1. load libraries

2. Load Seurat Object


#Load Seurat Object merged from cell lines and a control(PBMC) after filtration
SS_All_samples_Merged <- load("../6-ADT_Normalization/All_Samples_Merged_NormalizedADT-scaled.Robj")

All_samples_Merged
An object of class Seurat 
63193 features across 49193 samples within 6 assays 
Active assay: ADT (28 features, 0 variable features)
 3 layers present: counts, data, scale.data
 5 other assays present: RNA, SCT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3
 4 dimensional reductions calculated: pca, umap, integrated_dr, ref.umap

3. Normalize ADT


rownames(All_samples_Merged[["ADT"]])
 [1] "CD274"  "CD30"   "CD40"   "CD3"    "CD45RA" "CD7"    "CCR4"   "CD4"    "CD25"   "CD45RO" "PD1"    "CD44"   "CD5"   
[14] "CXCR3"  "CCR6"   "CD62L"  "CCR7"   "CD95"   "TCRab"  "CXCR4"  "CD2"    "CD28"   "CD127"  "CD45"   "CD26"   "CCR10" 
[27] "CCR8"   "CD19"  
# # Perform normalization and scaling
# All_samples_Merged <- NormalizeData(All_samples_Merged, normalization.method = "CLR", margin = 2)

4. Visualize multiple modalities side-by-side


# Now, we will visualize CD14 levels for RNA and protein By setting the default assay, we can
# visualize one or the other
DefaultAssay(All_samples_Merged) <- "ADT"
p1 <- FeaturePlot(All_samples_Merged, "CD19", cols = c("lightgrey", "darkgreen")) + ggtitle("CD19 protein")
DefaultAssay(All_samples_Merged) <- "SCT"
p2 <- FeaturePlot(All_samples_Merged, "CD19") + ggtitle("CD19 RNA")

# place plots side-by-side
p1 | p2


Key(All_samples_Merged[["RNA"]])
[1] "rna_"
Key(All_samples_Merged[["SCT"]])
[1] "sct_"
Key(All_samples_Merged[["ADT"]])
[1] "adt_"
# Now, we can include the key in the feature name, which overrides the default assay
p1 <- FeaturePlot(All_samples_Merged, "adt_CD19", cols = c("lightgrey", "darkgreen")) + ggtitle("CD19 protein")
p2 <- FeaturePlot(All_samples_Merged, "rna_CD19") + ggtitle("CD19 RNA")
p3 <- FeaturePlot(All_samples_Merged, "sct_CD19") + ggtitle("CD19 RNA_SCT")
p1 | p2 | p3


# Now, we can include the key in the feature name, which overrides the default assay
p1 <- FeaturePlot(All_samples_Merged, "adt_CD274", cols = c("lightgrey", "darkgreen")) + ggtitle("CD274 protein")
p2 <- FeaturePlot(All_samples_Merged, "rna_CD274") + ggtitle("CD274 RNA")
p3 <- FeaturePlot(All_samples_Merged, "sct_CD274") + ggtitle("CD274 RNA_SCT")
p1 | p2 | p3


# Now, we can include the key in the feature name, which overrides the default assay
p1 <- FeaturePlot(All_samples_Merged, "adt_CD7", cols = c("lightgrey", "darkgreen")) + ggtitle("CD7 protein")
p2 <- FeaturePlot(All_samples_Merged, "rna_CD7") + ggtitle("CD7 RNA")
p3 <- FeaturePlot(All_samples_Merged, "sct_CD7") + ggtitle("CD7 RNA_SCT")
p1 | p2 | p3


adt_markers <- FindMarkers(All_samples_Merged, ident.1 = 8, assay = "ADT")
rna_markers <- FindMarkers(All_samples_Merged, ident.1 = 8, assay = "RNA")
SCT_markers <- FindMarkers(All_samples_Merged, ident.1 = 8, assay = "SCT")

head(adt_markers)

head(rna_markers)

head(SCT_markers)

DefaultAssay -> "SCT"
Idents(object=All_samples_Merged) <- "cell_line"
FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD2")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD3")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD5")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD28")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD127")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD45")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD19")


FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD7")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD25")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD26")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD45RA")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD45RO")


FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD62L")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CCR7")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CCR4")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CCR6")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CCR8")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CCR10")


FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CXCR3")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CXCR4")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD95")


FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD30")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD40")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD44")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD45")


FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_CD274")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "adt_PD1")

FeatureScatter(All_samples_Merged, feature1 = "adt_CD4", feature2 = "TCRab")
Warning: Could not find TCRab in the default search locations, found in ‘ADT’ assay instead

LS0tCnRpdGxlOiAiQURUIE5vcm1hbGl6YXRpb24iCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogIjIwMjQtMDQtMjQiCm91dHB1dDoKICBodG1sX25vdGVib29rOiAKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCiAgICB0aGVtZTogZGFya2x5Ci0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCmxpYnJhcnkoU2V1cmF0KQpsaWJyYXJ5KFNldXJhdE9iamVjdCkKbGlicmFyeShTZXVyYXREYXRhKQpsaWJyYXJ5KHBhdGNod29yaykKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KHJtYXJrZG93bikKbGlicmFyeSh0aW55dGV4KQoKYGBgCiMgMi4gTG9hZCBTZXVyYXQgT2JqZWN0IApgYGB7ciBsb2FkX3NldXJhdH0KCiNMb2FkIFNldXJhdCBPYmplY3QgbWVyZ2VkIGZyb20gY2VsbCBsaW5lcyBhbmQgYSBjb250cm9sKFBCTUMpIGFmdGVyIGZpbHRyYXRpb24KU1NfQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIGxvYWQoIi4uLzYtQURUX05vcm1hbGl6YXRpb24vQWxsX1NhbXBsZXNfTWVyZ2VkX05vcm1hbGl6ZWRBRFQtc2NhbGVkLlJvYmoiKQoKQWxsX3NhbXBsZXNfTWVyZ2VkCmBgYAojIDMuIE5vcm1hbGl6ZSBBRFQKYGBge3IgTm9ybWFsaXplQURUfQoKcm93bmFtZXMoQWxsX3NhbXBsZXNfTWVyZ2VkW1siQURUIl1dKQoKIyAjIFBlcmZvcm0gbm9ybWFsaXphdGlvbiBhbmQgc2NhbGluZwojIEFsbF9zYW1wbGVzX01lcmdlZCA8LSBOb3JtYWxpemVEYXRhKEFsbF9zYW1wbGVzX01lcmdlZCwgbm9ybWFsaXphdGlvbi5tZXRob2QgPSAiQ0xSIiwgbWFyZ2luID0gMikKCmBgYAojIDQuIFZpc3VhbGl6ZSBtdWx0aXBsZSBtb2RhbGl0aWVzIHNpZGUtYnktc2lkZQpgYGB7ciBWaXN1YWxpemVBRFQsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQpJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAiY2VsbF9saW5lIgojIE5vdywgd2Ugd2lsbCB2aXN1YWxpemUgQ0QxNCBsZXZlbHMgZm9yIFJOQSBhbmQgcHJvdGVpbiBCeSBzZXR0aW5nIHRoZSBkZWZhdWx0IGFzc2F5LCB3ZSBjYW4KIyB2aXN1YWxpemUgb25lIG9yIHRoZSBvdGhlcgpEZWZhdWx0QXNzYXkoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAiQURUIgpwMSA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJDRDE5IiwgY29scyA9IGMoImxpZ2h0Z3JleSIsICJkYXJrZ3JlZW4iKSkgKyBnZ3RpdGxlKCJDRDE5IHByb3RlaW4iKQpEZWZhdWx0QXNzYXkoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAiU0NUIgpwMiA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJDRDE5IikgKyBnZ3RpdGxlKCJDRDE5IFJOQSIpCgojIHBsYWNlIHBsb3RzIHNpZGUtYnktc2lkZQpwMSB8IHAyCgpLZXkoQWxsX3NhbXBsZXNfTWVyZ2VkW1siUk5BIl1dKQoKS2V5KEFsbF9zYW1wbGVzX01lcmdlZFtbIlNDVCJdXSkKCktleShBbGxfc2FtcGxlc19NZXJnZWRbWyJBRFQiXV0pCgoKIyBOb3csIHdlIGNhbiBpbmNsdWRlIHRoZSBrZXkgaW4gdGhlIGZlYXR1cmUgbmFtZSwgd2hpY2ggb3ZlcnJpZGVzIHRoZSBkZWZhdWx0IGFzc2F5CnAxIDwtIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgImFkdF9DRDE5IiwgY29scyA9IGMoImxpZ2h0Z3JleSIsICJkYXJrZ3JlZW4iKSkgKyBnZ3RpdGxlKCJDRDE5IHByb3RlaW4iKQpwMiA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJybmFfQ0QxOSIpICsgZ2d0aXRsZSgiQ0QxOSBSTkEiKQpwMyA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJzY3RfQ0QxOSIpICsgZ2d0aXRsZSgiQ0QxOSBSTkFfU0NUIikKcDEgfCBwMiB8IHAzCgojIE5vdywgd2UgY2FuIGluY2x1ZGUgdGhlIGtleSBpbiB0aGUgZmVhdHVyZSBuYW1lLCB3aGljaCBvdmVycmlkZXMgdGhlIGRlZmF1bHQgYXNzYXkKcDEgPC0gRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAiYWR0X0NEMjc0IiwgY29scyA9IGMoImxpZ2h0Z3JleSIsICJkYXJrZ3JlZW4iKSkgKyBnZ3RpdGxlKCJDRDI3NCBwcm90ZWluIikKcDIgPC0gRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCAicm5hX0NEMjc0IikgKyBnZ3RpdGxlKCJDRDI3NCBSTkEiKQpwMyA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJzY3RfQ0QyNzQiKSArIGdndGl0bGUoIkNEMjc0IFJOQV9TQ1QiKQpwMSB8IHAyIHwgcDMKCiMgTm93LCB3ZSBjYW4gaW5jbHVkZSB0aGUga2V5IGluIHRoZSBmZWF0dXJlIG5hbWUsIHdoaWNoIG92ZXJyaWRlcyB0aGUgZGVmYXVsdCBhc3NheQpwMSA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJhZHRfQ0Q3IiwgY29scyA9IGMoImxpZ2h0Z3JleSIsICJkYXJrZ3JlZW4iKSkgKyBnZ3RpdGxlKCJDRDcgcHJvdGVpbiIpCnAyIDwtIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgInJuYV9DRDciKSArIGdndGl0bGUoIkNENyBSTkEiKQpwMyA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsICJzY3RfQ0Q3IikgKyBnZ3RpdGxlKCJDRDcgUk5BX1NDVCIpCnAxIHwgcDIgfCBwMwoKYWR0X21hcmtlcnMgPC0gRmluZE1hcmtlcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCBpZGVudC4xID0gOCwgYXNzYXkgPSAiQURUIikKcm5hX21hcmtlcnMgPC0gRmluZE1hcmtlcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCBpZGVudC4xID0gOCwgYXNzYXkgPSAiUk5BIikKU0NUX21hcmtlcnMgPC0gRmluZE1hcmtlcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCBpZGVudC4xID0gOCwgYXNzYXkgPSAiU0NUIikKCmhlYWQoYWR0X21hcmtlcnMpCgpoZWFkKHJuYV9tYXJrZXJzKQoKaGVhZChTQ1RfbWFya2VycykKCkRlZmF1bHRBc3NheSAtPiAiU0NUIgpJZGVudHMob2JqZWN0PUFsbF9zYW1wbGVzX01lcmdlZCkgPC0gImNlbGxfbGluZSIKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NEMiIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DRDMiKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0Q1IikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NEMjgiKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0QxMjciKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0Q0NSIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DRDE5IikKCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DRDciKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0QyNSIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DRDI2IikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NENDVSQSIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DRDQ1Uk8iKQoKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NENjJMIikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NDUjciKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0NSNCIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DQ1I2IikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NDUjgiKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0NSMTAiKQoKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NYQ1IzIikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NYQ1I0IikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NEOTUiKQoKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NEMzAiKQpGZWF0dXJlU2NhdHRlcihBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmUxID0gImFkdF9DRDQiLCBmZWF0dXJlMiA9ICJhZHRfQ0Q0MCIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gImFkdF9DRDQ0IikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NENDUiKQoKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X0NEMjc0IikKRmVhdHVyZVNjYXR0ZXIoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlMSA9ICJhZHRfQ0Q0IiwgZmVhdHVyZTIgPSAiYWR0X1BEMSIpCkZlYXR1cmVTY2F0dGVyKEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZTEgPSAiYWR0X0NENCIsIGZlYXR1cmUyID0gIlRDUmFiIikKYGBgCgoKCgoK