list.files()
## [1] "00_Slyc-Spimp-final-one2one-orthologs.xlsx"
## [2] "01_MappingRate-info-2024.xlsx"
## [3] "02_Pearson-correlation_vsd-20240324-update.xlsx"
## [4] "03_Normalized-FeatureCounts-averageScored.csv"
## [5] "03_Normalized-FeatureCounts.csv"
## [6] "04_Control.DEGs.csv"
## [7] "04_Control.DEGs_maryam.csv"
## [8] "04_S.lyco.DEGs.csv"
## [9] "04_S.lyco.DEGs_maryam.csv"
## [10] "04_S.pimp.DEGs.csv"
## [11] "04_S.pimp.DEGs_maryam.csv"
## [12] "04_Salt.DEGs.csv"
## [13] "04_Salt.DEGs_maryam.csv"
## [14] "05_Tomato-vsd_PCA_all-genes.csv"
## [15] "06_SpimpSlyco-TPM-clean-MaryamSorted.csv"
## [16] "06_SpimpSlyco-TPM-clean.csv"
## [17] "20240418_RNAseq_Analysis.html"
## [18] "20240418_RNAseq_Analysis.nb.html"
## [19] "20240418_RNAseq_Analysis.Rmd"
## [20] "202404both_neg_gene_list.csv"
## [21] "202404both_neg1000_list.csv"
## [22] "202404both_neg2000_list.csv"
## [23] "202404both_neg3000_list.csv"
## [24] "202404both_neg4000_list.csv"
## [25] "202404both_neg500_list.csv"
## [26] "202404both_pos_gene_list.csv"
## [27] "202404both_pos1000_list.csv"
## [28] "202404both_pos2000_list.csv"
## [29] "202404both_pos3000_list.csv"
## [30] "202404both_pos4000_list.csv"
## [31] "202404both_pos500_list.csv"
## [32] "Seq-summary-based-on-pimp-genome.xlsx"
## [33] "TomatoRNA-Seq-metaData.csv"
## [34] "TomatoRNA-Seq-metaData.xlsx"
lyco <- read.csv("04_S.lyco.DEGs_maryam.csv")
pimp <- read.csv("04_S.pimp.DEGs_maryam.csv")
lyco
pimp
max(pimp$log2FoldChange)
## [1] 37.58724
min(pimp$log2FoldChange)
## [1] -18.2937
pimp_pos <- subset(pimp, pimp$log2FoldChange > 0)
pimp_neg <- subset(pimp, pimp$log2FoldChange < 0)
length(unique(pimp_pos$Name))
## [1] 2261
length(unique(pimp_neg$Name))
## [1] 1531
lyco_pos <- subset(lyco, lyco$log2FoldChange > 0)
lyco_neg <- subset(lyco, lyco$log2FoldChange < 0)
length(unique(lyco_pos$Name))
## [1] 2307
length(unique(lyco_neg$Name))
## [1] 1725
both_pos <- unique(lyco_pos$Name) %in% unique(pimp_pos$Name)
length(which(both_pos, T))
## [1] 1467
both_neg <- unique(lyco_neg$Name) %in% unique(pimp_neg$Name)
both_neg
## [1] TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
## [13] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
## [25] TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
## [37] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
## [49] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
## [73] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
## [85] TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
## [97] TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
## [109] FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
## [121] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE
## [133] FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
## [145] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
## [157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [169] TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
## [181] FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
## [193] TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [205] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
## [217] FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [229] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
## [241] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
## [253] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [265] TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
## [277] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
## [289] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
## [301] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
## [325] TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
## [337] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
## [349] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
## [361] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
## [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [385] TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [397] FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
## [409] FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [421] FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
## [433] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## [445] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
## [457] FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [469] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [481] TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
## [493] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
## [505] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [517] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
## [529] TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
## [541] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [553] FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [565] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
## [577] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [589] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [601] FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
## [613] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
## [625] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE
## [637] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [649] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
## [661] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## [673] FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## [685] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
## [697] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
## [709] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [721] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
## [733] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
## [745] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
## [757] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
## [769] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [781] FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
## [793] FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
## [805] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
