Goal is to automate building and tuning a classification model to predict employee attrition, using the h2o::h2o.automl.

Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## Warning: package 'h2o' was built under R version 4.2.3
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.0
## ✔ dials        1.2.0     ✔ tune         1.1.2
## ✔ infer        1.0.6     ✔ workflows    1.1.3
## ✔ modeldata    1.3.0     ✔ workflowsets 1.0.1
## ✔ parsnip      1.1.1     ✔ yardstick    1.3.0
## ✔ recipes      1.0.9
## Warning: package 'infer' was built under R version 4.2.3
## Warning: package 'modeldata' was built under R version 4.2.3
## Warning: package 'recipes' was built under R version 4.2.3
## Warning: package 'yardstick' was built under R version 4.2.3
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Search for functions across packages at https://www.tidymodels.org/find/
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## 
## Attaching package: 'TTR'
## 
## The following object is masked from 'package:dials':
## 
##     momentum
## 
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
data <- read_csv("../00_data/data_wrangled/data_clean.csv") %>%
    
    # h2o requires all variables to be either numeric or factors
    mutate(across(where(is.character), factor))
## Rows: 1470 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (24): Age, DailyRate, DistanceFromHome, Education, EmployeeNumber, Envir...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Split data

set.seed(1234)

data_split <- initial_split(data, strata = "Attrition")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(Attrition ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize H2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         6 hours 20 minutes 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    4 months and 3 days 
##     H2O cluster name:           H2O_started_from_R_Reed_fyb567 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   0.75 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.2.2 (2022-10-31)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (4 months and 3 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2567)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o  <- as.h2o(test_tbl)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
y <- "Attrition"
x <- setdiff(names(train_tbl), y)

