Decision Trees

Author = Arvind Saini

We will use “Carseat” dataset from the package “ISLR” in R. Response Variable is ‘High’.

Dataset

cat("\014")

require(tree)
## Loading required package: tree
require(ISLR)
## Loading required package: ISLR
attach(Carseats)
hist(Sales)         #using this variable to make high and classify it accordingly

High = ifelse(Sales<=8,"NO","YES")
Carseats = data.frame(Carseats, High)
head(Carseats)
##   Sales CompPrice Income Advertising Population Price ShelveLoc Age
## 1  9.50       138     73          11        276   120       Bad  42
## 2 11.22       111     48          16        260    83      Good  65
## 3 10.06       113     35          10        269    80    Medium  59
## 4  7.40       117    100           4        466    97    Medium  55
## 5  4.15       141     64           3        340   128       Bad  38
## 6 10.81       124    113          13        501    72       Bad  78
##   Education Urban  US High
## 1        17   Yes Yes  YES
## 2        10   Yes Yes  YES
## 3        12   Yes Yes  YES
## 4        14   Yes Yes   NO
## 5        13   Yes  No   NO
## 6        16    No Yes  YES

Tree Formation

Exclude the sales from the tree formation as a criterion becoz it is used to classify.

tree.Carseats = tree(High~.-Sales,data=Carseats)       #making the tree 
summary(tree.Carseats)
## 
## Classification tree:
## tree(formula = High ~ . - Sales, data = Carseats)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Income"      "CompPrice"   "Population" 
## [6] "Advertising" "Age"         "US"         
## Number of terminal nodes:  27 
## Residual mean deviance:  0.4575 = 170.7 / 373 
## Misclassification error rate: 0.09 = 36 / 400
plot(tree.Carseats)
text(tree.Carseats,pretty=0,cex=0.6)

