Show the code
df_paper_03 <- dget("df_for_papers") Import data
df_paper_03 <- dget("df_for_papers") gtsummary::theme_gtsummary_compact()
df_paper_03 %>%
gtsummary::tbl_summary(
include = c(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, bmi, barthels_index,
aa_bp_115_75:aa_strokeris, aa_hkq, aa_hkq_cat, hosp_cat),
digits = gtsummary::all_categorical()~ c(0,1),
statistic = gtsummary::all_categorical() ~ "{n} ({p})",
missing_text = "Missing"
) %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption("General overview of data") | Characteristic | N = 5001 |
|---|---|
| Age in years | |
| Median (IQR) | 58 (51, 67) |
| Mean (SD) | 58 (12) |
| Range | 14, 88 |
| Gender | |
| Male | 281 (56.2) |
| Female | 219 (43.8) |
| Marital Status | |
| Currently Married | 333 (66.6) |
| Previously Married | 144 (28.8) |
| Never Married | 23 (4.6) |
| Educational Status | |
| None | 49 (9.8) |
| Primary | 205 (41.0) |
| Secondary | 164 (32.8) |
| Tertiary | 82 (16.4) |
| Living Status | |
| Lives Alone | 29 (5.8) |
| Lives With Spouse and Children | 272 (54.4) |
| Lives in a Nursing Home | 1 (0.2) |
| Lives With Spouse | 30 (6.0) |
| Lives With Extended Family | 72 (14.4) |
| Lives With Children | 96 (19.2) |
| Religion | |
| Christianity | 448 (89.6) |
| Islam | 49 (9.8) |
| Other | 3 (0.6) |
| Domicile | |
| Rural | 35 (7.0) |
| Semi-Urban | 165 (33.0) |
| Urban | 300 (60.0) |
| Income in GHC | |
| 0-100 | 102 (20.6) |
| 101-250 | 160 (32.4) |
| 251-500 | 145 (29.4) |
| >500 | 87 (17.6) |
| Missing | 6 |
| Stroke Type (Choose One) | |
| Ischemic Stroke | 316 (73.7) |
| Intracerebral Hemorrhagic Stroke | 98 (22.8) |
| Ischemic With Hemorrhagic Transformation | 10 (2.3) |
| Untyped Stroke (no CT scan available) | 5 (1.2) |
| Missing | 71 |
| Stroke Subtype ( with results of Brain CT scan) | |
| Ischaemic | 306 (73.7) |
| Haemorrhage infarct | 15 (3.6) |
| Haemorrhagic | 82 (19.8) |
| Ischaemic and Haemorrhagic | 12 (2.9) |
| Missing | 85 |
| Body Mass Index | |
| Median (IQR) | 26.2 (22.7, 30.0) |
| Mean (SD) | 26.6 (5.5) |
| Range | 11.4, 47.9 |
| Missing | 24 |
| Barthels Index | |
| Median (IQR) | 80 (40, 90) |
| Mean (SD) | 66 (27) |
| Range | 0, 90 |
| Missing | 19 |
| (1) If someones blood pressure is 115/75. it is ...... | |
| High | 51 (10.3) |
| Low | 158 (31.8) |
| Normal | 119 (23.9) |
| Dont Know | 169 (34.0) |
| Missing | 3 |
| (2) If someones blood pressure is 160/100. It is.... | |
| High | 330 (66.7) |
| Low | 10 (2.0) |
| Normal | 9 (1.8) |
| Dont Know | 146 (29.5) |
| Missing | 5 |
| (3) Once someone has high blood pressure, it usually lasts for | |
| A few years | 76 (15.4) |
| 5-10 Years | 25 (5.1) |
| The Rest of their Life | 178 (36.0) |
| Dont Know | 216 (43.6) |
| Missing | 5 |
| (4) People with high blood pressure should take their medicine | |
| Everyday | 465 (95.3) |
| At Least a few Times a week | 11 (2.3) |
| Only When They feel sick | 12 (2.5) |
| Missing | 12 |
| (5) Losing weight usually makes blood pressure | |
| Go up | 40 (8.2) |
| Go Down | 322 (66.4) |
| Stay the same | 123 (25.4) |
| Missing | 15 |
| (6) Eating less salt usually makes blood pressure | |
| Go Up | 50 (10.2) |
