Show the code
<- dget("df_for_papers") df_paper_03
Import data
<- dget("df_for_papers") df_paper_03
::theme_gtsummary_compact()
gtsummary%>%
df_paper_03 ::tbl_summary(
gtsummaryinclude = c(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, bmi, barthels_index, :aa_strokeris, aa_hkq, aa_hkq_cat, hosp_cat),
aa_bp_115_75digits = gtsummary::all_categorical()~ c(0,1),
statistic = gtsummary::all_categorical() ~ "{n} ({p})",
missing_text = "Missing"
%>%
) ::bold_labels() %>%
gtsummary::modify_caption("General overview of data") gtsummary
Characteristic | N = 5001 |
---|---|
Age in years | |
Median (IQR) | 58 (51, 67) |
Mean (SD) | 58 (12) |
Range | 14, 88 |
Gender | |
Male | 281 (56.2) |
Female | 219 (43.8) |
Marital Status | |
Currently Married | 333 (66.6) |
Previously Married | 144 (28.8) |
Never Married | 23 (4.6) |
Educational Status | |
None | 49 (9.8) |
Primary | 205 (41.0) |
Secondary | 164 (32.8) |
Tertiary | 82 (16.4) |
Living Status | |
Lives Alone | 29 (5.8) |
Lives With Spouse and Children | 272 (54.4) |
Lives in a Nursing Home | 1 (0.2) |
Lives With Spouse | 30 (6.0) |
Lives With Extended Family | 72 (14.4) |
Lives With Children | 96 (19.2) |
Religion | |
Christianity | 448 (89.6) |
Islam | 49 (9.8) |
Other | 3 (0.6) |
Domicile | |
Rural | 35 (7.0) |
Semi-Urban | 165 (33.0) |
Urban | 300 (60.0) |
Income in GHC | |
0-100 | 102 (20.6) |
101-250 | 160 (32.4) |
251-500 | 145 (29.4) |
>500 | 87 (17.6) |
Missing | 6 |
Stroke Type (Choose One) | |
Ischemic Stroke | 316 (73.7) |
Intracerebral Hemorrhagic Stroke | 98 (22.8) |
Ischemic With Hemorrhagic Transformation | 10 (2.3) |
Untyped Stroke (no CT scan available) | 5 (1.2) |
Missing | 71 |
Stroke Subtype ( with results of Brain CT scan) | |
Ischaemic | 306 (73.7) |
Haemorrhage infarct | 15 (3.6) |
Haemorrhagic | 82 (19.8) |
Ischaemic and Haemorrhagic | 12 (2.9) |
Missing | 85 |
Body Mass Index | |
Median (IQR) | 26.2 (22.7, 30.0) |
Mean (SD) | 26.6 (5.5) |
Range | 11.4, 47.9 |
Missing | 24 |
Barthels Index | |
Median (IQR) | 80 (40, 90) |
Mean (SD) | 66 (27) |
Range | 0, 90 |
Missing | 19 |
(1) If someones blood pressure is 115/75. it is ...... | |
High | 51 (10.3) |
Low | 158 (31.8) |
Normal | 119 (23.9) |
Dont Know | 169 (34.0) |
Missing | 3 |
(2) If someones blood pressure is 160/100. It is.... | |
High | 330 (66.7) |
Low | 10 (2.0) |
Normal | 9 (1.8) |
Dont Know | 146 (29.5) |
Missing | 5 |
(3) Once someone has high blood pressure, it usually lasts for | |
A few years | 76 (15.4) |
5-10 Years | 25 (5.1) |
The Rest of their Life | 178 (36.0) |
Dont Know | 216 (43.6) |
Missing | 5 |
(4) People with high blood pressure should take their medicine | |
Everyday | 465 (95.3) |
At Least a few Times a week | 11 (2.3) |
Only When They feel sick | 12 (2.5) |
Missing | 12 |
(5) Losing weight usually makes blood pressure | |
Go up | 40 (8.2) |
Go Down | 322 (66.4) |
Stay the same | 123 (25.4) |
Missing | 15 |
(6) Eating less salt usually makes blood pressure | |
Go Up | 50 (10.2) |
Go Down | 370 (75.2) |
Stay the Same | 72 (14.6) |
