This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
#Q1 (a) Load data mtcars and generate descriptive statistics
library(psych)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom 1.0.5 ✔ rsample 1.2.1
## ✔ dials 1.2.1 ✔ tune 1.2.1
## ✔ infer 1.0.7 ✔ workflows 1.1.4
## ✔ modeldata 1.3.0 ✔ workflowsets 1.1.0
## ✔ parsnip 1.2.1 ✔ yardstick 1.3.1
## ✔ recipes 1.0.10
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ scales::alpha() masks ggplot2::alpha(), psych::alpha()
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Search for functions across packages at https://www.tidymodels.org/find/
library(vip)
##
## Attaching package: 'vip'
##
## The following object is masked from 'package:utils':
##
## vi
library(ISLR2)
library(faraway)
##
## Attaching package: 'faraway'
##
## The following object is masked from 'package:psych':
##
## logit
# load the data
data(mtcars)
# summary statistics
describe(mtcars)
## vars n mean sd median trimmed mad min max range skew
## mpg 1 32 20.09 6.03 19.20 19.70 5.41 10.40 33.90 23.50 0.61
## cyl 2 32 6.19 1.79 6.00 6.23 2.97 4.00 8.00 4.00 -0.17
## disp 3 32 230.72 123.94 196.30 222.52 140.48 71.10 472.00 400.90 0.38
## hp 4 32 146.69 68.56 123.00 141.19 77.10 52.00 335.00 283.00 0.73
## drat 5 32 3.60 0.53 3.70 3.58 0.70 2.76 4.93 2.17 0.27
## wt 6 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42 3.91 0.42
## qsec 7 32 17.85 1.79 17.71 17.83 1.42 14.50 22.90 8.40 0.37
## vs 8 32 0.44 0.50 0.00 0.42 0.00 0.00 1.00 1.00 0.24
## am 9 32 0.41 0.50 0.00 0.38 0.00 0.00 1.00 1.00 0.36
## gear 10 32 3.69 0.74 4.00 3.62 1.48 3.00 5.00 2.00 0.53
## carb 11 32 2.81 1.62 2.00 2.65 1.48 1.00 8.00 7.00 1.05
## kurtosis se
## mpg -0.37 1.07
## cyl -1.76 0.32
## disp -1.21 21.91
## hp -0.14 12.12
## drat -0.71 0.09
## wt -0.02 0.17
## qsec 0.34 0.32
## vs -2.00 0.09
## am -1.92 0.09
## gear -1.07 0.13
## carb 1.26 0.29
# (b) Visualization check for possible transformations
# create scatterplots of mpg vs. other predictors
pairs(mtcars, main = "Scatterplot Matrix of mtcars Variables")
# based on the plot, it appears that there might be a non-linear relationship between mpg and disp, and between mpg and hp.
# (c) Run multiple regression on mpg across all predictors
model_all <- lm(mpg ~ ., data = mtcars)
summary(model_all)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337 18.71788 0.657 0.5181
## cyl -0.11144 1.04502 -0.107 0.9161
## disp 0.01334 0.01786 0.747 0.4635
## hp -0.02148 0.02177 -0.987 0.3350
## drat 0.78711 1.63537 0.481 0.6353
## wt -3.71530 1.89441 -1.961 0.0633 .
## qsec 0.82104 0.73084 1.123 0.2739
## vs 0.31776 2.10451 0.151 0.8814
## am 2.52023 2.05665 1.225 0.2340
## gear 0.65541 1.49326 0.439 0.6652
## carb -0.19942 0.82875 -0.241 0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
# (d) Check for multicollinearity
vif(model_all)