| Go Down | 370 (75.2) |
| Stay the Same | 72 (14.6) |
| Missing | 8 |
| (7) High blood pressure can cause heart attacks | |
| Yes | 345 (69.7) |
| No | 11 (2.2) |
| Dont Know | 139 (28.1) |
| Missing | 5 |
| (8) High blood pressure can cause cancer | |
| Yes | 147 (29.6) |
| No | 59 (11.9) |
| Dont Know | 290 (58.5) |
| Missing | 4 |
| (9) High blood pressure can cause can kidney problems | |
| Yes | 238 (48.0) |
| No | 23 (4.6) |
| Dont Know | 235 (47.4) |
| Missing | 4 |
| (10) High blood pressure can cause strokes | |
| Yes | 392 (79.2) |
| No | 8 (1.6) |
| Dont Know | 95 (19.2) |
| Missing | 5 |
| (11) Someone who has had a stroke is at higher risk of having another | |
| Yes | 258 (52.1) |
| No | 29 (5.9) |
| Dont Know | 208 (42.0) |
| Missing | 5 |
| (12) If someone is not having headaches they can stop taking medications | |
| Yes | 94 (19.0) |
| No | 274 (55.4) |
| Dont Know | 127 (25.7) |
| Missing | 5 |
| (13) If someone is feeling good it is ok to miss doses of medication | |
| Never | 354 (71.5) |
| Once a Month | 11 (2.2) |
| Once a week | 7 (1.4) |
| Dont know | 123 (24.8) |
| Missing | 5 |
| (14) Once someone has had a stroke, they will be at risk for stroke for .... | |
| A Few Years | 139 (28.2) |
| 5-10 Years | 21 (4.3) |
| The Rest of Their Life | 62 (12.6) |
| Dont Know | 271 (55.0) |
| Missing | 7 |
| Total HKQ Score | |
| Median (IQR) | 8 (6, 10) |
| Mean (SD) | 8 (3) |
| Range | 0, 13 |
| Missing | 30 |
| Categorised Total HKQ Score | |
| Median & below | 240 (51.1) |
| Above Median | 230 (48.9) |
| Missing | 30 |
| Health institution category | |
| Primary | 148 (29.6) |
| Secondary | 119 (23.8) |
| Tertiary | 233 (46.6) |
| 1 n (%) | |
gtsummary::reset_gtsummary_theme()
gtsummary::theme_gtsummary_compact()
table_1 <-
df_paper_03 %>%
select(matches("(aa)*(correct)")) %>%
gtsummary::tbl_summary(
missing = "no"
) %>%
bold_labels() %>%
add_n() %>%
gtsummary::modify_caption("Item response rate to the HKQ")
table_1
file.remove("paper_3_table_1.docx")[1] TRUE
table_1 %>%
gtsummary::as_gt() %>%
gt::gtsave(filename = "paper_3_table_1.docx")| Characteristic | N | N = 5001 |
|---|---|---|
| If someones blood pressure is 160/100. It is | 495 | 330 (67%) |
| Once someone has high blood pressure, it usually lasts for | 495 | 178 (36%) |
| People with high blood pressure should take their medicine | 488 | 465 (95%) |
| Losing weight usually makes blood pressure | 485 | 322 (66%) |
| Eating less salt usually makes blood pressure | 492 | 370 (75%) |
| High blood pressure can cause heart attacks | 495 | 345 (70%) |
| High blood pressure can cause cancer | 496 | 59 (12%) |
| High blood pressure can cause strokes | 495 | 392 (79%) |
| High blood pressure can cause can kidney problems | 496 | 238 (48%) |
| Someone who has had a stroke is at higher risk of having another | 495 | 258 (52%) |
| If someone is not having headaches they can stop taking medications | 495 | 274 (55%) |
| If someone is feeling good it is ok to miss doses of medication | 495 | 354 (72%) |
| Once someone has had a stroke, they will be at risk for stroke for | 493 | 62 (13%) |
| 1 n (%) | ||
gtsummary::theme_gtsummary_compact()