auto_ml_models_h2o <- h2o.automl(
  x = x, 
  y = y, 
  training_frame    = train_h2o,
  validation_frame  = valid_h2o,
  leaderboard_frame = test_h2o, 
  max_runtime_secs  = 30, 
  nfolds            = 5,
  seed              = 3456
)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
## 17:17:07.577: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |========================================                              |  58%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |=======================================================               |  78%
  |                                                                            
  |===========================================================           |  85%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |===================================================================== |  99%
  |                                                                            
  |======================================================================| 100%
auto_ml_models_h2o@leaderboard
##                                                   model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707 0.8355987 0.3215735
## 2 StackedEnsemble_BestOfFamily_2_AutoML_16_20240423_171707 0.8313376 0.3260096
## 3 StackedEnsemble_BestOfFamily_3_AutoML_16_20240423_171707 0.8307443 0.3257772
## 4    StackedEnsemble_AllModels_3_AutoML_16_20240423_171707 0.8295038 0.3283596
## 5 StackedEnsemble_BestOfFamily_1_AutoML_16_20240423_171707 0.8290723 0.3271145
## 6                          GLM_1_AutoML_16_20240423_171707 0.8269687 0.3310361
##       aucpr mean_per_class_error      rmse        mse
## 1 0.9521769            0.3097087 0.3059740 0.09362011
## 2 0.9528207            0.2863269 0.3086916 0.09529052
## 3 0.9521960            0.2863269 0.3087260 0.09531175
## 4 0.9512482            0.3113269 0.3116303 0.09711343
## 5 0.9504737            0.2930421 0.3087986 0.09535655
## 6 0.9469916            0.2796117 0.3081993 0.09498682
## 
## [47 rows x 7 columns]
auto_ml_models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707 
## Model Summary for Stacked Ensemble: 
##                                          key            value
## 1                          Stacking strategy cross_validation
## 2       Number of base models (used / total)              4/6
## 3           # GBM base models (used / total)              1/1
## 4       # XGBoost base models (used / total)              1/1
## 5           # GLM base models (used / total)              1/1
## 6  # DeepLearning base models (used / total)              0/1
## 7           # DRF base models (used / total)              1/2
## 8                      Metalearner algorithm              GLM
## 9         Metalearner fold assignment scheme           Random
## 10                        Metalearner nfolds                5
## 11                   Metalearner fold_column               NA
## 12        Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.05524508
## RMSE:  0.2350427
## LogLoss:  0.2027111
## Mean Per-Class Error:  0.1253357
## AUC:  0.9648515
## AUCPR:  0.9913961
## Gini:  0.9297029
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    118  36 0.233766  =36/154
## No       13 756 0.016905  =13/769
## Totals  131 792 0.053088  =49/923
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.625583   0.968610 284
## 2                       max f2  0.514595   0.983060 307
## 3                 max f0point5  0.748957   0.968657 238
## 4                 max accuracy  0.632679   0.946912 282
## 5                max precision  0.999168   1.000000   0
## 6                   max recall  0.265650   1.000000 364
## 7              max specificity  0.999168   1.000000   0
## 8             max absolute_mcc  0.632679   0.801043 282
## 9   max min_per_class_accuracy  0.776072   0.909091 226
## 10 max mean_per_class_accuracy  0.748957   0.914242 238
## 11                     max tns  0.999168 154.000000   0
## 12                     max fns  0.999168 767.000000   0
## 13                     max fps  0.044943 154.000000 399
## 14                     max tps  0.265650 769.000000 364
## 15                     max tnr  0.999168   1.000000   0
## 16                     max fnr  0.999168   0.997399   0
## 17                     max fpr  0.044943   1.000000 399
## 18                     max tpr  0.265650   1.000000 364
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.06846555
