list.files()
##  [1] "00_Slyc-Spimp-final-one2one-orthologs.xlsx"     
##  [2] "01_MappingRate-info-2024.xlsx"                  
##  [3] "02_Pearson-correlation_vsd-20240324-update.xlsx"
##  [4] "03_Normalized-FeatureCounts-averageScored.csv"  
##  [5] "03_Normalized-FeatureCounts.csv"                
##  [6] "04_Control.DEGs.csv"                            
##  [7] "04_Control.DEGs_maryam.csv"                     
##  [8] "04_S.lyco.DEGs.csv"                             
##  [9] "04_S.lyco.DEGs_maryam.csv"                      
## [10] "04_S.pimp.DEGs.csv"                             
## [11] "04_S.pimp.DEGs_maryam.csv"                      
## [12] "04_Salt.DEGs.csv"                               
## [13] "04_Salt.DEGs_maryam.csv"                        
## [14] "05_Tomato-vsd_PCA_all-genes.csv"                
## [15] "06_SpimpSlyco-TPM-clean-MaryamSorted.csv"       
## [16] "06_SpimpSlyco-TPM-clean.csv"                    
## [17] "20240418_RNAseq_Analysis.html"                  
## [18] "20240418_RNAseq_Analysis.nb.html"               
## [19] "20240418_RNAseq_Analysis.Rmd"                   
## [20] "202404both_neg_gene_list.csv"                   
## [21] "202404both_neg1000_list.csv"                    
## [22] "202404both_neg2000_list.csv"                    
## [23] "202404both_neg3000_list.csv"                    
## [24] "202404both_neg4000_list.csv"                    
## [25] "202404both_neg500_list.csv"                     
## [26] "202404both_pos_gene_list.csv"                   
## [27] "202404both_pos1000_list.csv"                    
## [28] "202404both_pos2000_list.csv"                    
## [29] "202404both_pos3000_list.csv"                    
## [30] "202404both_pos4000_list.csv"                    
## [31] "202404both_pos500_list.csv"                     
## [32] "Seq-summary-based-on-pimp-genome.xlsx"          
## [33] "TomatoRNA-Seq-metaData.csv"                     
## [34] "TomatoRNA-Seq-metaData.xlsx"
lyco <- read.csv("04_S.lyco.DEGs_maryam.csv")
pimp <- read.csv("04_S.pimp.DEGs_maryam.csv")

lyco
pimp
max(pimp$log2FoldChange)
## [1] 37.58724
min(pimp$log2FoldChange)
## [1] -18.2937
pimp_pos <- subset(pimp, pimp$log2FoldChange > 0)
pimp_neg <- subset(pimp, pimp$log2FoldChange < 0)

length(unique(pimp_pos$Name))
## [1] 2261
length(unique(pimp_neg$Name))
## [1] 1531
lyco_pos <- subset(lyco, lyco$log2FoldChange > 0)
lyco_neg <- subset(lyco, lyco$log2FoldChange < 0)

length(unique(lyco_pos$Name))
## [1] 2307
length(unique(lyco_neg$Name))
## [1] 1725
both_pos <- unique(lyco_pos$Name) %in% unique(pimp_pos$Name)
length(which(both_pos, T))
## [1] 1467
both_neg <- unique(lyco_neg$Name) %in% unique(pimp_neg$Name)
both_neg
##    [1]  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
##   [13]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
##   [25]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##   [37]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##   [49] FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
##   [73]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
##   [85]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
##   [97]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
##  [109] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
##  [121]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [133] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
##  [145] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [157]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [169]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
##  [181] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [193]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [205] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [217] FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [229] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [241]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
##  [253]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [265]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
##  [277]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
##  [289]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [301]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [325]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##  [337]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [349]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
##  [361]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [385]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [397] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [409] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [421] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
##  [433] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
##  [445] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [457] FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
##  [469] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [481]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##  [493] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [505] FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [517] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [529]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [541] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [553] FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [577] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [589] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [601] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [613]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
##  [625] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
##  [637]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [649]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
##  [661] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [673] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [685]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
##  [697]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [709] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [721] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
##  [733] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
##  [745] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
##  [757]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
##  [769]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [781] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
##  [793] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
##  [805]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [817]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [829] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [841]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
##  [853]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [865] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [877]  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
##  [889]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [901] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##  [913]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
##  [925]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
##  [937] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [949] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [961]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [973]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [985] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [997]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [1009]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1021]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1033] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [1045] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
## [1057] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1069]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [1081]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [1093]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1105] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1117]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
## [1129] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1141] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
## [1153]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [1165]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
## [1177] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1189]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1201]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [1213]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [1225]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
## [1237]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
## [1249]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1261] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1273]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [1285]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [1297]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [1309]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1321] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [1333] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1345]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [1357]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
## [1369] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1381]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1393] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1405]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [1417]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1429] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
## [1441]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [1453]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [1465]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [1477]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [1489]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [1501]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [1513]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [1525]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [1537]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [1549] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE
## [1561] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [1573]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1585]  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [1597] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [1609] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [1621]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1633]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
## [1645]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
## [1657] FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1669]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
## [1681]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
## [1693] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [1705]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1717]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
length(which(both_neg, T))
## [1] 1009
which_genes <- subset(lyco_pos, lyco_pos$Name %in% unique(pimp_pos$Name))
which_genes
length(unique(which_genes$Name))
## [1] 1467
which_genes2 <- subset(lyco_neg, lyco_neg$Name %in% unique(pimp_neg$Name))
which_genes2
write.csv(which_genes, "202404both_pos_gene_list.csv", row.names = FALSE)
write.csv(which_genes2, "202404both_neg_gene_list.csv", row.names = FALSE)