## [817] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
## [829] FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## [841] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [853] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [865] FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
## [877] TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
## [889] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
## [901] FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
## [913] TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
## [925] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
## [937] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [949] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
## [961] TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
## [973] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
## [985] FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
## [997] TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
## [1009] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1021] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
## [1033] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
## [1045] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
## [1057] FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
## [1069] TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## [1081] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
## [1093] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
## [1105] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1117] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [1129] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [1141] FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [1153] TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [1165] TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
## [1177] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [1189] TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
## [1201] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
## [1213] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE
## [1225] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
## [1237] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
## [1249] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [1261] FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [1273] TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
## [1285] TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
## [1297] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
## [1309] TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
## [1321] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
## [1333] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
## [1345] TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
## [1357] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
## [1369] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
## [1381] TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
## [1393] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [1405] TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
## [1417] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
## [1429] FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
## [1441] TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [1453] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [1465] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
## [1477] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
## [1489] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [1501] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## [1513] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
## [1525] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
## [1537] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
## [1549] FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
## [1561] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [1573] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
## [1585] TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
## [1597] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
## [1609] FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [1621] TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1633] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
## [1645] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
## [1657] FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1669] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
## [1681] TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
## [1693] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## [1705] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
## [1717] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
length(which(both_neg, T))
## [1] 1009
which_genes <- subset(lyco_pos, lyco_pos$Name %in% unique(pimp_pos$Name))
which_genes
length(unique(which_genes$Name))
## [1] 1467
which_genes2 <- subset(lyco_neg, lyco_neg$Name %in% unique(pimp_neg$Name))
which_genes2
write.csv(which_genes, "202404both_pos_gene_list.csv", row.names = FALSE)
write.csv(which_genes2, "202404both_neg_gene_list.csv", row.names = FALSE)
Let’s look at specific timepoints:
unique(pimp_pos$Sample)
## [1] "pimp_1000min" "pimp_3000min" "pimp_4000min" "pimp_2000min" "pimp_500min"
#for 500 min, separates positive genes
pimp500 <- subset(pimp_pos, pimp_pos$Sample == "pimp_500min")
dim(pimp500)
## [1] 949 9
lyco500 <- subset(lyco_pos, lyco_pos$Sample == "lyco_500min")
dim(lyco500)
## [1] 845 9
both_pos500 <- unique(pimp500$Name) %in% unique(lyco500$Name)
length(which(both_pos500, T))
## [1] 430
lyco_both_pos500 <- subset(lyco500, lyco500$Name %in% unique(pimp500$Name))
pimp_both_pos500 <- subset(pimp500, pimp500$Name %in% unique(lyco500$Name))
both_pos500 <- rbind(lyco_both_pos500, pimp_both_pos500)
dim(both_pos500)
## [1] 860 9
both_pos500
write.csv(both_pos500, "202404both_pos500_list.csv", row.names = FALSE)
#for 500 min, separates negative genes
pimp500 <- subset(pimp_neg, pimp_neg$Sample == "pimp_500min")
dim(pimp500)
## [1] 847 9
lyco500 <- subset(lyco_neg, lyco_neg$Sample == "lyco_500min")