table_2 <-
df_paper_03 %>%
filter(!is.na(aa_hkq_cat)) %>%
gtsummary::tbl_summary(
type = list(ranking ~ "continuous2"),
include = c(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type,
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_hkq_cat, hosp_cat),
digits = gtsummary::all_categorical()~ c(0,1),
statistic = gtsummary::all_categorical() ~ "{n} ({p})",
missing = "no",
by = aa_hkq_cat
) %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption(
"Baseline Demographic & Clinical Characteristics According
to Scores Obtained on the HKQ") %>%
gtsummary::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**Categorised Total HKQ Score**") %>%
gtsummary::add_overall(last = T) %>%
gtsummary::add_p(pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3))
table_2
file.remove("paper_3_table_2.docx")[1] TRUE
table_2 %>%
gtsummary::as_gt() %>%
gt::gtsave(filename = "paper_3_table_2.docx")| Characteristic | Categorised Total HKQ Score | Overall, N = 4701 | p-value2 | |
|---|---|---|---|---|
| Median & below, N = 2401 | Above Median, N = 2301 | |||
| Age in years | 58 (50, 68) | 58 (52, 65) | 58 (51, 67) | 0.717 |
| Male sex | 115 (47.9) | 144 (62.6) | 259 (55.1) | 0.001 |
| Educational Status | <0.001 | |||
| None | 32 (13.3) | 12 (5.2) | 44 (9.4) | |
| Primary | 117 (48.8) | 76 (33.0) | 193 (41.1) | |
| Secondary | 71 (29.6) | 85 (37.0) | 156 (33.2) | |
| Tertiary | 20 (8.3) | 57 (24.8) | 77 (16.4) | |
| Religion | 0.060 | |||
| Christianity | 208 (86.7) | 212 (92.2) | 420 (89.4) | |
| Islam | 29 (12.1) | 18 (7.8) | 47 (10.0) | |
| Other | 3 (1.3) | 0 (0.0) | 3 (0.6) | |
| Domicile | 0.376 | |||
| Rural | 14 (5.8) | 20 (8.7) | 34 (7.2) | |
| Semi-Urban | 85 (35.4) | 72 (31.3) | 157 (33.4) | |
| Urban | 141 (58.8) | 138 (60.0) | 279 (59.4) | |
| Income in GHC | 0.019 | |||
| 0-100 | 62 (26.2) | 35 (15.4) | 97 (20.9) | |
| 101-250 | 78 (32.9) | 73 (32.0) | 151 (32.5) | |
| 251-500 | 61 (25.7) | 77 (33.8) | 138 (29.7) | |
| >500 | 36 (15.2) | 43 (18.9) | 79 (17.0) | |
| Stroke Type (Choose One) | 0.297 | |||
| Ischemic Stroke | 141 (70.1) | 157 (77.0) | 298 (73.6) | |
| Intracerebral Hemorrhagic Stroke | 51 (25.4) | 42 (20.6) | 93 (23.0) | |
| Ischemic With Hemorrhagic Transformation | 5 (2.5) | 4 (2.0) | 9 (2.2) | |
| Untyped Stroke (no CT scan available) | 4 (2.0) | 1 (0.5) | 5 (1.2) | |
| Modified Ranking Score | 0.023 | |||
| Median (IQR) | 2.00 (1.00, 3.00) | 2.00 (1.00, 3.00) | 2.00 (1.00, 3.00) | |
| NIH Stroke Scale | 4.0 (0.0, 9.0) | 2.0 (0.0, 6.0) | 3.0 (0.0, 8.0) | <0.001 |
| Systolic blood pressure (mm Hg)-Baseline | 155 (146, 172) | 154 (146, 168) | 155 (146, 170) | 0.265 |
| Diastolic Blood Pressure | 96 (89, 106) | 94 (87, 103) | 95 (88, 105) | 0.070 |
| Body Mass Index | 25.9 (22.4, 28.7) | 26.4 (23.0, 30.9) | 26.2 (22.7, 30.1) | 0.059 |
| Health institution category | 0.672 | |||
| Primary | 75 (31.3) | 67 (29.1) | 142 (30.2) | |
| Secondary | 59 (24.6) | 52 (22.6) | 111 (23.6) | |
| Tertiary | 106 (44.2) | 111 (48.3) | 217 (46.2) | |
| 1 Median (IQR); n (%) | ||||
| 2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test | ||||
tbl1 <-
df_paper_03 %>%