More details of tree

tree.Carseats
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 400 541.500 NO ( 0.59000 0.41000 )  
##     2) ShelveLoc: Bad,Medium 315 390.600 NO ( 0.68889 0.31111 )  
##       4) Price < 92.5 46  56.530 YES ( 0.30435 0.69565 )  
##         8) Income < 57 10  12.220 NO ( 0.70000 0.30000 )  
##          16) CompPrice < 110.5 5   0.000 NO ( 1.00000 0.00000 ) *
##          17) CompPrice > 110.5 5   6.730 YES ( 0.40000 0.60000 ) *
##         9) Income > 57 36  35.470 YES ( 0.19444 0.80556 )  
##          18) Population < 207.5 16  21.170 YES ( 0.37500 0.62500 ) *
##          19) Population > 207.5 20   7.941 YES ( 0.05000 0.95000 ) *
##       5) Price > 92.5 269 299.800 NO ( 0.75465 0.24535 )  
##        10) Advertising < 13.5 224 213.200 NO ( 0.81696 0.18304 )  
##          20) CompPrice < 124.5 96  44.890 NO ( 0.93750 0.06250 )  
##            40) Price < 106.5 38  33.150 NO ( 0.84211 0.15789 )  
##              80) Population < 177 12  16.300 NO ( 0.58333 0.41667 )  
##               160) Income < 60.5 6   0.000 NO ( 1.00000 0.00000 ) *
##               161) Income > 60.5 6   5.407 YES ( 0.16667 0.83333 ) *
##              81) Population > 177 26   8.477 NO ( 0.96154 0.03846 ) *
##            41) Price > 106.5 58   0.000 NO ( 1.00000 0.00000 ) *
##          21) CompPrice > 124.5 128 150.200 NO ( 0.72656 0.27344 )  
##            42) Price < 122.5 51  70.680 YES ( 0.49020 0.50980 )  
##              84) ShelveLoc: Bad 11   6.702 NO ( 0.90909 0.09091 ) *
##              85) ShelveLoc: Medium 40  52.930 YES ( 0.37500 0.62500 )  
##               170) Price < 109.5 16   7.481 YES ( 0.06250 0.93750 ) *
##               171) Price > 109.5 24  32.600 NO ( 0.58333 0.41667 )  
##                 342) Age < 49.5 13  16.050 YES ( 0.30769 0.69231 ) *
##                 343) Age > 49.5 11   6.702 NO ( 0.90909 0.09091 ) *
##            43) Price > 122.5 77  55.540 NO ( 0.88312 0.11688 )  
##              86) CompPrice < 147.5 58  17.400 NO ( 0.96552 0.03448 ) *
##              87) CompPrice > 147.5 19  25.010 NO ( 0.63158 0.36842 )  
##               174) Price < 147 12  16.300 YES ( 0.41667 0.58333 )  
##                 348) CompPrice < 152.5 7   5.742 YES ( 0.14286 0.85714 ) *
##                 349) CompPrice > 152.5 5   5.004 NO ( 0.80000 0.20000 ) *
##               175) Price > 147 7   0.000 NO ( 1.00000 0.00000 ) *
##        11) Advertising > 13.5 45  61.830 YES ( 0.44444 0.55556 )  
##          22) Age < 54.5 25  25.020 YES ( 0.20000 0.80000 )  
##            44) CompPrice < 130.5 14  18.250 YES ( 0.35714 0.64286 )  
##              88) Income < 100 9  12.370 NO ( 0.55556 0.44444 ) *
##              89) Income > 100 5   0.000 YES ( 0.00000 1.00000 ) *
##            45) CompPrice > 130.5 11   0.000 YES ( 0.00000 1.00000 ) *
##          23) Age > 54.5 20  22.490 NO ( 0.75000 0.25000 )  
##            46) CompPrice < 122.5 10   0.000 NO ( 1.00000 0.00000 ) *
##            47) CompPrice > 122.5 10  13.860 NO ( 0.50000 0.50000 )  
##              94) Price < 125 5   0.000 YES ( 0.00000 1.00000 ) *
##              95) Price > 125 5   0.000 NO ( 1.00000 0.00000 ) *
##     3) ShelveLoc: Good 85  90.330 YES ( 0.22353 0.77647 )  
##       6) Price < 135 68  49.260 YES ( 0.11765 0.88235 )  
##        12) US: No 17  22.070 YES ( 0.35294 0.64706 )  
##          24) Price < 109 8   0.000 YES ( 0.00000 1.00000 ) *
##          25) Price > 109 9  11.460 NO ( 0.66667 0.33333 ) *
##        13) US: Yes 51  16.880 YES ( 0.03922 0.96078 ) *
##       7) Price > 135 17  22.070 NO ( 0.64706 0.35294 )  
##        14) Income < 46 6   0.000 NO ( 1.00000 0.00000 ) *
##        15) Income > 46 11  15.160 YES ( 0.45455 0.54545 ) *

Testing the model

We are now dividing the 400 data sample into two parts 1. Training-250 2. Test-150.

set.seed(10)
train=sample(1:nrow(Carseats),250)
tree.Carseats=tree(High~.-Sales,Carseats,subset=train)  #training data with the training dataset
plot(tree.Carseats)
text(tree.Carseats,pretty=0,cex=0.6)

tree.pred=predict(tree.Carseats,Carseats[-train,],type="class")   #predict using the test data
with(Carseats[-train,],table(tree.pred,High))
##          High
## tree.pred NO YES
##       NO  67  17
##       YES 19  47

Pruning the tree

Pruning the tree using Cross Validation

cv.Carseats = cv.tree(tree.Carseats,FUN=prune.misclass)
cv.Carseats
## $size
##  [1] 23 19 15 12  7  6  4  3  2  1
## 
## $dev
##  [1]  68  68  67  63  64  64  64  65  70 100
## 
## $k
##  [1] -Inf  0.0  0.5  1.0  2.0  4.0  4.5  5.0 12.0 31.0
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
plot(cv.Carseats)

prune.Carseats = prune.misclass(tree.Carseats,best=13)
plot(prune.Carseats)
text(prune.Carseats,pretty=0,cex=0.6)

Predict on the test data

tree.pred=predict(prune.Carseats,Carseats[-train,],type="class")
with(Carseats[-train,],table(tree.pred,High))
##          High
## tree.pred NO YES
##       NO  68  21
##       YES 18  43