Missing | 8 |
(7) High blood pressure can cause heart attacks | |
Yes | 345 (69.7) |
No | 11 (2.2) |
Dont Know | 139 (28.1) |
Missing | 5 |
(8) High blood pressure can cause cancer | |
Yes | 147 (29.6) |
No | 59 (11.9) |
Dont Know | 290 (58.5) |
Missing | 4 |
(9) High blood pressure can cause can kidney problems | |
Yes | 238 (48.0) |
No | 23 (4.6) |
Dont Know | 235 (47.4) |
Missing | 4 |
(10) High blood pressure can cause strokes | |
Yes | 392 (79.2) |
No | 8 (1.6) |
Dont Know | 95 (19.2) |
Missing | 5 |
(11) Someone who has had a stroke is at higher risk of having another | |
Yes | 258 (52.1) |
No | 29 (5.9) |
Dont Know | 208 (42.0) |
Missing | 5 |
(12) If someone is not having headaches they can stop taking medications | |
Yes | 94 (19.0) |
No | 274 (55.4) |
Dont Know | 127 (25.7) |
Missing | 5 |
(13) If someone is feeling good it is ok to miss doses of medication | |
Never | 354 (71.5) |
Once a Month | 11 (2.2) |
Once a week | 7 (1.4) |
Dont know | 123 (24.8) |
Missing | 5 |
(14) Once someone has had a stroke, they will be at risk for stroke for .... | |
A Few Years | 139 (28.2) |
5-10 Years | 21 (4.3) |
The Rest of Their Life | 62 (12.6) |
Dont Know | 271 (55.0) |
Missing | 7 |
Total HKQ Score | |
Median (IQR) | 8 (6, 10) |
Mean (SD) | 8 (3) |
Range | 0, 13 |
Missing | 30 |
Categorised Total HKQ Score | |
Median & below | 240 (51.1) |
Above Median | 230 (48.9) |
Missing | 30 |
Health institution category | |
Primary | 148 (29.6) |
Secondary | 119 (23.8) |
Tertiary | 233 (46.6) |
1 n (%) |
::reset_gtsummary_theme()
gtsummary::theme_gtsummary_compact()
gtsummary
<-
table_1 %>%
df_paper_03 select(matches("(aa)*(correct)")) %>%
::tbl_summary(
gtsummarymissing = "no"
%>%
) bold_labels() %>%
add_n() %>%
::modify_caption("Item response rate to the HKQ")
gtsummary
table_1file.remove("paper_3_table_1.docx")
[1] TRUE
%>%
table_1 ::as_gt() %>%
gtsummary::gtsave(filename = "paper_3_table_1.docx") gt
Characteristic | N | N = 5001 |
---|---|---|
If someones blood pressure is 160/100. It is | 495 | 330 (67%) |
Once someone has high blood pressure, it usually lasts for | 495 | 178 (36%) |
People with high blood pressure should take their medicine | 488 | 465 (95%) |
Losing weight usually makes blood pressure | 485 | 322 (66%) |
Eating less salt usually makes blood pressure | 492 | 370 (75%) |
High blood pressure can cause heart attacks | 495 | 345 (70%) |
High blood pressure can cause cancer | 496 | 59 (12%) |
High blood pressure can cause strokes | 495 | 392 (79%) |
High blood pressure can cause can kidney problems | 496 | 238 (48%) |
Someone who has had a stroke is at higher risk of having another | 495 | 258 (52%) |
If someone is not having headaches they can stop taking medications | 495 | 274 (55%) |
If someone is feeling good it is ok to miss doses of medication | 495 | 354 (72%) |
Once someone has had a stroke, they will be at risk for stroke for | 493 | 62 (13%) |
1 n (%) |
::theme_gtsummary_compact()
gtsummary<-
table_2 %>%
df_paper_03 filter(!is.na(aa_hkq_cat)) %>%
::tbl_summary(