## cyl disp hp drat wt qsec vs am
## 15.373833 21.620241 9.832037 3.374620 15.164887 7.527958 4.965873 4.648487
## gear carb
## 5.357452 7.908747
# the predictors "disp" and "cyl" have VIF values greater than 10, indicating high multicollinearity.
# (e) Rerun the multiple regression by excluding disp, and then by excluding disp and cyl
model_excl_disp <- lm(mpg ~ . - disp, data = mtcars)
summary(model_excl_disp)
##
## Call:
## lm(formula = mpg ~ . - disp, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7863 -1.4055 -0.2635 1.2029 4.4753
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.55052 18.52585 0.677 0.5052
## cyl 0.09627 0.99715 0.097 0.9240
## hp -0.01295 0.01834 -0.706 0.4876
## drat 0.92864 1.60794 0.578 0.5694
## wt -2.62694 1.19800 -2.193 0.0392 *
## qsec 0.66523 0.69335 0.959 0.3478
## vs 0.16035 2.07277 0.077 0.9390
## am 2.47882 2.03513 1.218 0.2361
## gear 0.74300 1.47360 0.504 0.6191
## carb -0.61686 0.60566 -1.018 0.3195
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.623 on 22 degrees of freedom
## Multiple R-squared: 0.8655, Adjusted R-squared: 0.8105
## F-statistic: 15.73 on 9 and 22 DF, p-value: 1.183e-07
model_excl_disp_cyl <- lm(mpg ~ . - disp - cyl, data = mtcars)
summary(model_excl_disp_cyl)
##
## Call:
## lm(formula = mpg ~ . - disp - cyl, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8187 -1.3903 -0.3045 1.2269 4.5183
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.80810 12.88582 1.072 0.2950
## hp -0.01225 0.01649 -0.743 0.4650
## drat 0.88894 1.52061 0.585 0.5645
## wt -2.60968 1.15878 -2.252 0.0342 *
## qsec 0.63983 0.62752 1.020 0.3185
## vs 0.08786 1.88992 0.046 0.9633
## am 2.42418 1.91227 1.268 0.2176
## gear 0.69390 1.35294 0.513 0.6129
## carb -0.61286 0.59109 -1.037 0.3106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.566 on 23 degrees of freedom
## Multiple R-squared: 0.8655, Adjusted R-squared: 0.8187
## F-statistic: 18.5 on 8 and 23 DF, p-value: 2.627e-08
#Q2
# load libraries
library(ISLR2)
# (a) fit multiple regression model to predict Sales using Price, Urban, and US
sales_model <- lm(Sales ~ Price + Urban + US, data = Carseats)
# summarize the model output
summary(sales_model)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
# (b) interpret the coefficients in the model
# - The intercept represents the expected sales when all other predictors are equal to 0.
# - For a one unit increase in Price, we expect a decrease of 0.0545 units in Sales, all else held constant.
# - The Urban predictor is a binary variable: if a store is located in an urban area, Urban = 1, otherwise Urban = 0. Therefore, the coefficient for Urban represents the difference in expected Sales between urban and non-urban stores, when all other predictors are equal.
# - The US predictor is also a binary variable: if a store is located in the US, US = 1, otherwise US = 0. Therefore, the coefficient for US represents the difference in expected Sales between US and non-US stores, when all other predictors are equal.
# (c) write out the model in equation form
# Sales = 13.04 - 0.0545 * Price + 0.1122 * UrbanYes + 1.2006 * USYes
# (d) test for significance of coefficients
# - The coefficient for Price is significant at the 0.001 level, indicating that there is evidence of a relationship between Price and Sales.
# - The coefficient for Urban is not significant at the 0.05 level, indicating that there is not strong evidence of a relationship between Urban and Sales.
# - The coefficient for US is significant at the 0.001 level, indicating that there is evidence of a relationship between US and Sales.
# (e) fit smaller model using only Price and US predictors
smaller_model <- lm(Sales ~ Price + US, data = Carseats)
# summarize the smaller model output
summary(smaller_model)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
# test for significance of coefficients in the smaller model
# - The coefficient for Price is significant at the 0.001 level, indicating that there is evidence of a relationship between Price and Sales.
# - The coefficient for US is significant at the 0.001 level, indicating that there is evidence of a relationship between US and Sales.
# (f) assess model fit for both models
# - The multiple regression model with all three predictors has an adjusted R-squared of 0.239, indicating that the model explains about 24% of the variability in Sales.
# - The smaller model with only Price and US predictors has an adjusted R-squared of 0.234, indicating that the model explains about 23% of the variability in Sales.
# - Both models have relatively low R-squared values, suggesting that there may be other factors that contribute to Sales that are not captured by these predictors.
