# Carregar librarias
library(tidyverse)
library(grid)
library(Stat2Data)
library(magrittr)
library(broom)
library(gridExtra)
library(corrplot)
library(car)
library(nortest)
library(ellipse)
library(mvnormalTest)

O conjunto de dados a seguir consiste de 123 observações sobre as seguintes 8 variáveis:

Carregando os dados

data("BlueJays")
blue_jays_data<- BlueJays[,-9]
head(blue_jays_data)

## Boxplots para as aves fêmeas

female <- blue_jays_data[blue_jays_data$KnownSex == "F",]
female <- female[,-c(1,2)]
boxplot(female)

Densidades para as aves fêmeas

female <- blue_jays_data[blue_jays_data$KnownSex == "F",]
female <- female[,-c(1,2)]
nomes_female <- colnames(female)
par(mfrow=c(4,2))
for (i in 1:ncol(female)) {
  plot(density(female[,i]), main = paste("Densidade de",nomes_female[i]))
  polygon(density(female[,i]), col = "coral")
}

## Boxplots para as aves machos

male <- blue_jays_data[blue_jays_data$KnownSex == "M",]
male <- male[,-c(1,2)]
boxplot(male)

Densidades para as aves machos

male <- blue_jays_data[blue_jays_data$KnownSex == "M",]
male <- male[,-c(1,2)]
nomes_male <- colnames(male)
par(mfrow=c(4,2))
for (i in 1:ncol(male)) {
  plot(density(female[,i]), main = paste("Densidade de",nomes_male[i]))
  polygon(density(female[,i]), col = "purple")
}

Diagrama de dispersão

blue_jays_data_numeric <- blue_jays_data[c(-1,-2)]
pairs(blue_jays_data_numeric, 
      pch=21,
      bg = c("coral","purple")[as.factor(blue_jays_data$KnownSex)])

Gráfico de Correlação

corrplot(cor(blue_jays_data_numeric), method = "square" , order = "hclust", tl.col='black', tl.cex=.75) 

Testando a igualdade dos grupos

Nesta seção iremos realizar um teste de hipóteses para comparar se os dois grupos são iguais em relação ao seu vetor médios. A suposição de normalidade multivariada não parece ser satisfeita. Contudo, por razões didáticas faremos o teste sob essa suposição. Com efeito, iremos testar:

\[\begin{align}H_0:\boldsymbol{\mu}_1 = \boldsymbol{\mu}_2\\ H_1:\boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2\end{align},\] em que \(\boldsymbol{\mu}_1\) e \(\boldsymbol{\mu}_2\) são os vetores de medias de [BillDepth, BillWidth, BillLength, Mass,Skull] para as fêmeas e os machos, respectivamente.

X1 <- female
X2 <- male
#vetor de médias por sexo
X1_barra <- apply(X1,2,mean)
X2_barra <- apply(X2,2,mean)
# matrizes de covariâncias por sexo
S1 <- cov(X1)
S2 <- cov(X2)
# estimativa da matriz de covariâncias (estimador comum)
p  <- ncol(X1) 
n1 <- nrow(X1)
n2 <- nrow(X2)
W1 <- (n1-1)*S1
W2 <- (n2-1)*S2
# matriz de covariâncias pooled 
Spl <- (W1 + W2)/(n1+n2-2) 
invSpl <- solve(Spl)
# Estatística do teste T2 de Hotelling
t2calc <- ((n1*n2)/(n1+n2))*t(X1_barra - X2_barra)%*%invSpl%*%(X1_barra-X2_barra)
fcalc <- (n1+n2-1-p)/((n1+n2-2)*p)*t2calc
pvalor <- pf(fcalc,df1=p,df2 = n1+n2-p-1,lower.tail = FALSE)
resultados<-list(t2=as.numeric(t2calc),
     f=as.numeric(fcalc),
     pvalor=as.numeric(pvalor))
resultados
$t2
[1] 122.4434

$f
[1] 19.56395

$pvalor
[1] 1.137787e-15

Pelos resultados do teste, rejeitamos \(H_0\), portanto há diferença significativa entre as aves fêmeas e machos.