gtsummarytype = list(ranking ~ "continuous2"),
include = c(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type,
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_hkq_cat, hosp_cat),digits = gtsummary::all_categorical()~ c(0,1),
statistic = gtsummary::all_categorical() ~ "{n} ({p})",
missing = "no",
by = aa_hkq_cat
%>%
) ::bold_labels() %>%
gtsummary::modify_caption(
gtsummary"Baseline Demographic & Clinical Characteristics According
to Scores Obtained on the HKQ") %>%
::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**Categorised Total HKQ Score**") %>%
gtsummary::add_overall(last = T) %>%
gtsummary::add_p(pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3))
gtsummary
table_2file.remove("paper_3_table_2.docx")
[1] TRUE
%>%
table_2 ::as_gt() %>%
gtsummary::gtsave(filename = "paper_3_table_2.docx") gt
Characteristic | Categorised Total HKQ Score | Overall, N = 4701 | p-value2 | |
---|---|---|---|---|
Median & below, N = 2401 | Above Median, N = 2301 | |||
Age in years | 58 (50, 68) | 58 (52, 65) | 58 (51, 67) | 0.717 |
Male sex | 115 (47.9) | 144 (62.6) | 259 (55.1) | 0.001 |
Educational Status | <0.001 | |||
None | 32 (13.3) | 12 (5.2) | 44 (9.4) | |
Primary | 117 (48.8) | 76 (33.0) | 193 (41.1) | |
Secondary | 71 (29.6) | 85 (37.0) | 156 (33.2) | |
Tertiary | 20 (8.3) | 57 (24.8) | 77 (16.4) | |
Religion | 0.060 | |||
Christianity | 208 (86.7) | 212 (92.2) | 420 (89.4) | |
Islam | 29 (12.1) | 18 (7.8) | 47 (10.0) | |
Other | 3 (1.3) | 0 (0.0) | 3 (0.6) | |
Domicile | 0.376 | |||
Rural | 14 (5.8) | 20 (8.7) | 34 (7.2) | |
Semi-Urban | 85 (35.4) | 72 (31.3) | 157 (33.4) | |
Urban | 141 (58.8) | 138 (60.0) | 279 (59.4) | |
Income in GHC | 0.019 | |||
0-100 | 62 (26.2) | 35 (15.4) | 97 (20.9) | |
101-250 | 78 (32.9) | 73 (32.0) | 151 (32.5) | |
251-500 | 61 (25.7) | 77 (33.8) | 138 (29.7) | |
>500 | 36 (15.2) | 43 (18.9) | 79 (17.0) | |
Stroke Type (Choose One) | 0.297 | |||
Ischemic Stroke | 141 (70.1) | 157 (77.0) | 298 (73.6) | |
Intracerebral Hemorrhagic Stroke | 51 (25.4) | 42 (20.6) | 93 (23.0) | |
Ischemic With Hemorrhagic Transformation | 5 (2.5) | 4 (2.0) | 9 (2.2) | |
Untyped Stroke (no CT scan available) | 4 (2.0) | 1 (0.5) | 5 (1.2) | |
Modified Ranking Score | 0.023 | |||
Median (IQR) | 2.00 (1.00, 3.00) | 2.00 (1.00, 3.00) | 2.00 (1.00, 3.00) | |
NIH Stroke Scale | 4.0 (0.0, 9.0) | 2.0 (0.0, 6.0) | 3.0 (0.0, 8.0) | <0.001 |
Systolic blood pressure (mm Hg)-Baseline | 155 (146, 172) | 154 (146, 168) | 155 (146, 170) | 0.265 |
Diastolic Blood Pressure | 96 (89, 106) | 94 (87, 103) | 95 (88, 105) | 0.070 |
Body Mass Index | 25.9 (22.4, 28.7) | 26.4 (23.0, 30.9) | 26.2 (22.7, 30.1) | 0.059 |
Health institution category | 0.672 | |||
Primary | 75 (31.3) | 67 (29.1) | 142 (30.2) | |
Secondary | 59 (24.6) | 52 (22.6) | 111 (23.6) | |
Tertiary | 106 (44.2) | 111 (48.3) | 217 (46.2) | |
1 Median (IQR); n (%) | ||||
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test |
<-
tbl1 %>%
df_paper_03 select(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type, %>%