# (g) obtain 95% confidence intervals for coefficients in smaller model
confint(smaller_model)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
# (h) check for outliers and high leverage observations in the smaller model
par(mfrow=c(2,2))
plot(smaller_model)
leverage <- hatvalues(smaller_model)
high_leverage <- which(leverage > 2 * mean(leverage))
high_leverage
## 43 126 156 157 160 166 172 175 192 204 209 270 273 314 316 357 366 368 384 387
## 43 126 156 157 160 166 172 175 192 204 209 270 273 314 316 357 366 368 384 387
#Q3
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Loading required package: TTR
##
## Attaching package: 'TTR'
##
## The following object is masked from 'package:dials':
##
## momentum
##
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(caret)
## Loading required package: lattice
##
## Attaching package: 'lattice'
##
## The following object is masked from 'package:faraway':
##
## melanoma
##
##
## Attaching package: 'caret'
##
## The following objects are masked from 'package:yardstick':
##
## precision, recall, sensitivity, specificity
##
## The following object is masked from 'package:purrr':
##
## lift
library(vip)
# Download S&P 500 data from Yahoo Finance
getSymbols("^GSPC", src = "yahoo", from = as.Date('2019-04-25'), to = as.Date('2023-04-25'))
## [1] "GSPC"
head(GSPC)
## GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted
## 2019-04-25 2928.99 2933.10 2912.84 2926.17 3440010000 2926.17
## 2019-04-26 2925.81 2939.88 2917.56 2939.88 3264390000 2939.88
## 2019-04-29 2940.58 2949.52 2939.35 2943.03 3150390000 2943.03
## 2019-04-30 2937.14 2948.22 2924.11 2945.83 3939760000 2945.83
## 2019-05-01 2952.33 2954.13 2923.36 2923.73 3669330000 2923.73
## 2019-05-02 2922.16 2931.68 2900.50 2917.52 3802290000 2917.52
d_ex1 <- as.data.frame(GSPC)
d_ex1 <- na.omit(d_ex1)
d_ex1$Direction <- NA # Create an empty Direction column first
for (i in 2:nrow(d_ex1)) {
if (Cl(d_ex1)[i] > Cl(d_ex1)[i - 1]) {
d_ex1$Direction[i] <- "Up"
} else {
d_ex1$Direction[i] <- "Down"
}
}
d_ex1 <- na.omit(d_ex1)
idx1 <- c(1:round(nrow(d_ex1) * 0.7))
d_train1 <- d_ex1[idx1, ]
d_test1 <- d_ex1[-idx1, ]
set.seed(999)
cntrl1 <- trainControl(method = "timeslice", initialWindow = 250, horizon = 30,
fixedWindow = TRUE)
prep1 <- c("center", "scale")
logit_ex1 <- train(Direction ~ ., data = d_train1, method = "glm", family = "binomial",
trControl = cntrl1, preProcess = prep1)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
logit_ex1
## Generalized Linear Model
##
## 704 samples
## 6 predictor
## 2 classes: 'Down', 'Up'
##
## Pre-processing: centered (6), scaled (6)
## Resampling: Rolling Forecasting Origin Resampling (30 held-out with a fixed window)
## Summary of sample sizes: 250, 250, 250, 250, 250, 250, ...
## Resampling results:
##
## Accuracy Kappa
## 0.8626667 0.7174923
summary(logit_ex1$finalModel)
##
## Call:
## NULL
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1789 0.1774 1.008 0.313
## GSPC.Open -125.1807 12.2416 -10.226 < 2e-16 ***
## GSPC.High 12.9307 10.1545 1.273 0.203
## GSPC.Low 32.2950 7.4115 4.357 1.32e-05 ***
## GSPC.Close 80.0818 9.2533 8.654 < 2e-16 ***
## GSPC.Volume 0.1649 0.1892 0.872 0.383
## GSPC.Adjusted NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 963.36 on 703 degrees of freedom
## Residual deviance: 413.56 on 698 degrees of freedom
## AIC: 425.56
##
## Number of Fisher Scoring iterations: 7
vip(logit_ex1, geom = "point") + theme_minimal()