Let’s look at specific timepoints:

unique(pimp_pos$Sample)
## [1] "pimp_1000min" "pimp_3000min" "pimp_4000min" "pimp_2000min" "pimp_500min"
#for 500 min, separates positive genes
pimp500 <- subset(pimp_pos, pimp_pos$Sample == "pimp_500min")
dim(pimp500)
## [1] 949   9
lyco500 <- subset(lyco_pos, lyco_pos$Sample == "lyco_500min")
dim(lyco500)
## [1] 845   9
both_pos500 <- unique(pimp500$Name) %in% unique(lyco500$Name)
length(which(both_pos500, T))
## [1] 430
lyco_both_pos500 <- subset(lyco500, lyco500$Name %in% unique(pimp500$Name))
pimp_both_pos500 <- subset(pimp500, pimp500$Name %in% unique(lyco500$Name))
both_pos500 <- rbind(lyco_both_pos500, pimp_both_pos500)
dim(both_pos500)
## [1] 860   9
both_pos500
write.csv(both_pos500, "202404both_pos500_list.csv", row.names = FALSE)
#for 500 min, separates negative genes

pimp500 <- subset(pimp_neg, pimp_neg$Sample == "pimp_500min")
dim(pimp500)
## [1] 847   9
lyco500 <- subset(lyco_neg, lyco_neg$Sample == "lyco_500min")
dim(lyco500)
## [1] 1144    9
both_neg500 <- unique(pimp500$Name) %in% unique(lyco500$Name)
length(which(both_neg500, T))
## [1] 597
lyco_both_neg500 <- subset(lyco500, lyco500$Name %in% unique(pimp500$Name))
pimp_both_neg500 <- subset(pimp500, pimp500$Name %in% unique(lyco500$Name))
both_neg500 <- rbind(lyco_both_neg500, pimp_both_neg500)
dim(both_neg500)
## [1] 1194    9
both_neg500
write.csv(both_neg500, "202404both_neg500_list.csv", row.names = FALSE)

I have CSV files for both up and down common genes…now I need to generate / extract the unique gene list in each time point for up and down.