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_hkq, hosp_cat) tbl_uvregression(
y = aa_hkq,
method = lm,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
<-
tbl2 %>%
df_paper_03 select(
%>%
male, educ, a_religion, ranking, nihss_scale, bmi, aa_hkq, hosp_cat) lm(aa_hkq ~ ., data = .) %>%
tbl_regression(pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
<-
table_3 tbl_merge(
list(tbl1, tbl2),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "Univartiate and multivariate linear regression predicting HKQ")
table_3file.remove("paper_3_table_3.docx")
[1] TRUE
%>%
table_3 ::as_gt() %>%
gtsummary::gtsave(filename = "paper_3_table_3.docx") gt
Variable | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
N | Estimate | 95% CI1 | p-value | Estimate | 95% CI1 | p-value | |
Age in years | 470 | -0.02 | -0.05, 0.00 | 0.092 | |||
Male sex | 470 | ||||||
No | — | — | — | — | |||
Yes | 0.67 | 0.10, 1.2 | 0.022 | 0.41 | -0.21, 1.0 | 0.196 | |
Educational Status | 470 | ||||||
None | — | — | — | — | |||
Primary | 1.5 | 0.51, 2.5 | 0.003 | 1.1 | 0.02, 2.1 | 0.046 | |
Secondary | 2.2 | 1.2, 3.2 | <0.001 | 1.6 | 0.52, 2.7 | 0.004 | |
Tertiary | 3.1 | 2.0, 4.3 | <0.001 | 2.4 | 1.2, 3.6 | <0.001 | |
Religion | 470 | ||||||
Christianity | — | — | — | — | |||
Islam | -1.6 | -2.6, -0.69 | <0.001 | -1.4 | -2.4, -0.49 | 0.003 | |
Other | -3.6 | -7.1, -0.04 | 0.048 | -3.4 | -7.5, 0.68 | 0.102 | |
Domicile | 470 | ||||||
Rural | — | — | |||||
Semi-Urban | -0.87 | -2.0, 0.30 | 0.143 | ||||
Urban | -0.94 | -2.1, 0.18 | 0.101 | ||||
Income in GHC | 465 | ||||||
0-100 | — | — | |||||
101-250 | 0.04 | -0.77, 0.84 | 0.930 | ||||
251-500 | 0.32 | -0.51, 1.1 | 0.451 | ||||
>500 | 0.31 | -0.63, 1.3 | 0.512 | ||||
Stroke Type (Choose One) | 405 | ||||||
Ischemic Stroke | — | — | |||||
Intracerebral Hemorrhagic Stroke | -0.48 | -1.2, 0.21 | 0.170 | ||||
Ischemic With Hemorrhagic Transformation | -0.40 | -2.4, 1.6 | 0.692 | ||||
Untyped Stroke (no CT scan available) | -1.9 | -4.5, 0.76 | 0.163 | ||||
Modified Ranking Score | 469 | -0.39 | -0.61, -0.16 | <0.001 | 0.05 | -0.25, 0.35 | 0.726 |
NIH Stroke Scale | 461 | -0.13 | -0.18, -0.08 | <0.001 | -0.15 | -0.22, -0.07 | <0.001 |
Systolic blood pressure (mm Hg)-Baseline | 467 | -0.01 | -0.03, 0.00 | 0.113 | |||
Diastolic Blood Pressure | 467 | -0.01 | -0.03, 0.01 | 0.216 | |||
Body Mass Index | 451 | 0.10 | 0.05, 0.15 | <0.001 | 0.08 | 0.03, 0.13 | 0.002 |
Health institution category | 470 | ||||||
Primary | — | — | — | — | |||
Secondary | 0.81 | 0.03, 1.6 | 0.042 | 0.48 | -0.30, 1.3 | 0.228 | |
Tertiary | 0.50 | -0.16, 1.2 | 0.137 | -0.39 | -1.1, 0.34 | 0.297 | |
1 CI = Confidence Interval |
Item # 11: If someone has had a stroke is at a higher risk of having another stroke
<-
tbl3 %>%
df_paper_03 mutate(aa_highrisk_correct = factor(aa_highrisk_correct)) %>%
select(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type, %>%
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_highrisk_correct, hosp_cat) tbl_uvregression(
y = aa_highrisk_correct,