dim(lyco500)
## [1] 1144 9
both_neg500 <- unique(pimp500$Name) %in% unique(lyco500$Name)
length(which(both_neg500, T))
## [1] 597
lyco_both_neg500 <- subset(lyco500, lyco500$Name %in% unique(pimp500$Name))
pimp_both_neg500 <- subset(pimp500, pimp500$Name %in% unique(lyco500$Name))
both_neg500 <- rbind(lyco_both_neg500, pimp_both_neg500)
dim(both_neg500)
## [1] 1194 9
both_neg500
write.csv(both_neg500, "202404both_neg500_list.csv", row.names = FALSE)
I have CSV files for both up and down common genes…now I need to generate / extract the unique gene list in each time point for up and down.
#for 1000 min, separates positive genes
pimp1000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_1000min")
dim(pimp1000)
## [1] 837 9
lyco1000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_1000min")
dim(lyco1000)
## [1] 754 9
both_pos1000 <- unique(pimp1000$Name) %in% unique(lyco1000$Name)
length(which(both_pos1000, T))
## [1] 393
lyco_both_pos1000 <- subset(lyco1000, lyco1000$Name %in% unique(pimp1000$Name))
pimp_both_pos1000 <- subset(pimp1000, pimp1000$Name %in% unique(lyco1000$Name))
both_pos1000 <- rbind(lyco_both_pos1000, pimp_both_pos1000)
dim(both_pos1000)
## [1] 786 9
both_pos1000
write.csv(both_pos1000, "202404both_pos1000_list.csv", row.names = FALSE)
#for 1000 min, separates negative genes
pimp1000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_1000min")
dim(pimp1000)
## [1] 689 9
lyco1000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_1000min")
dim(lyco1000)
## [1] 732 9
both_neg1000 <- unique(pimp1000$Name) %in% unique(lyco1000$Name)
length(which(both_neg1000, T))
## [1] 357
lyco_both_neg1000 <- subset(lyco1000, lyco1000$Name %in% unique(pimp1000$Name))
pimp_both_neg1000 <- subset(pimp1000, pimp1000$Name %in% unique(lyco1000$Name))
both_neg1000 <- rbind(lyco_both_neg1000, pimp_both_neg1000)
dim(both_neg1000)
## [1] 714 9
both_neg1000
write.csv(both_neg1000, "202404both_neg1000_list.csv", row.names = FALSE)
#for 2000 min, separates positive genes
pimp2000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_2000min")
dim(pimp2000)
## [1] 958 9
lyco2000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_2000min")
dim(lyco2000)
## [1] 1053 9
both_pos2000 <- unique(pimp2000$Name) %in% unique(lyco2000$Name)
length(which(both_pos2000, T))
## [1] 634
lyco_both_pos2000 <- subset(lyco2000, lyco2000$Name %in% unique(pimp2000$Name))
pimp_both_pos2000 <- subset(pimp2000, pimp2000$Name %in% unique(lyco2000$Name))
both_pos2000 <- rbind(lyco_both_pos2000, pimp_both_pos2000)
dim(both_pos2000)
## [1] 1268 9
both_pos2000
write.csv(both_pos2000, "202404both_pos2000_list.csv", row.names = FALSE)
#for 2000 min, separates negative genes
pimp2000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_2000min")
dim(pimp2000)
## [1] 426 9
lyco2000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_2000min")
dim(lyco2000)
## [1] 517 9
both_neg2000 <- unique(pimp2000$Name) %in% unique(lyco2000$Name)
length(which(both_neg2000, T))
## [1] 242
lyco_both_neg2000 <- subset(lyco2000, lyco2000$Name %in% unique(pimp2000$Name))
pimp_both_neg2000 <- subset(pimp2000, pimp2000$Name %in% unique(lyco2000$Name))
both_neg2000 <- rbind(lyco_both_neg2000, pimp_both_neg2000)
dim(both_neg2000)
## [1] 484 9
both_neg2000
write.csv(both_neg2000, "202404both_neg2000_list.csv", row.names = FALSE)
#for 3000 min, separates positive genes
pimp3000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_3000min")
dim(pimp3000)
## [1] 981 9
lyco3000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_3000min")
dim(lyco3000)
## [1] 1040 9
both_pos3000 <- unique(pimp3000$Name) %in% unique(lyco3000$Name)
length(which(both_pos3000, T))
## [1] 570
lyco_both_pos3000 <- subset(lyco3000, lyco3000$Name %in% unique(pimp3000$Name))
pimp_both_pos3000 <- subset(pimp3000, pimp3000$Name %in% unique(lyco3000$Name))
both_pos3000 <- rbind(lyco_both_pos3000, pimp_both_pos3000)
dim(both_pos3000)
## [1] 1140 9
both_pos3000
write.csv(both_pos3000, "202404both_pos3000_list.csv", row.names = FALSE)
#for 3000 min, separates negative genes
pimp3000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_3000min")
dim(pimp3000)
## [1] 371 9
lyco3000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_3000min")
dim(lyco3000)
## [1] 441 9
both_neg3000 <- unique(pimp3000$Name) %in% unique(lyco3000$Name)
length(which(both_neg3000, T))
## [1] 217
lyco_both_neg3000 <- subset(lyco3000, lyco3000$Name %in% unique(pimp3000$Name))
pimp_both_neg3000 <- subset(pimp3000, pimp3000$Name %in% unique(lyco3000$Name))
both_neg3000 <- rbind(lyco_both_neg3000, pimp_both_neg3000)
dim(both_neg3000)
## [1] 434 9
both_neg3000
write.csv(both_neg3000, "202404both_neg3000_list.csv", row.names = FALSE)
#for 4000 min, separates positive genes
pimp4000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_4000min")
dim(pimp4000)
## [1] 1056 9
lyco4000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_4000min")
dim(lyco4000)
## [1] 1436 9
both_pos4000 <- unique(pimp4000$Name) %in% unique(lyco4000$Name)
length(which(both_pos4000, T))
## [1] 687
lyco_both_pos4000 <- subset(lyco4000, lyco4000$Name %in% unique(pimp4000$Name))
pimp_both_pos4000 <- subset(pimp4000, pimp4000$Name %in% unique(lyco4000$Name))
both_pos4000 <- rbind(lyco_both_pos4000, pimp_both_pos4000)
dim(both_pos4000)
## [1] 1374 9
both_pos4000
write.csv(both_pos4000, "202404both_pos4000_list.csv", row.names = FALSE)
#for 4000 min, separates negative genes
pimp4000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_4000min")
dim(pimp4000)
## [1] 575 9
lyco4000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_4000min")
dim(lyco4000)
## [1] 582 9
both_neg4000 <- unique(pimp4000$Name) %in% unique(lyco4000$Name)
length(which(both_neg4000, T))
## [1] 253
lyco_both_neg4000 <- subset(lyco4000, lyco4000$Name %in% unique(pimp4000$Name))
pimp_both_neg4000 <- subset(pimp4000, pimp4000$Name %in% unique(lyco4000$Name))
both_neg4000 <- rbind(lyco_both_neg4000, pimp_both_neg4000)
dim(both_neg4000)
## [1] 506 9
both_neg4000
write.csv(both_neg4000, "202404both_neg4000_list.csv", row.names = FALSE)