxvdChDcmVkaXRDYXJkLCBhZXMoeCA9IGNhcmQsIHkgPSBleHBlbmRpdHVyZSwgZmlsbCA9IGNhcmQpKSArDQogIGdlb21fYm94cGxvdCgpICsNCiAgbGFicyh4ID0gIkNhcmQgU3RhdHVzIiwgeSA9ICJDcmVkaXQgQ2FyZCBFeHBlbmRpdHVyZSIsDQogICAgICAgdGl0bGUgPSAiQ3JlZGl0IENhcmQgRXhwZW5kaXR1cmUgYnkgQ2FyZCBTdGF0dXMiKSArDQogIHRoZW1lX21pbmltYWwoKQ0KDQoNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChDcmVkaXRDYXJkLCBhZXMoeCA9IGNhcmQsIHkgPSBleHBlbmRpdHVyZSAvIChpbmNvbWUgKiAxMDAwMCAvIDEyKSwgZmlsbCA9IGNhcmQpKSArDQogIGdlb21fYm94cGxvdCgpICsNCiAgbGFicyh4ID0gIkNhcmQgU3RhdHVzIiwgeSA9ICJSYXRpbyBvZiBNb250aGx5IEV4cGVuZGl0dXJlIHRvIFllYXJseSBJbmNvbWUiLA0KICAgICAgIHRpdGxlID0gIlJhdGlvIG9mIE1vbnRobHkgRXhwZW5kaXR1cmUgdG8gWWVhcmx5IEluY29tZSBieSBDYXJkIFN0YXR1cyIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCg0KZ2dwbG90KENyZWRpdENhcmQsIGFlcyh4ID0gZXhwZW5kaXR1cmUgLyAoaW5jb21lICogMTAwMDAgLyAxMiksIGZpbGwgPSBjYXJkKSkgKw0KICBnZW9tX2hpc3RvZ3JhbShwb3NpdGlvbiA9ICJkb2RnZSIsIGJpbnMgPSAzMCkgKw0KICBsYWJzKHRpdGxlID0gIk1vbnRobHkgRXhwZW5kaXR1cmUgdG8gWWVhcmx5IEluY29tZSBSYXRpbyBieSBDYXJkIFN0YXR1czoiLA0KICAgICAgIHggPSAiRXhwZW5kaXR1cmUgdG8gSW5jb21lIFJhdGlvIiwNCiAgICAgICB5ID0gIkZyZXF1ZW5jeSIsDQogICAgICAgZmlsbCA9ICJDYXJkIFN0YXR1cyIpDQpgYGANCg0KDQpFeHBlbmRpdHVyZXMgb2YgYWxsIHBlb3BsZSB3aG8gZGlkIG5vdCBnZXQgYWNjZXB0ZWQsIGFyZSBlcXVhbCB0byAwLCBzbyBpcyB0aGUgcmF0aW8gb2YgZXhwZW5kaXR1cmVzIHRvIGluY29tZS4NCg0KIyMgQWdlOg0KDQpgYGB7cn0NCmdncGxvdChDcmVkaXRDYXJkLCBhZXMoeCA9IGNhcmQsIHkgPSBhZ2UsIGZpbGwgPSBjYXJkKSkgKw0KICBnZW9tX2JveHBsb3QoKSArDQogIGxhYnMoeCA9ICJDYXJkIFN0YXR1cyIsIHkgPSAiQWdlIiwNCiAgICAgICB0aXRsZSA9ICJBZ2UgYnkgQ2FyZCBTdGF0dXMiKSArDQogIHRoZW1lX21pbmltYWwoKQ0KDQpnZ3Bsb3QoQ3JlZGl0Q2FyZCwgYWVzKHggPSBhZ2UsIGZpbGwgPSBjYXJkKSkgKw0KICBnZW9tX2hpc3RvZ3JhbShwb3NpdGlvbiA9ICJkb2RnZSIsIGJpbnMgPSAzMCkgKw0KICBsYWJzKHRpdGxlID0gIkFnZSBEaXN0cmlidXRpb24gYnkgQ2FyZCBTdGF0dXM6IiwNCiAgICAgICB4ID0gIlllYXJzIiwNCiAgICAgICB5ID0gIkZyZXF1ZW5jeSIsDQogICAgICAgZmlsbCA9ICJDYXJkIFN0YXR1cyIpDQpgYGANCg0KDQpXZSBmb3VuZCBubyBzaWduaWZpY2FudCBkaWZmZXJlbmNlIGluIG1lYW4gYWdlIGJldHdlZW4gaW5kaXZpZHVhbHMgd2l0aCBhbmQgd2l0aG91dCBjcmVkaXQgY2FyZHMsIHN1Z2dlc3RpbmcgYWdlIGRvZXMgbm90IGltcGFjdCBjcmVkaXQgY2FyZCBvd25lcnNoaXAuDQoNCg==