select(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type,
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_hkq, hosp_cat) %>%
tbl_uvregression(
y = aa_hkq,
method = lm,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
tbl2 <-
df_paper_03 %>%
select(
male, educ, a_religion, ranking, nihss_scale, bmi, aa_hkq, hosp_cat) %>%
lm(aa_hkq ~ ., data = .) %>%
tbl_regression(pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
table_3 <-
tbl_merge(
list(tbl1, tbl2),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "Univartiate and multivariate linear regression predicting HKQ")
table_3
file.remove("paper_3_table_3.docx")[1] TRUE
table_3 %>%
gtsummary::as_gt() %>%
gt::gtsave(filename = "paper_3_table_3.docx")| Variable | Univariate | Multivariate | |||||
|---|---|---|---|---|---|---|---|
| N | Estimate | 95% CI1 | p-value | Estimate | 95% CI1 | p-value | |
| Age in years | 470 | -0.02 | -0.05, 0.00 | 0.092 | |||
| Male sex | 470 | ||||||
| No | — | — | — | — | |||
| Yes | 0.67 | 0.10, 1.2 | 0.022 | 0.41 | -0.21, 1.0 | 0.196 | |
| Educational Status | 470 | ||||||
| None | — | — | — | — | |||
| Primary | 1.5 | 0.51, 2.5 | 0.003 | 1.1 | 0.02, 2.1 | 0.046 | |
| Secondary | 2.2 | 1.2, 3.2 | <0.001 | 1.6 | 0.52, 2.7 | 0.004 | |
| Tertiary | 3.1 | 2.0, 4.3 | <0.001 | 2.4 | 1.2, 3.6 | <0.001 | |
| Religion | 470 | ||||||
| Christianity | — | — | — | — | |||
| Islam | -1.6 | -2.6, -0.69 | <0.001 | -1.4 | -2.4, -0.49 | 0.003 | |
| Other | -3.6 | -7.1, -0.04 | 0.048 | -3.4 | -7.5, 0.68 | 0.102 | |
| Domicile | 470 | ||||||
| Rural | — | — | |||||
| Semi-Urban | -0.87 | -2.0, 0.30 | 0.143 | ||||
| Urban | -0.94 | -2.1, 0.18 | 0.101 | ||||
| Income in GHC | 465 | ||||||
| 0-100 | — | — | |||||
| 101-250 | 0.04 | -0.77, 0.84 | 0.930 | ||||
| 251-500 | 0.32 | -0.51, 1.1 | 0.451 | ||||
| >500 | 0.31 | -0.63, 1.3 | 0.512 | ||||
| Stroke Type (Choose One) | 405 | ||||||
| Ischemic Stroke | — | — | |||||
| Intracerebral Hemorrhagic Stroke | -0.48 | -1.2, 0.21 | 0.170 | ||||
| Ischemic With Hemorrhagic Transformation | -0.40 | -2.4, 1.6 | 0.692 | ||||
| Untyped Stroke (no CT scan available) | -1.9 | -4.5, 0.76 | 0.163 | ||||
| Modified Ranking Score | 469 | -0.39 | -0.61, -0.16 | <0.001 | 0.05 | -0.25, 0.35 | 0.726 |
| NIH Stroke Scale | 461 | -0.13 | -0.18, -0.08 | <0.001 | -0.15 | -0.22, -0.07 | <0.001 |
| Systolic blood pressure (mm Hg)-Baseline | 467 | -0.01 | -0.03, 0.00 | 0.113 | |||
| Diastolic Blood Pressure | 467 | -0.01 | -0.03, 0.01 | 0.216 | |||
| Body Mass Index | 451 | 0.10 | 0.05, 0.15 | <0.001 | 0.08 | 0.03, 0.13 | 0.002 |
| Health institution category | 470 | ||||||
| Primary | — | — | — | — | |||
| Secondary | 0.81 | 0.03, 1.6 | 0.042 | 0.48 | -0.30, 1.3 | 0.228 | |
| Tertiary | 0.50 | -0.16, 1.2 | 0.137 | -0.39 | -1.1, 0.34 | 0.297 | |
| 1 CI = Confidence Interval | |||||||
Item # 11: If someone has had a stroke is at a higher risk of having another stroke
tbl3 <-
df_paper_03 %>%
mutate(aa_highrisk_correct = factor(aa_highrisk_correct)) %>%
select(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type,
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_highrisk_correct, hosp_cat) %>%
tbl_uvregression(