## RMSE:  0.2616592
## LogLoss:  0.2611165
## Mean Per-Class Error:  0.1650771
## AUC:  0.8678822
## AUCPR:  0.9618995
## Gini:  0.7357644
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left     16   7 0.304348    =7/23
## No        4 151 0.025806   =4/155
## Totals   20 158 0.061798  =11/178
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.627246   0.964856 157
## 2                       max f2  0.438246   0.979772 170
## 3                 max f0point5  0.639664   0.962773 155
## 4                 max accuracy  0.639664   0.938202 155
## 5                max precision  0.998412   1.000000   0
## 6                   max recall  0.438246   1.000000 170
## 7              max specificity  0.998412   1.000000   0
## 8             max absolute_mcc  0.639664   0.720439 155
## 9   max min_per_class_accuracy  0.818803   0.782609 126
## 10 max mean_per_class_accuracy  0.639664   0.853436 155
## 11                     max tns  0.998412  23.000000   0
## 12                     max fns  0.998412 154.000000   0
## 13                     max fps  0.036197  23.000000 177
## 14                     max tps  0.438246 155.000000 170
## 15                     max tnr  0.998412   1.000000   0
## 16                     max fnr  0.998412   0.993548   0
## 17                     max fpr  0.036197   1.000000 177
## 18                     max tpr  0.438246   1.000000 170
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09818985
## RMSE:  0.3133526
## LogLoss:  0.3364112
## Mean Per-Class Error:  0.3136558
## AUC:  0.8300627
## AUCPR:  0.9441355
## Gini:  0.6601253
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     62  92 0.597403   =92/154
## No       23 746 0.029909   =23/769
## Totals   85 838 0.124594  =115/923
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.540936   0.928438 326
## 2                       max f2  0.348310   0.965222 370
## 3                 max f0point5  0.719592   0.920171 254
## 4                 max accuracy  0.540936   0.875406 326
## 5                max precision  0.999195   1.000000   0
## 6                   max recall  0.187422   1.000000 393
## 7              max specificity  0.999195   1.000000   0
## 8             max absolute_mcc  0.713515   0.510044 258
## 9   max min_per_class_accuracy  0.842303   0.742523 182
## 10 max mean_per_class_accuracy  0.750678   0.777190 241
## 11                     max tns  0.999195 154.000000   0
## 12                     max fns  0.999195 768.000000   0
## 13                     max fps  0.054103 154.000000 399
## 14                     max tps  0.187422 769.000000 393
## 15                     max tnr  0.999195   1.000000   0
## 16                     max fnr  0.999195   0.998700   0
## 17                     max fpr  0.054103   1.000000 399
## 18                     max tpr  0.187422   1.000000 393
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.884252 0.028423   0.913044   0.848168   0.864407   0.884817
## auc        0.829827 0.045185   0.859138   0.848993   0.803784   0.873428
## err        0.115747 0.028423   0.086957   0.151832   0.135593   0.115183
## err_count 21.400000 5.727129  18.000000  29.000000  24.000000  22.000000
## f0point5   0.909742 0.024896   0.935829   0.872162   0.906631   0.905421
##           cv_5_valid
## accuracy    0.910828
## auc         0.763789
## err         0.089172
## err_count  14.000000
## f0point5    0.928668
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.895001  0.029697   0.925926   0.848837   0.899329
## r2                  0.276242  0.069370   0.332766   0.289536   0.262182
## recall              0.974962  0.022030   0.977654   0.979866   0.937063
## residual_deviance 123.166010 21.592514 115.167755 148.735320 140.263760
## rmse                0.312648  0.030056   0.279367   0.349105   0.338383
## specificity         0.418511  0.111173   0.500000   0.380952   0.558824
##                   cv_4_valid cv_5_valid
## precision           0.887006   0.913907
## r2                  0.332403   0.164324
## recall              0.987421   0.992806
## residual_deviance 117.098526  94.564660
## rmse                0.305139   0.291248
## specificity         0.375000   0.277778
best_model <- auto_ml_models_h2o@leader