#for 1000 min, separates positive genes
pimp1000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_1000min")
dim(pimp1000)
## [1] 837   9
lyco1000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_1000min")
dim(lyco1000)
## [1] 754   9
both_pos1000 <- unique(pimp1000$Name) %in% unique(lyco1000$Name)
length(which(both_pos1000, T))
## [1] 393
lyco_both_pos1000 <- subset(lyco1000, lyco1000$Name %in% unique(pimp1000$Name))
pimp_both_pos1000 <- subset(pimp1000, pimp1000$Name %in% unique(lyco1000$Name))
both_pos1000 <- rbind(lyco_both_pos1000, pimp_both_pos1000)
dim(both_pos1000)
## [1] 786   9
both_pos1000
write.csv(both_pos1000, "202404both_pos1000_list.csv", row.names = FALSE)
#for 1000 min, separates negative genes
pimp1000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_1000min")
dim(pimp1000)
## [1] 689   9
lyco1000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_1000min")
dim(lyco1000)
## [1] 732   9
both_neg1000 <- unique(pimp1000$Name) %in% unique(lyco1000$Name)
length(which(both_neg1000, T))
## [1] 357
lyco_both_neg1000 <- subset(lyco1000, lyco1000$Name %in% unique(pimp1000$Name))
pimp_both_neg1000 <- subset(pimp1000, pimp1000$Name %in% unique(lyco1000$Name))
both_neg1000 <- rbind(lyco_both_neg1000, pimp_both_neg1000)
dim(both_neg1000)
## [1] 714   9
both_neg1000
write.csv(both_neg1000, "202404both_neg1000_list.csv", row.names = FALSE)
#for 2000 min, separates positive genes
pimp2000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_2000min")
dim(pimp2000)
## [1] 958   9
lyco2000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_2000min")
dim(lyco2000)
## [1] 1053    9
both_pos2000 <- unique(pimp2000$Name) %in% unique(lyco2000$Name)
length(which(both_pos2000, T))
## [1] 634
lyco_both_pos2000 <- subset(lyco2000, lyco2000$Name %in% unique(pimp2000$Name))
pimp_both_pos2000 <- subset(pimp2000, pimp2000$Name %in% unique(lyco2000$Name))
both_pos2000 <- rbind(lyco_both_pos2000, pimp_both_pos2000)
dim(both_pos2000)
## [1] 1268    9
both_pos2000
write.csv(both_pos2000, "202404both_pos2000_list.csv", row.names = FALSE)
#for 2000 min, separates negative genes
pimp2000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_2000min")
dim(pimp2000)
## [1] 426   9
lyco2000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_2000min")
dim(lyco2000)
## [1] 517   9
both_neg2000 <- unique(pimp2000$Name) %in% unique(lyco2000$Name)
length(which(both_neg2000, T))
## [1] 242
lyco_both_neg2000 <- subset(lyco2000, lyco2000$Name %in% unique(pimp2000$Name))
pimp_both_neg2000 <- subset(pimp2000, pimp2000$Name %in% unique(lyco2000$Name))
both_neg2000 <- rbind(lyco_both_neg2000, pimp_both_neg2000)
dim(both_neg2000)
## [1] 484   9
both_neg2000
write.csv(both_neg2000, "202404both_neg2000_list.csv", row.names = FALSE)
#for 3000 min, separates positive genes
pimp3000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_3000min")
dim(pimp3000)
## [1] 981   9
lyco3000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_3000min")
dim(lyco3000)
## [1] 1040    9
both_pos3000 <- unique(pimp3000$Name) %in% unique(lyco3000$Name)
length(which(both_pos3000, T))
## [1] 570
lyco_both_pos3000 <- subset(lyco3000, lyco3000$Name %in% unique(pimp3000$Name))
pimp_both_pos3000 <- subset(pimp3000, pimp3000$Name %in% unique(lyco3000$Name))
both_pos3000 <- rbind(lyco_both_pos3000, pimp_both_pos3000)
dim(both_pos3000)
## [1] 1140    9
both_pos3000
write.csv(both_pos3000, "202404both_pos3000_list.csv", row.names = FALSE)
#for 3000 min, separates negative genes
pimp3000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_3000min")
dim(pimp3000)
## [1] 371   9
lyco3000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_3000min")
dim(lyco3000)
## [1] 441   9
both_neg3000 <- unique(pimp3000$Name) %in% unique(lyco3000$Name)
length(which(both_neg3000, T))
## [1] 217
lyco_both_neg3000 <- subset(lyco3000, lyco3000$Name %in% unique(pimp3000$Name))
pimp_both_neg3000 <- subset(pimp3000, pimp3000$Name %in% unique(lyco3000$Name))
both_neg3000 <- rbind(lyco_both_neg3000, pimp_both_neg3000)
dim(both_neg3000)
## [1] 434   9
both_neg3000
write.csv(both_neg3000, "202404both_neg3000_list.csv", row.names = FALSE)
#for 4000 min, separates positive genes
pimp4000 <- subset(pimp_pos, pimp_pos$Sample == "pimp_4000min")
dim(pimp4000)
## [1] 1056    9
lyco4000 <- subset(lyco_pos, lyco_pos$Sample == "lyco_4000min")
dim(lyco4000)
## [1] 1436    9
both_pos4000 <- unique(pimp4000$Name) %in% unique(lyco4000$Name)
length(which(both_pos4000, T))
## [1] 687
lyco_both_pos4000 <- subset(lyco4000, lyco4000$Name %in% unique(pimp4000$Name))
pimp_both_pos4000 <- subset(pimp4000, pimp4000$Name %in% unique(lyco4000$Name))
both_pos4000 <- rbind(lyco_both_pos4000, pimp_both_pos4000)
dim(both_pos4000)
## [1] 1374    9
both_pos4000
write.csv(both_pos4000, "202404both_pos4000_list.csv", row.names = FALSE)
#for 4000 min, separates negative genes
pimp4000 <- subset(pimp_neg, pimp_neg$Sample == "pimp_4000min")
dim(pimp4000)
## [1] 575   9
lyco4000 <- subset(lyco_neg, lyco_neg$Sample == "lyco_4000min")
dim(lyco4000)
## [1] 582   9
both_neg4000 <- unique(pimp4000$Name) %in% unique(lyco4000$Name)
length(which(both_neg4000, T))
## [1] 253
lyco_both_neg4000 <- subset(lyco4000, lyco4000$Name %in% unique(pimp4000$Name))
pimp_both_neg4000 <- subset(pimp4000, pimp4000$Name %in% unique(lyco4000$Name))
both_neg4000 <- rbind(lyco_both_neg4000, pimp_both_neg4000)
dim(both_neg4000)
## [1] 506   9
both_neg4000
write.csv(both_neg4000, "202404both_neg4000_list.csv", row.names = FALSE)