y = aa_highrisk_correct,
method = glm,
method.args = family(binomial),
exponentiate = TRUE,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**cOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
tbl4 <-
df_paper_03 %>%
mutate(aa_highrisk_correct = factor(aa_highrisk_correct)) %>%
select(
a_agebase, male, educ, a_religion, income, nihss_scale, bmi, hosp_cat,
aa_highrisk_correct) %>%
glm(aa_highrisk_correct ~ ., data = ., family=binomial) %>%
tbl_regression(
exponentiate = T,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**aOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
table_4 <-
tbl_merge(
list(tbl3, tbl4),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "Univartiate and multivariate logistic regression of Item 11 of HKQ")
table_4
file.remove("paper_3_table_4.docx")[1] TRUE
table_4 %>%
gtsummary::as_gt() %>%
gt::gtsave(filename = "paper_3_table_4.docx")| Variable | Univariate | Multivariate | |||||
|---|---|---|---|---|---|---|---|
| N | cOR1 | 95% CI1 | p-value | aOR1 | 95% CI1 | p-value | |
| Age in years | 495 | 0.98 | 0.97, 1.00 | 0.041 | 1.00 | 0.98, 1.01 | 0.665 |
| Male sex | 495 | ||||||
| No | — | — | — | — | |||
| Yes | 1.88 | 1.32, 2.70 | <0.001 | 1.66 | 1.07, 2.59 | 0.025 | |
| Educational Status | 495 | ||||||
| None | — | — | — | — | |||
| Primary | 3.01 | 1.47, 6.69 | 0.004 | 2.35 | 1.07, 5.51 | 0.039 | |
| Secondary | 5.87 | 2.82, 13.2 | <0.001 | 3.99 | 1.76, 9.66 | 0.001 | |
| Tertiary | 8.44 | 3.75, 20.4 | <0.001 | 4.75 | 1.87, 12.8 | 0.001 | |
| Religion | 495 | ||||||
| Christianity | — | — | — | — | |||
| Islam | 0.50 | 0.26, 0.90 | 0.024 | 0.72 | 0.35, 1.45 | 0.358 | |
| Other | 0.43 | 0.02, 4.49 | 0.488 | 1.24 | 0.05, 32.4 | 0.883 | |
| Domicile | 495 | ||||||
| Rural | — | — | |||||
| Semi-Urban | 1.56 | 0.74, 3.32 | 0.243 | ||||
| Urban | 1.34 | 0.66, 2.77 | 0.425 | ||||
| Income in GHC | 490 | ||||||
| 0-100 | — | — | — | — | |||
| 101-250 | 1.16 | 0.70, 1.91 | 0.564 | 0.78 | 0.44, 1.38 | 0.396 | |
| 251-500 | 1.75 | 1.05, 2.94 | 0.032 | 1.02 | 0.55, 1.87 | 0.954 | |
| >500 | 1.40 | 0.79, 2.52 | 0.251 | 0.85 | 0.42, 1.71 | 0.641 | |
| Stroke Type (Choose One) | 425 | ||||||
| Ischemic Stroke | — | — | |||||
| Intracerebral Hemorrhagic Stroke | 0.88 | 0.56, 1.40 | 0.594 | ||||
| Ischemic With Hemorrhagic Transformation | 3.32 | 0.82, 22.2 | 0.133 | ||||
| Untyped Stroke (no CT scan available) | 0.21 | 0.01, 1.42 | 0.162 | ||||
| Modified Ranking Score | 494 | 0.94 | 0.82, 1.08 | 0.386 | |||
| NIH Stroke Scale | 485 | 0.96 | 0.93, 1.0 | 0.025 | 0.98 | 0.94, 1.02 | 0.372 |
| Systolic blood pressure (mm Hg)-Baseline | 492 | 1.00 | 0.99, 1.01 | 0.683 | |||
| Diastolic Blood Pressure | 492 | 1.00 | 0.99, 1.01 | 0.925 | |||
| Body Mass Index | 474 | 1.05 | 1.02, 1.09 | 0.003 | 1.06 | 1.02, 1.10 | 0.007 |
| Health institution category | 495 | ||||||
| Primary | — | — | — | — | |||
| Secondary | 1.57 | 0.96, 2.57 | 0.071 | 1.38 | 0.79, 2.40 | 0.260 | |
| Tertiary | 2.18 | 1.43, 3.33 | <0.001 | 1.78 | 1.06, 3.01 | 0.029 | |
| 1 OR = Odds Ratio, CI = Confidence Interval | |||||||
Item # 14: If someone has had a stroke is at a higher risk of having another stroke