best_model
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707 
## Model Summary for Stacked Ensemble: 
##                                          key            value
## 1                          Stacking strategy cross_validation
## 2       Number of base models (used / total)              4/6
## 3           # GBM base models (used / total)              1/1
## 4       # XGBoost base models (used / total)              1/1
## 5           # GLM base models (used / total)              1/1
## 6  # DeepLearning base models (used / total)              0/1
## 7           # DRF base models (used / total)              1/2
## 8                      Metalearner algorithm              GLM
## 9         Metalearner fold assignment scheme           Random
## 10                        Metalearner nfolds                5
## 11                   Metalearner fold_column               NA
## 12        Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.05524508
## RMSE:  0.2350427
## LogLoss:  0.2027111
## Mean Per-Class Error:  0.1253357
## AUC:  0.9648515
## AUCPR:  0.9913961
## Gini:  0.9297029
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    118  36 0.233766  =36/154
## No       13 756 0.016905  =13/769
## Totals  131 792 0.053088  =49/923
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.625583   0.968610 284
## 2                       max f2  0.514595   0.983060 307
## 3                 max f0point5  0.748957   0.968657 238
## 4                 max accuracy  0.632679   0.946912 282
## 5                max precision  0.999168   1.000000   0
## 6                   max recall  0.265650   1.000000 364
## 7              max specificity  0.999168   1.000000   0
## 8             max absolute_mcc  0.632679   0.801043 282
## 9   max min_per_class_accuracy  0.776072   0.909091 226
## 10 max mean_per_class_accuracy  0.748957   0.914242 238
## 11                     max tns  0.999168 154.000000   0
## 12                     max fns  0.999168 767.000000   0
## 13                     max fps  0.044943 154.000000 399
## 14                     max tps  0.265650 769.000000 364
## 15                     max tnr  0.999168   1.000000   0
## 16                     max fnr  0.999168   0.997399   0
## 17                     max fpr  0.044943   1.000000 399
## 18                     max tpr  0.265650   1.000000 364
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.06846555
## RMSE:  0.2616592
## LogLoss:  0.2611165
## Mean Per-Class Error:  0.1650771
## AUC:  0.8678822
## AUCPR:  0.9618995
## Gini:  0.7357644
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left     16   7 0.304348    =7/23
## No        4 151 0.025806   =4/155
## Totals   20 158 0.061798  =11/178
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.627246   0.964856 157
## 2                       max f2  0.438246   0.979772 170
## 3                 max f0point5  0.639664   0.962773 155
## 4                 max accuracy  0.639664   0.938202 155
## 5                max precision  0.998412   1.000000   0
## 6                   max recall  0.438246   1.000000 170
## 7              max specificity  0.998412   1.000000   0
## 8             max absolute_mcc  0.639664   0.720439 155
## 9   max min_per_class_accuracy  0.818803   0.782609 126
## 10 max mean_per_class_accuracy  0.639664   0.853436 155
## 11                     max tns  0.998412  23.000000   0
## 12                     max fns  0.998412 154.000000   0
## 13                     max fps  0.036197  23.000000 177
## 14                     max tps  0.438246 155.000000 170
## 15                     max tnr  0.998412   1.000000   0
## 16                     max fnr  0.998412   0.993548   0
## 17                     max fpr  0.036197   1.000000 177
## 18                     max tpr  0.438246   1.000000 170
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09818985
## RMSE:  0.3133526
## LogLoss:  0.3364112
## Mean Per-Class Error:  0.3136558
## AUC:  0.8300627
## AUCPR:  0.9441355
## Gini:  0.6601253
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     62  92 0.597403   =92/154
## No       23 746 0.029909   =23/769
## Totals   85 838 0.124594  =115/923
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.540936   0.928438 326
## 2                       max f2  0.348310   0.965222 370
## 3                 max f0point5  0.719592   0.920171 254
## 4                 max accuracy  0.540936   0.875406 326
## 5                max precision  0.999195   1.000000   0
## 6                   max recall  0.187422   1.000000 393
## 7              max specificity  0.999195   1.000000   0
## 8             max absolute_mcc  0.713515   0.510044 258
## 9   max min_per_class_accuracy  0.842303   0.742523 182
## 10 max mean_per_class_accuracy  0.750678   0.777190 241
## 11                     max tns  0.999195 154.000000   0
## 12                     max fns  0.999195 768.000000   0
## 13                     max fps  0.054103 154.000000 399
## 14                     max tps  0.187422 769.000000 393
## 15                     max tnr  0.999195   1.000000   0
## 16                     max fnr  0.999195   0.998700   0
## 17                     max fpr  0.054103   1.000000 399
## 18                     max tpr  0.187422   1.000000 393
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.884252 0.028423   0.913044   0.848168   0.864407   0.884817
## auc        0.829827 0.045185   0.859138   0.848993   0.803784   0.873428
## err        0.115747 0.028423   0.086957   0.151832   0.135593   0.115183
## err_count 21.400000 5.727129  18.000000  29.000000  24.000000  22.000000
## f0point5   0.909742 0.024896   0.935829   0.872162   0.906631   0.905421
##           cv_5_valid
## accuracy    0.910828
## auc         0.763789
## err         0.089172
## err_count  14.000000
## f0point5    0.928668
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.895001  0.029697   0.925926   0.848837   0.899329
## r2                  0.276242  0.069370   0.332766   0.289536   0.262182
## recall              0.974962  0.022030   0.977654   0.979866   0.937063
## residual_deviance 123.166010 21.592514 115.167755 148.735320 140.263760
## rmse                0.312648  0.030056   0.279367   0.349105   0.338383
## specificity         0.418511  0.111173   0.500000   0.380952   0.558824
##                   cv_4_valid cv_5_valid
## precision           0.887006   0.913907
## r2                  0.332403   0.164324
## recall              0.987421   0.992806
## residual_deviance 117.098526  94.564660
## rmse                0.305139   0.291248
## specificity         0.375000   0.277778

