This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(klaR)
## Warning: package 'klaR' was built under R version 4.3.3
## Loading required package: MASS
#load the iris data set
data(iris)
#DATA SPLIT
#1. Training and testing division
#define an 80%/20% train/test split of the data set
trainIndex<-createDataPartition(iris$Species,p=0.80,list=FALSE)
dataTrain<-iris[trainIndex,]
dataTest<-iris[-trainIndex,]
#train a Naive Bayes Model
fit<-NaiveBayes(Species~., data=dataTrain)
#make predictions
predictions<-predict(fit,dataTest[,1:4])
#summarize results
confusionMatrix(predictions$class,dataTest$Species)
## Confusion Matrix and Statistics
##
## Reference
## Prediction setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 9 0
## virginica 0 1 10
##
## Overall Statistics
##
## Accuracy : 0.9667
## 95% CI : (0.8278, 0.9992)
## No Information Rate : 0.3333
## P-Value [Acc > NIR] : 2.963e-13
##
## Kappa : 0.95
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: setosa Class: versicolor Class: virginica
## Sensitivity 1.0000 0.9000 1.0000
## Specificity 1.0000 1.0000 0.9500
## Pos Pred Value 1.0000 1.0000 0.9091
## Neg Pred Value 1.0000 0.9524 1.0000
## Prevalence 0.3333 0.3333 0.3333
## Detection Rate 0.3333 0.3000 0.3333
## Detection Prevalence 0.3333 0.3000 0.3667
## Balanced Accuracy 1.0000 0.9500 0.9750
#2. Bootstrap
#define training control
trainControl<- trainControl(method="boot", number=100) #boot is for bootstrap
#evaluate the model
fit<-train(Species~., data=iris,trControl=trainControl,method="nb")
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
#Display the results
print(fit)
## Naive Bayes
##
## 150 samples
## 4 predictor
## 3 classes: 'setosa', 'versicolor', 'virginica'
##
## No pre-processing
## Resampling: Bootstrapped (100 reps)
## Summary of sample sizes: 150, 150, 150, 150, 150, 150, ...
## Resampling results across tuning parameters:
##
## usekernel Accuracy Kappa
## FALSE 0.9560796 0.9333422
## TRUE 0.9557846 0.9329001
##
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
## parameter 'adjust' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = FALSE and adjust
## = 1.
#3 k-fold Cross Validation
#define training control
trainControl<- trainControl(method="cv", number=10) #CV is for CrossValidation
#evaluate the model
fit<-train(Species~., data=iris,trControl=trainControl,method="nb")
#Display the results
print(fit)
## Naive Bayes
##
## 150 samples
## 4 predictor
## 3 classes: 'setosa', 'versicolor', 'virginica'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 135, 135, 135, 135, 135, 135, ...
## Resampling results across tuning parameters:
##
## usekernel Accuracy Kappa
## FALSE 0.9533333 0.93
## TRUE 0.9600000 0.94
##
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
## parameter 'adjust' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = TRUE and adjust
## = 1.
#4 Repeated k-fold Cross Validation
#define training control
trainControl<- trainControl(method="repeatedcv", number=10, repeats=3) #repeatedCV is for repeated Cross Validation
#evaluate the model
fit<-train(Species~., data=iris,trControl=trainControl,method="nb")
#Display the results
print(fit)
## Naive Bayes
##
## 150 samples
## 4 predictor
## 3 classes: 'setosa', 'versicolor', 'virginica'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times)
## Summary of sample sizes: 135, 135, 135, 135, 135, 135, ...
## Resampling results across tuning parameters:
##
## usekernel Accuracy Kappa
## FALSE 0.9555556 0.9333333
## TRUE 0.9555556 0.9333333
##
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
## parameter 'adjust' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = FALSE and adjust
## = 1.
#4 Leave One Out Cross Validation (LOOCV)
#define training control
trainControl<- trainControl(method="LOOCV") #repeatedCV is for repeated Cross Validation
#evaluate the model
fit<-train(Species~., data=iris,trControl=trainControl,method="nb")
#Display the results
print(fit)
## Naive Bayes
##
## 150 samples
## 4 predictor
## 3 classes: 'setosa', 'versicolor', 'virginica'
##
## No pre-processing
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 149, 149, 149, 149, 149, 149, ...
## Resampling results across tuning parameters:
##
## usekernel Accuracy Kappa
## FALSE 0.9533333 0.93
## TRUE 0.9600000 0.94
##
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
## parameter 'adjust' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = TRUE and adjust
## = 1.
# Set train control
ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 3)
# CART model
cart_model <- train(Species ~ ., data = iris, method = "rpart", trControl = ctrl)
# LDA model
lda_model <- train(Species ~ ., data = iris, method = "lda", trControl = ctrl)
# SVM model
svm_model <- train(Species ~ ., data = iris, method = "svmLinear", trControl = ctrl)
# KNN model
knn_model <- train(Species ~ ., data =iris, method = "knn", trControl = ctrl)
# Random Forest model
rf_model <- train(Species ~ ., data = iris, method = "rf", trControl = ctrl)
# Predictions
cart_pred <- predict(cart_model, newdata = dataTest)
lda_pred <- predict(lda_model, newdata = dataTest)
svm_pred <- predict(svm_model, newdata = dataTest)
knn_pred <- predict(knn_model, newdata = dataTest)
rf_pred <- predict(rf_model, newdata = dataTest)
# Model accuracies
cart_accuracy <- sum(cart_pred == dataTest$Species) / nrow(dataTest)
lda_accuracy <- sum(lda_pred == dataTest$Species) / nrow(dataTest)
svm_accuracy <- sum(svm_pred == dataTest$Species) / nrow(dataTest)
knn_accuracy <- sum(knn_pred == dataTest$Species) / nrow(dataTest)
rf_accuracy <- sum(rf_pred == dataTest$Species) / nrow(dataTest)
# Print accuracies
cat("CART Accuracy:", cart_accuracy, "\n")
## CART Accuracy: 0.9333333
cat("LDA Accuracy:", lda_accuracy, "\n")
## LDA Accuracy: 0.9666667
cat("SVM Accuracy:", svm_accuracy, "\n")
## SVM Accuracy: 0.9666667
cat("KNN Accuracy:", knn_accuracy, "\n")
## KNN Accuracy: 1
cat("Random Forest Accuracy:", rf_accuracy, "\n")
## Random Forest Accuracy: 1
# Calculate accuracies
accuracies <- c( CART = cart_accuracy, LDA = lda_accuracy, SVM = svm_accuracy, KNN = knn_accuracy, RF = rf_accuracy)
# Find the difference in accuracies
accuracy_diff <- diff(accuracies)
# Print the difference in accuracies
print(accuracy_diff)
## LDA SVM KNN RF
## 0.03333333 0.00000000 0.03333333 0.00000000
# Plot the difference in accuracies
barplot(accuracy_diff, main = "Difference in Model Accuracies", ylab = "Accuracy Difference", col = "skyblue")
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.