In a somehow crazy paper Washington Must Prepare for War With Both Russia and China (https://foreignpolicy.com/2022/02/18/us-russia-china-war-nato-quadrilateral-security-dialogue/) Matthew Kroenig (deputy director of the Atlantic Council’s Scowcroft Center for Strategy and Security.) claims that US is capable to fight on both fronts as ``The United States possesses 24 percent of global GDP compared to a combined 19 percent in China and Russia.’’
Lets check. The data are from the WorldBank
As we compare global shares, current USD seems OK.
################
### GDP constant prices
gdp1 <- gdpc %>%
filter (year >= 1990) %>%
select (code=iso3c, year, gdp=NY.GNP.MKTP.CD) %>%
pivot_wider(names_from = code, values_from = gdp) %>%
mutate(
CHN = CHN/WLD * 100,
EU = EUU/WLD * 100,
IND = IND/WLD * 100,
RUS = RUS/WLD * 100,
USA = USA/WLD * 100
) %>%
select (year, CHN, EU, IND, RUS, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'IND', 'RUS', 'USA'),
names_to = 'entity', values_to = 'gdp')
p1 <- ggplot(gdp1, aes(x=year, y=gdp, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="% global share") +
xlab("") +
scale_y_continuous(breaks = seq(0, 32, by=2)) +
ggtitle("GDP Constant prices", subtitle="source: World Bank/NY.GNP.MKTP.CD")
p1
## `geom_smooth()` using formula = 'y ~ x'
seems Mr. Kroenig compared GDP in current/constant USD…
PPP seems to be even more OK because of prices variations among countries.
##
gdp2 <- gdpp %>%
filter (year >= 1990) %>%
select (code=iso3c, year, gdp=NY.GDP.MKTP.PP.CD) %>%
pivot_wider(names_from = code, values_from = gdp) %>%
mutate(
CHN = CHN/WLD * 100,
EU = EUU/WLD * 100,
IND = IND/WLD * 100,
RUS = RUS/WLD * 100,
USA = USA/WLD * 100
) %>%
select (year, CHN, EU, IND, RUS, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'IND', 'RUS', 'USA'),
names_to = 'entity', values_to = 'gdp')
p2 <- ggplot(gdp1, aes(x=year, y=gdp, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="% global share") +
xlab("") +
scale_y_continuous(breaks = seq(0, 32, by=2)) +
ggtitle("GDP PPP", subtitle="source: World Bank/NY.GDP.MKTP.PP.CD")
p2
## `geom_smooth()` using formula = 'y ~ x'
In this version of GDP the US is not #1 any more…
Service sector maybe not so crucial at war. Lets check Manufacturing, value added (current US$) (https://data.worldbank.org/indicator/NV.IND.MANF.CD)
###
prod1 <- prod %>%
filter (year >= 1990) %>%
select (code=iso3c, year, prod=NV.IND.MANF.CD) %>%
pivot_wider(names_from = code, values_from = prod) %>%
mutate(
CHN = CHN/WLD * 100,
EU = EUU/WLD * 100,
IND = IND/WLD * 100,
RUS = RUS/WLD * 100,
USA = USA/WLD * 100
) %>%
select (year, CHN, EU, IND, RUS, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'IND', 'RUS', 'USA'),
names_to = 'entity', values_to = 'prod')
p3 <- ggplot(prod1, aes(x=year, y=prod, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="% global share") +
xlab("") +
scale_y_continuous(breaks = seq(0, 32, by=2)) +
ggtitle("Manufacturing Value Added/Current USD", subtitle="source: World Bank/NV.IND.MANF.CD")
p3
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 48 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 48 rows containing missing values (`geom_point()`).
inf1 <- inf %>%
filter (year >= 1990) %>%
filter (iso3c != 'RUS' & iso3c != 'IND') %>%
select (code=iso3c, year, inf=FP.CPI.TOTL.ZG) %>%
pivot_wider(names_from = code, values_from = inf) %>%
select (year, CHN, EU=EUU, USA) %>%
pivot_longer(cols= c('CHN', 'EU', 'USA'),
names_to = 'entity', values_to = 'inf')
p4 <- ggplot(inf1, aes(x=year, y=inf, color=entity )) +
geom_point(size=.6, alpha=.3) +
geom_smooth(method="loess", se=F, span=.5) +
ylab(label="%") +
xlab("") +
scale_y_continuous(breaks = seq(0, 32, by=2)) +
ggtitle("GDP", subtitle="source: World Bank")
p4
## `geom_smooth()` using formula = 'y ~ x'