Examine the output of h2o.automl

auto_ml_models_h2o %>% typeof()
## [1] "S4"
auto_ml_models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
auto_ml_models_h2o@leaderboard
##                                                   model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707 0.8355987 0.3215735
## 2 StackedEnsemble_BestOfFamily_2_AutoML_16_20240423_171707 0.8313376 0.3260096
## 3 StackedEnsemble_BestOfFamily_3_AutoML_16_20240423_171707 0.8307443 0.3257772
## 4    StackedEnsemble_AllModels_3_AutoML_16_20240423_171707 0.8295038 0.3283596
## 5 StackedEnsemble_BestOfFamily_1_AutoML_16_20240423_171707 0.8290723 0.3271145
## 6                          GLM_1_AutoML_16_20240423_171707 0.8269687 0.3310361
##       aucpr mean_per_class_error      rmse        mse
## 1 0.9521769            0.3097087 0.3059740 0.09362011
## 2 0.9528207            0.2863269 0.3086916 0.09529052
## 3 0.9521960            0.2863269 0.3087260 0.09531175
## 4 0.9512482            0.3113269 0.3116303 0.09711343
## 5 0.9504737            0.2930421 0.3087986 0.09535655
## 6 0.9469916            0.2796117 0.3081993 0.09498682
## 
## [47 rows x 7 columns]
auto_ml_models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707 
## Model Summary for Stacked Ensemble: 
##                                          key            value
## 1                          Stacking strategy cross_validation
## 2       Number of base models (used / total)              4/6
## 3           # GBM base models (used / total)              1/1
## 4       # XGBoost base models (used / total)              1/1
## 5           # GLM base models (used / total)              1/1
## 6  # DeepLearning base models (used / total)              0/1
## 7           # DRF base models (used / total)              1/2
## 8                      Metalearner algorithm              GLM
## 9         Metalearner fold assignment scheme           Random
## 10                        Metalearner nfolds                5
## 11                   Metalearner fold_column               NA
## 12        Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.05524508
## RMSE:  0.2350427
## LogLoss:  0.2027111
## Mean Per-Class Error:  0.1253357
## AUC:  0.9648515
## AUCPR:  0.9913961
## Gini:  0.9297029
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    118  36 0.233766  =36/154
## No       13 756 0.016905  =13/769
## Totals  131 792 0.053088  =49/923
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.625583   0.968610 284
## 2                       max f2  0.514595   0.983060 307
## 3                 max f0point5  0.748957   0.968657 238
## 4                 max accuracy  0.632679   0.946912 282
## 5                max precision  0.999168   1.000000   0
## 6                   max recall  0.265650   1.000000 364
## 7              max specificity  0.999168   1.000000   0
## 8             max absolute_mcc  0.632679   0.801043 282
## 9   max min_per_class_accuracy  0.776072   0.909091 226
## 10 max mean_per_class_accuracy  0.748957   0.914242 238
## 11                     max tns  0.999168 154.000000   0
## 12                     max fns  0.999168 767.000000   0
## 13                     max fps  0.044943 154.000000 399
## 14                     max tps  0.265650 769.000000 364
## 15                     max tnr  0.999168   1.000000   0
## 16                     max fnr  0.999168   0.997399   0
## 17                     max fpr  0.044943   1.000000 399
## 18                     max tpr  0.265650   1.000000 364
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.06846555
## RMSE:  0.2616592
## LogLoss:  0.2611165
## Mean Per-Class Error:  0.1650771
## AUC:  0.8678822
## AUCPR:  0.9618995
## Gini:  0.7357644
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left     16   7 0.304348    =7/23
## No        4 151 0.025806   =4/155
## Totals   20 158 0.061798  =11/178
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.627246   0.964856 157
## 2                       max f2  0.438246   0.979772 170
## 3                 max f0point5  0.639664   0.962773 155
## 4                 max accuracy  0.639664   0.938202 155
## 5                max precision  0.998412   1.000000   0
## 6                   max recall  0.438246   1.000000 170
## 7              max specificity  0.998412   1.000000   0
## 8             max absolute_mcc  0.639664   0.720439 155
## 9   max min_per_class_accuracy  0.818803   0.782609 126
## 10 max mean_per_class_accuracy  0.639664   0.853436 155
## 11                     max tns  0.998412  23.000000   0
## 12                     max fns  0.998412 154.000000   0
## 13                     max fps  0.036197  23.000000 177
## 14                     max tps  0.438246 155.000000 170
## 15                     max tnr  0.998412   1.000000   0
## 16                     max fnr  0.998412   0.993548   0
## 17                     max fpr  0.036197   1.000000 177
## 18                     max tpr  0.438246   1.000000 170
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09818985
## RMSE:  0.3133526
## LogLoss:  0.3364112
## Mean Per-Class Error:  0.3136558
## AUC:  0.8300627
## AUCPR:  0.9441355
## Gini:  0.6601253
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     62  92 0.597403   =92/154
## No       23 746 0.029909   =23/769
## Totals   85 838 0.124594  =115/923
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.540936   0.928438 326
## 2                       max f2  0.348310   0.965222 370
## 3                 max f0point5  0.719592   0.920171 254
## 4                 max accuracy  0.540936   0.875406 326
## 5                max precision  0.999195   1.000000   0
## 6                   max recall  0.187422   1.000000 393
## 7              max specificity  0.999195   1.000000   0
## 8             max absolute_mcc  0.713515   0.510044 258
## 9   max min_per_class_accuracy  0.842303   0.742523 182
## 10 max mean_per_class_accuracy  0.750678   0.777190 241
## 11                     max tns  0.999195 154.000000   0
## 12                     max fns  0.999195 768.000000   0
## 13                     max fps  0.054103 154.000000 399
## 14                     max tps  0.187422 769.000000 393
## 15                     max tnr  0.999195   1.000000   0
## 16                     max fnr  0.999195   0.998700   0
## 17                     max fpr  0.054103   1.000000 399
## 18                     max tpr  0.187422   1.000000 393
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.884252 0.028423   0.913044   0.848168   0.864407   0.884817
## auc        0.829827 0.045185   0.859138   0.848993   0.803784   0.873428
## err        0.115747 0.028423   0.086957   0.151832   0.135593   0.115183
## err_count 21.400000 5.727129  18.000000  29.000000  24.000000  22.000000
## f0point5   0.909742 0.024896   0.935829   0.872162   0.906631   0.905421
##           cv_5_valid
## accuracy    0.910828
## auc         0.763789
## err         0.089172
## err_count  14.000000
## f0point5    0.928668
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.895001  0.029697   0.925926   0.848837   0.899329
## r2                  0.276242  0.069370   0.332766   0.289536   0.262182
## recall              0.974962  0.022030   0.977654   0.979866   0.937063
## residual_deviance 123.166010 21.592514 115.167755 148.735320 140.263760
## rmse                0.312648  0.030056   0.279367   0.349105   0.338383
## specificity         0.418511  0.111173   0.500000   0.380952   0.558824
##                   cv_4_valid cv_5_valid
## precision           0.887006   0.913907
## r2                  0.332403   0.164324
## recall              0.987421   0.992806
## residual_deviance 117.098526  94.564660
## rmse                0.305139   0.291248
## specificity         0.375000   0.277778