method = glm,
method.args = family(binomial),
exponentiate = TRUE,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**cOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
<-
tbl4 %>%
df_paper_03 mutate(aa_highrisk_correct = factor(aa_highrisk_correct)) %>%
select(
a_agebase, male, educ, a_religion, income, nihss_scale, bmi, hosp_cat, %>%
aa_highrisk_correct) glm(aa_highrisk_correct ~ ., data = ., family=binomial) %>%
tbl_regression(
exponentiate = T,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**aOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
<-
table_4 tbl_merge(
list(tbl3, tbl4),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "Univartiate and multivariate logistic regression of Item 11 of HKQ")
table_4file.remove("paper_3_table_4.docx")
[1] TRUE
%>%
table_4 ::as_gt() %>%
gtsummary::gtsave(filename = "paper_3_table_4.docx") gt
Variable | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
N | cOR1 | 95% CI1 | p-value | aOR1 | 95% CI1 | p-value | |
Age in years | 495 | 0.98 | 0.97, 1.00 | 0.041 | 1.00 | 0.98, 1.01 | 0.665 |
Male sex | 495 | ||||||
No | — | — | — | — | |||
Yes | 1.88 | 1.32, 2.70 | <0.001 | 1.66 | 1.07, 2.59 | 0.025 | |
Educational Status | 495 | ||||||
None | — | — | — | — | |||
Primary | 3.01 | 1.47, 6.69 | 0.004 | 2.35 | 1.07, 5.51 | 0.039 | |
Secondary | 5.87 | 2.82, 13.2 | <0.001 | 3.99 | 1.76, 9.66 | 0.001 | |
Tertiary | 8.44 | 3.75, 20.4 | <0.001 | 4.75 | 1.87, 12.8 | 0.001 | |
Religion | 495 | ||||||
Christianity | — | — | — | — | |||
Islam | 0.50 | 0.26, 0.90 | 0.024 | 0.72 | 0.35, 1.45 | 0.358 | |
Other | 0.43 | 0.02, 4.49 | 0.488 | 1.24 | 0.05, 32.4 | 0.883 | |
Domicile | 495 | ||||||
Rural | — | — | |||||
Semi-Urban | 1.56 | 0.74, 3.32 | 0.243 | ||||
Urban | 1.34 | 0.66, 2.77 | 0.425 | ||||
Income in GHC | 490 | ||||||
0-100 | — | — | — | — | |||
101-250 | 1.16 | 0.70, 1.91 | 0.564 | 0.78 | 0.44, 1.38 | 0.396 | |
251-500 | 1.75 | 1.05, 2.94 | 0.032 | 1.02 | 0.55, 1.87 | 0.954 | |
>500 | 1.40 | 0.79, 2.52 | 0.251 | 0.85 | 0.42, 1.71 | 0.641 | |
Stroke Type (Choose One) | 425 | ||||||
Ischemic Stroke | — | — | |||||
Intracerebral Hemorrhagic Stroke | 0.88 | 0.56, 1.40 | 0.594 | ||||
Ischemic With Hemorrhagic Transformation | 3.32 | 0.82, 22.2 | 0.133 | ||||
Untyped Stroke (no CT scan available) | 0.21 | 0.01, 1.42 | 0.162 | ||||
Modified Ranking Score | 494 | 0.94 | 0.82, 1.08 | 0.386 | |||
NIH Stroke Scale | 485 | 0.96 | 0.93, 1.0 | 0.025 | 0.98 | 0.94, 1.02 | 0.372 |
Systolic blood pressure (mm Hg)-Baseline | 492 | 1.00 | 0.99, 1.01 | 0.683 | |||
Diastolic Blood Pressure | 492 | 1.00 | 0.99, 1.01 | 0.925 | |||
Body Mass Index | 474 | 1.05 | 1.02, 1.09 | 0.003 | 1.06 | 1.02, 1.10 | 0.007 |
Health institution category | 495 | ||||||
Primary | — | — | — | — | |||
Secondary | 1.57 | 0.96, 2.57 | 0.071 | 1.38 | 0.79, 2.40 | 0.260 | |
Tertiary | 2.18 | 1.43, 3.33 | <0.001 | 1.78 | 1.06, 3.01 | 0.029 | |
1 OR = Odds Ratio, CI = Confidence Interval |
Item # 14: If someone has had a stroke is at a higher risk of having another stroke