tbl5 <-
df_paper_03 %>%
mutate(aa_strokeris_correct = factor(aa_strokeris_correct)) %>%
select(
a_agebase, male, educ, a_religion, a_domicile, income, d_st_type,
ranking, nihss_scale, ee_sbp_0, ee_dbp_0, bmi, aa_strokeris_correct, hosp_cat) %>%
tbl_uvregression(
y = aa_strokeris_correct,
method = glm,
method.args = family(binomial),
exponentiate = TRUE,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**cOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
tbl6 <-
df_paper_03 %>%
mutate(aa_strokeris_correct = factor(aa_strokeris_correct)) %>%
select(a_domicile, income, ranking, hosp_cat, aa_strokeris_correct) %>%
glm(aa_strokeris_correct ~ ., data = ., family=binomial) %>%
tbl_regression(
exponentiate = T,
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**aOR**", label ~ "**Variable**")) %>%
bold_labels() %>%
bold_p()
table_5 <-
tbl_merge(
list(tbl5, tbl6),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "Univartiate and multivariate logistic regression of Item 14 of HKQ")
table_5
file.remove("paper_3_table_5.docx")[1] TRUE
table_5 %>%
gtsummary::as_gt() %>%
gt::gtsave(filename = "paper_3_table_5.docx")| Variable | Univariate | Multivariate | |||||
|---|---|---|---|---|---|---|---|
| N | cOR1 | 95% CI1 | p-value | aOR1 | 95% CI1 | p-value | |
| Age in years | 493 | 1.00 | 0.97, 1.02 | 0.835 | |||
| Male sex | 493 | ||||||
| No | — | — | |||||
| Yes | 1.74 | 1.00, 3.11 | 0.056 | ||||
| Educational Status | 493 | ||||||
| None | — | — | |||||
| Primary | 0.47 | 0.17, 1.40 | 0.149 | ||||
| Secondary | 1.60 | 0.66, 4.50 | 0.325 | ||||
| Tertiary | 1.19 | 0.43, 3.63 | 0.748 | ||||
| Religion | 493 | ||||||
| Christianity | — | — | |||||
| Islam | 0.96 | 0.35, 2.20 | 0.928 | ||||
| Other | 0.00 | 0.987 | |||||
| Domicile | 493 | ||||||
| Rural | — | — | — | — | |||
| Semi-Urban | 0.33 | 0.14, 0.80 | 0.012 | 0.33 | 0.13, 0.85 | 0.019 | |
| Urban | 0.32 | 0.14, 0.75 | 0.006 | 0.33 | 0.14, 0.83 | 0.015 | |
| Income in GHC | 488 | ||||||
| 0-100 | — | — | — | — | |||
| 101-250 | 1.18 | 0.55, 2.65 | 0.683 | 1.43 | 0.63, 3.35 | 0.399 | |
| 251-500 | 0.68 | 0.28, 1.66 | 0.392 | 0.90 | 0.36, 2.27 | 0.818 | |
| >500 | 2.52 | 1.15, 5.78 | 0.024 | 2.21 | 0.96, 5.29 | 0.066 | |
| Stroke Type (Choose One) | 422 | ||||||
| Ischemic Stroke | — | — | |||||
| Intracerebral Hemorrhagic Stroke | 0.98 | 0.47, 1.91 | 0.961 | ||||
| Ischemic With Hemorrhagic Transformation | 1.70 | 0.25, 7.08 | 0.512 | ||||
| Untyped Stroke (no CT scan available) | 1.70 | 0.09, 11.9 | 0.639 | ||||
| Modified Ranking Score | 492 | 0.76 | 0.61, 0.95 | 0.015 | 0.81 | 0.65, 1.01 | 0.065 |
| NIH Stroke Scale | 483 | 1.00 | 0.95, 1.05 | 0.993 | |||
| Systolic blood pressure (mm Hg)-Baseline | 490 | 1.00 | 0.99, 1.02 | 0.771 | |||
| Diastolic Blood Pressure | 490 | 1.00 | 0.99, 1.02 | 0.654 | |||
| Body Mass Index | 472 | 1.02 | 0.97, 1.07 | 0.383 | |||
| Health institution category | 493 | ||||||
| Primary | — | — | — | — | |||
| Secondary | 1.83 | 0.98, 3.48 | 0.060 | 1.74 | 0.89, 3.45 | 0.106 | |
| Tertiary | 0.39 | 0.19, 0.79 | 0.010 | 0.46 | 0.22, 0.97 | 0.043 | |
| 1 OR = Odds Ratio, CI = Confidence Interval | |||||||