Save and Load

# ?h2o.getModel
# ?h2o.saveModel
# ?h2o.loadModel

# h2o.getModel("GLM_1_AutoML_2_20240423_111019") %>%
 # h2o.saveModel("h2o_models/")

# best_model <- h2o.loadModel("h2o_models/StackedEnsemble_BestOfFamily_3_AutoML_2_20240423_111019")

Make predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
predictions_tbl <- predictions %>%
  as_tibble()

predictions_tbl %>%
  bind_cols(test_tbl)
## # A tibble: 369 × 35
##    predict   Left    No   Age Attrition BusinessTravel    DailyRate Department  
##    <fct>    <dbl> <dbl> <dbl> <fct>     <fct>                 <dbl> <fct>       
##  1 Left    0.508  0.492    41 Left      Travel_Rarely          1102 Sales       
##  2 No      0.0285 0.972    49 No        Travel_Frequently       279 Research & …
##  3 No      0.313  0.687    33 No        Travel_Frequently      1392 Research & …
##  4 No      0.226  0.774    59 No        Travel_Rarely          1324 Research & …
##  5 No      0.0624 0.938    38 No        Travel_Frequently       216 Research & …
##  6 No      0.297  0.703    29 No        Travel_Rarely           153 Research & …
##  7 No      0.0860 0.914    34 No        Travel_Rarely          1346 Research & …
##  8 Left    0.854  0.146    28 Left      Travel_Rarely           103 Research & …
##  9 No      0.294  0.706    22 No        Non-Travel             1123 Research & …
## 10 No      0.0470 0.953    53 No        Travel_Rarely          1219 Sales       
## # ℹ 359 more rows
## # ℹ 27 more variables: DistanceFromHome <dbl>, Education <dbl>,
## #   EducationField <fct>, EmployeeNumber <dbl>, EnvironmentSatisfaction <dbl>,
## #   Gender <fct>, HourlyRate <dbl>, JobInvolvement <dbl>, JobLevel <dbl>,
## #   JobRole <fct>, JobSatisfaction <dbl>, MaritalStatus <fct>,
## #   MonthlyIncome <dbl>, MonthlyRate <dbl>, NumCompaniesWorked <dbl>,
## #   OverTime <fct>, PercentSalaryHike <dbl>, PerformanceRating <dbl>, …