<-
tbl5 %>%
df_paper_03 mutate(aa_strokeris_correct = factor(aa_strokeris_correct)) %>%
select(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type, %>%
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_strokeris_correct, hosp_cat) tbl_uvregression(
y = aa_strokeris_correct,
method = glm,
method.args = family(binomial),
exponentiate = TRUE,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**cOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
<-
tbl6 %>%
df_paper_03 mutate(aa_strokeris_correct = factor(aa_strokeris_correct)) %>%
select(a_domicile, income, ranking, hosp_cat, aa_strokeris_correct) %>%
glm(aa_strokeris_correct ~ ., data = ., family=binomial) %>%
tbl_regression(
exponentiate = T,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**aOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
<-
table_5 tbl_merge(
list(tbl5, tbl6),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "Univartiate and multivariate logistic regression of Item 14 of HKQ")
table_5file.remove("paper_3_table_5.docx")
[1] TRUE
%>%
table_5 ::as_gt() %>%
gtsummary::gtsave(filename = "paper_3_table_5.docx") gt
Variable | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
N | cOR1 | 95% CI1 | p-value | aOR1 | 95% CI1 | p-value | |
Age in years | 493 | 1.00 | 0.97, 1.02 | 0.835 | |||
Male sex | 493 | ||||||
No | — | — | |||||
Yes | 1.74 | 1.00, 3.11 | 0.056 | ||||
Educational Status | 493 | ||||||
None | — | — | |||||
Primary | 0.47 | 0.17, 1.40 | 0.149 | ||||
Secondary | 1.60 | 0.66, 4.50 | 0.325 | ||||
Tertiary | 1.19 | 0.43, 3.63 | 0.748 | ||||
Religion | 493 | ||||||
Christianity | — | — | |||||
Islam | 0.96 | 0.35, 2.20 | 0.928 | ||||
Other | 0.00 | 0.987 | |||||
Domicile | 493 | ||||||
Rural | — | — | — | — | |||
Semi-Urban | 0.33 | 0.14, 0.80 | 0.012 | 0.33 | 0.13, 0.85 | 0.019 | |
Urban | 0.32 | 0.14, 0.75 | 0.006 | 0.33 | 0.14, 0.83 | 0.015 | |
Income in GHC | 488 | ||||||
0-100 | — | — | — | — | |||
101-250 | 1.18 | 0.55, 2.65 | 0.683 | 1.43 | 0.63, 3.35 | 0.399 | |
251-500 | 0.68 | 0.28, 1.66 | 0.392 | 0.90 | 0.36, 2.27 | 0.818 | |
>500 | 2.52 | 1.15, 5.78 | 0.024 | 2.21 | 0.96, 5.29 | 0.066 | |
Stroke Type (Choose One) | 422 | ||||||
Ischemic Stroke | — | — | |||||
Intracerebral Hemorrhagic Stroke | 0.98 | 0.47, 1.91 | 0.961 | ||||
Ischemic With Hemorrhagic Transformation | 1.70 | 0.25, 7.08 | 0.512 | ||||
Untyped Stroke (no CT scan available) | 1.70 | 0.09, 11.9 | 0.639 | ||||
Modified Ranking Score | 492 | 0.76 | 0.61, 0.95 | 0.015 | 0.81 | 0.65, 1.01 | 0.065 |
NIH Stroke Scale | 483 | 1.00 | 0.95, 1.05 | 0.993 | |||
Systolic blood pressure (mm Hg)-Baseline | 490 | 1.00 | 0.99, 1.02 | 0.771 | |||
Diastolic Blood Pressure | 490 | 1.00 | 0.99, 1.02 | 0.654 | |||
Body Mass Index | 472 | 1.02 | 0.97, 1.07 | 0.383 | |||
Health institution category | 493 | ||||||
Primary | — | — | — | — | |||
Secondary | 1.83 | 0.98, 3.48 | 0.060 | 1.74 | 0.89, 3.45 | 0.106 | |
Tertiary | 0.39 | 0.19, 0.79 | 0.010 | 0.46 | 0.22, 0.97 | 0.043 | |
1 OR = Odds Ratio, CI = Confidence Interval |