LS0tCnRpdGxlOiAiQW7DoWxpc2UgZG9zIGRhZG9zIG1vcmZvbMOzZ2ljb3MgZG9zICpCbHVlSmF5cyoiCmF1dGhvcjogSmFpbWUgVXRyaWEgLSBBbsOhbGlzZSBNdWx0aXZhcmlhZGEgZGUgRGFkb3MgKEdFVDAwMTI2KQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKZWRpdG9yX29wdGlvbnM6IAogIGNodW5rX291dHB1dF90eXBlOiBpbmxpbmUKLS0tCgpgYGB7ciBtZXNzYWdlPUZBTFNFfQojIENhcnJlZ2FyIGxpYnJhcmlhcwpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShncmlkKQpsaWJyYXJ5KFN0YXQyRGF0YSkKbGlicmFyeShtYWdyaXR0cikKbGlicmFyeShicm9vbSkKbGlicmFyeShncmlkRXh0cmEpCmxpYnJhcnkoY29ycnBsb3QpCmxpYnJhcnkoY2FyKQpsaWJyYXJ5KG5vcnRlc3QpCmxpYnJhcnkoZWxsaXBzZSkKbGlicmFyeShtdm5vcm1hbFRlc3QpCmBgYAoKTyBjb25qdW50byBkZSBkYWRvcyBhIHNlZ3VpciBjb25zaXN0ZSBkZSAxMjMgb2JzZXJ2YcOnw7VlcyBzb2JyZSBhcyBzZWd1aW50ZXMgOCB2YXJpw6F2ZWlzOiAKCiAtIGBCaXJkSURgOiByw7N0dWxvIHBhcmEgaWRlbnRpZmljYcOnw6NvIGRhIGF2ZQogLSBgS25vd1NleGA6IHNleG8gZGEgYXZlIGNvZGlmaWNhZG8gY29tbyBGIG91IE0KIC0gYEJpbGxEZXB0aGA6IEVzcGVzc3VyYSBkbyBiaWNvIG1lZGlkYSBuYSBuYXJpbmEgKGVtIG1tKQogLSBgQmlsbFdpZHRoYDogTGFyZ3VyYSBkbyBiaWNvIChlbSBtbSkKIC0gYEJpbGxMZW5ndGhgOiBDb21wcmltZW50byBkbyBiaWNvIChlbSBtbSkKIC0gYEhlYWRgOiBEaXN0w6JuY2lhIGRhIHBvbnRhIGRvIGJpY28gYXTDqSBhIHBhcnRlIGRlIHRyw6FzIGRhIGNhYmXDp2EgKGVtIG1tKQogLSBgTWFzc2A6IE1hc3NhIGNvcnBvcmFsIChlbSBncmFtYXMpCiAtIGBTa3VsbGA6IERpc3TDom5jaWEgZGEgYmFzZSBkbyBiaWNvIGF0w6kgYSBwYXJ0ZSBkZSB0csOhcyBkbyBjcsOibmlvIChlbSBtbSkKIAojIyBDYXJyZWdhbmRvIG9zIGRhZG9zCgpgYGB7cn0KZGF0YSgiQmx1ZUpheXMiKQpibHVlX2pheXNfZGF0YTwtIEJsdWVKYXlzWywtOV0KaGVhZChibHVlX2pheXNfZGF0YSkKYGBgCgoKCiMjwqBCb3hwbG90cyBwYXJhIGFzIGF2ZXMgZsOqbWVhcwoKYGBge3J9CmZlbWFsZSA8LSBibHVlX2pheXNfZGF0YVtibHVlX2pheXNfZGF0YSRLbm93blNleCA9PSAiRiIsXQpmZW1hbGUgPC0gZmVtYWxlWywtYygxLDIpXQpib3hwbG90KGZlbWFsZSkKYGBgCgojIyBEZW5zaWRhZGVzIHBhcmEgYXMgYXZlcyBmw6ptZWFzCgpgYGB7ciBmaWcud2lkdGggPSAxMH0KZmVtYWxlIDwtIGJsdWVfamF5c19kYXRhW2JsdWVfamF5c19kYXRhJEtub3duU2V4ID09ICJGIixdCmZlbWFsZSA8LSBmZW1hbGVbLC1jKDEsMildCm5vbWVzX2ZlbWFsZSA8LSBjb2xuYW1lcyhmZW1hbGUpCnBhcihtZnJvdz1jKDQsMikpCmZvciAoaSBpbiAxOm5jb2woZmVtYWxlKSkgewogIHBsb3QoZGVuc2l0eShmZW1hbGVbLGldKSwgbWFpbiA9IHBhc3RlKCJEZW5zaWRhZGUgZGUiLG5vbWVzX2ZlbWFsZVtpXSkpCiAgcG9seWdvbihkZW5zaXR5KGZlbWFsZVssaV0pLCBjb2wgPSAiY29yYWwiKQp9CmBgYAojI8KgQm94cGxvdHMgcGFyYSBhcyBhdmVzIG1hY2hvcwoKYGBge3J9Cm1hbGUgPC0gYmx1ZV9qYXlzX2RhdGFbYmx1ZV9qYXlzX2RhdGEkS25vd25TZXggPT0gIk0iLF0KbWFsZSA8LSBtYWxlWywtYygxLDIpXQpib3hwbG90KG1hbGUpCmBgYAoKIyMgRGVuc2lkYWRlcyBwYXJhIGFzIGF2ZXMgbWFjaG9zCgpgYGB7ciBmaWcud2lkdGggPSAxMH0KbWFsZSA8LSBibHVlX2pheXNfZGF0YVtibHVlX2pheXNfZGF0YSRLbm93blNleCA9PSAiTSIsXQptYWxlIDwtIG1hbGVbLC1jKDEsMildCm5vbWVzX21hbGUgPC0gY29sbmFtZXMobWFsZSkKcGFyKG1mcm93PWMoNCwyKSkKZm9yIChpIGluIDE6bmNvbChtYWxlKSkgewogIHBsb3QoZGVuc2l0eShmZW1hbGVbLGldKSwgbWFpbiA9IHBhc3RlKCJEZW5zaWRhZGUgZGUiLG5vbWVzX21hbGVbaV0pKQogIHBvbHlnb24oZGVuc2l0eShmZW1hbGVbLGldKSwgY29sID0gInB1cnBsZSIpCn0KYGBgCgojIyBEaWFncmFtYSBkZSBkaXNwZXJzw6NvCgpgYGB7ciBmaWcud2lkdGggPSAxMH0KYmx1ZV9qYXlzX2RhdGFfbnVtZXJpYyA8LSBibHVlX2pheXNfZGF0YVtjKC0xLC0yKV0KcGFpcnMoYmx1ZV9qYXlzX2RhdGFfbnVtZXJpYywgCiAgICAgIHBjaD0yMSwKICAgICAgYmcgPSBjKCJjb3JhbCIsInB1cnBsZSIpW2FzLmZhY3RvcihibHVlX2pheXNfZGF0YSRLbm93blNleCldKQpgYGAKCgojIyBHcsOhZmljbyBkZSBDb3JyZWxhw6fDo28KCmBgYHtyIGZpZy53aWR0aCA9IDEwfQpjb3JycGxvdChjb3IoYmx1ZV9qYXlzX2RhdGFfbnVtZXJpYyksIG1ldGhvZCA9ICJzcXVhcmUiICwgb3JkZXIgPSAiaGNsdXN0IiwgdGwuY29sPSdibGFjaycsIHRsLmNleD0uNzUpIApgYGAKCgoKIyMgVGVzdGFuZG8gYSBpZ3VhbGRhZGUgZG9zIGdydXBvcwoKTmVzdGEgc2XDp8OjbyBpcmVtb3MgcmVhbGl6YXIgdW0gdGVzdGUgZGUgaGlww7N0ZXNlcyBwYXJhIGNvbXBhcmFyIHNlIG9zIGRvaXMgZ3J1cG9zIHPDo28gKmlndWFpcyogZW0gcmVsYcOnw6NvIGFvIHNldSB2ZXRvciBtw6lkaW9zLiBBIHN1cG9zacOnw6NvIGRlIG5vcm1hbGlkYWRlIG11bHRpdmFyaWFkYSBuw6NvIHBhcmVjZSBzZXIgc2F0aXNmZWl0YS4gQ29udHVkbywgcG9yIHJhesO1ZXMgZGlkw6F0aWNhcyBmYXJlbW9zIG8gdGVzdGUgc29iIGVzc2Egc3Vwb3Npw6fDo28uIENvbSBlZmVpdG8sIGlyZW1vcyB0ZXN0YXI6CgokJFxiZWdpbnthbGlnbn1IXzA6XGJvbGRzeW1ib2x7XG11fV8xID0gXGJvbGRzeW1ib2x7XG11fV8yXFwKSF8xOlxib2xkc3ltYm9se1xtdX1fMSBcbmVxIFxib2xkc3ltYm9se1xtdX1fMlxlbmR7YWxpZ259LCQkCmVtIHF1ZSAkXGJvbGRzeW1ib2x7XG11fV8xJCBlICRcYm9sZHN5bWJvbHtcbXV9XzIkIHPDo28gb3MgdmV0b3JlcyBkZSBtZWRpYXMgZGUgW2BCaWxsRGVwdGhgLCBgQmlsbFdpZHRoYCwgYEJpbGxMZW5ndGhgLCBgTWFzc2AsYFNrdWxsYF0gcGFyYSBhcyBmw6ptZWFzIGUgb3MgbWFjaG9zLCByZXNwZWN0aXZhbWVudGUuIAoKYGBge3J9ClgxIDwtIGZlbWFsZQpYMiA8LSBtYWxlCiN2ZXRvciBkZSBtw6lkaWFzIHBvciBzZXhvClgxX2JhcnJhIDwtIGFwcGx5KFgxLDIsbWVhbikKWDJfYmFycmEgPC0gYXBwbHkoWDIsMixtZWFuKQojIG1hdHJpemVzIGRlIGNvdmFyacOibmNpYXMgcG9yIHNleG8KUzEgPC0gY292KFgxKQpTMiA8LSBjb3YoWDIpCiMgZXN0aW1hdGl2YSBkYSBtYXRyaXogZGUgY292YXJpw6JuY2lhcyAoZXN0aW1hZG9yIGNvbXVtKQpwICA8LSBuY29sKFgxKSAKbjEgPC0gbnJvdyhYMSkKbjIgPC0gbnJvdyhYMikKVzEgPC0gKG4xLTEpKlMxClcyIDwtIChuMi0xKSpTMgojIG1hdHJpeiBkZSBjb3ZhcmnDom5jaWFzIHBvb2xlZCAKU3BsIDwtIChXMSArIFcyKS8objErbjItMikgCmludlNwbCA8LSBzb2x2ZShTcGwpCiMgRXN0YXTDrXN0aWNhIGRvIHRlc3RlIFQyIGRlIEhvdGVsbGluZwp0MmNhbGMgPC0gKChuMSpuMikvKG4xK24yKSkqdChYMV9iYXJyYSAtIFgyX2JhcnJhKSUqJWludlNwbCUqJShYMV9iYXJyYS1YMl9iYXJyYSkKZmNhbGMgPC0gKG4xK24yLTEtcCkvKChuMStuMi0yKSpwKSp0MmNhbGMKcHZhbG9yIDwtIHBmKGZjYWxjLGRmMT1wLGRmMiA9IG4xK24yLXAtMSxsb3dlci50YWlsID0gRkFMU0UpCnJlc3VsdGFkb3M8LWxpc3QodDI9YXMubnVtZXJpYyh0MmNhbGMpLAogICAgIGY9YXMubnVtZXJpYyhmY2FsYyksCiAgICAgcHZhbG9yPWFzLm51bWVyaWMocHZhbG9yKSkKcmVzdWx0YWRvcwpgYGAKUGVsb3MgcmVzdWx0YWRvcyBkbyB0ZXN0ZSwgcmVqZWl0YW1vcyAkSF8wJCwgcG9ydGFudG8gaMOhIGRpZmVyZW7Dp2Egc2lnbmlmaWNhdGl2YSBlbnRyZSBhcyBhdmVzIGbDqm1lYXMgZSBtYWNob3MuIAo=