Evaluate model

?h2o.performance
performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_4_AutoML_16_20240423_171707"
## 
## 
## $model_checksum
## [1] "1379314344025728720"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_9fb0_3"
## 
## 
## $frame_checksum
## [1] "-54192601206779456"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.713907e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.09362011
## 
## $RMSE
## [1] 0.305974
## 
## $nobs
## [1] 369
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.3124376
## 
## $logloss
## [1] 0.3215735
## 
## $AUC
## [1] 0.8355987
## 
## $pr_auc
## [1] 0.9521769
## 
## $Gini
## [1] 0.6711974
## 
## $mean_per_class_error
## [1] 0.3097087
## 
## $domain
## [1] "Left" "No"  
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        Left  No  Error       Rate
## Left     24  36 0.6000 =  36 / 60
## No        6 303 0.0194 =  6 / 309
## Totals   30 339 0.1138 = 42 / 369
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.998640 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.997506 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.997235 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.996570 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.996426 0.031847 0.020145 0.075988 0.176152  1.000000 0.016181    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.051645               0.016181                0.508091  60 304   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 1.000000 0.983819 0.000000 0.016181   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.211987 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.159938 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.156074 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.146337 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.053633 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.050832 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.460716   0.935185 338
## 2                       max f2  0.257183   0.967439 360
## 3                 max f0point5  0.647668   0.924018 310
## 4                 max accuracy  0.548472   0.886179 326
## 5                max precision  0.998640   1.000000   0
## 6                   max recall  0.257183   1.000000 360
## 7              max specificity  0.998640   1.000000   0
## 8             max absolute_mcc  0.637093   0.537339 313
## 9   max min_per_class_accuracy  0.814929   0.766667 250
## 10 max mean_per_class_accuracy  0.858457   0.775890 231
## 11                     max tns  0.998640  60.000000   0
## 12                     max fns  0.998640 308.000000   0
## 13                     max fps  0.050832  60.000000 368
## 14                     max tps  0.257183 309.000000 360
## 15                     max tnr  0.998640   1.000000   0
## 16                     max fnr  0.998640   0.996764   0
## 17                     max fpr  0.050832   1.000000 368
## 18                     max tpr  0.257183   1.000000 360
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate: 83.74 %, avg score: 82.73 %
##    group cumulative_data_fraction lower_threshold     lift cumulative_lift
## 1      1               0.01084011        0.996472 1.194175        1.194175
## 2      2               0.02168022        0.994762 1.194175        1.194175
## 3      3               0.03252033        0.993227 1.194175        1.194175
## 4      4               0.04065041        0.992830 1.194175        1.194175
## 5      5               0.05149051        0.991970 1.194175        1.194175
## 6      6               0.10027100        0.985567 1.127832        1.161900
## 7      7               0.15176152        0.980163 1.194175        1.172850
## 8      8               0.20054201        0.973178 1.061489        1.145762
## 9      9               0.30081301        0.955092 1.097350        1.129625
## 10    10               0.40108401        0.938115 1.194175        1.145762
## 11    11               0.50135501        0.912385 1.129625        1.142535
## 12    12               0.59891599        0.869956 1.161003        1.145543
## 13    13               0.69918699        0.809161 1.000525        1.124746
## 14    14               0.79945799        0.710212 0.968250        1.105118
## 15    15               0.89972900        0.496434 0.839150        1.075477
## 16    16               1.00000000        0.050832 0.322750        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.997488                 1.000000         0.997488
## 2       1.000000 0.995871                 1.000000         0.996680
## 3       1.000000 0.993833                 1.000000         0.995731
## 4       1.000000 0.992918                 1.000000         0.995168
## 5       1.000000 0.992459                 1.000000         0.994598
## 6       0.944444 0.988266                 0.972973         0.991517
## 7       1.000000 0.982770                 0.982143         0.988549
## 8       0.888889 0.976622                 0.959459         0.985648
## 9       0.918919 0.963735                 0.945946         0.978344
## 10      1.000000 0.946735                 0.959459         0.970441
## 11      0.945946 0.925915                 0.956757         0.961536
## 12      0.972222 0.893785                 0.959276         0.950500
## 13      0.837838 0.839927                 0.941860         0.934642
## 14      0.810811 0.767138                 0.925424         0.913633
## 15      0.702703 0.625716                 0.900602         0.881546
## 16      0.270270 0.340207                 0.837398         0.827266
##    capture_rate cumulative_capture_rate       gain cumulative_gain
## 1      0.012945                0.012945  19.417476       19.417476
## 2      0.012945                0.025890  19.417476       19.417476
## 3      0.012945                0.038835  19.417476       19.417476
## 4      0.009709                0.048544  19.417476       19.417476
## 5      0.012945                0.061489  19.417476       19.417476
## 6      0.055016                0.116505  12.783172       16.189976
## 7      0.061489                0.177994  19.417476       17.285021
## 8      0.051780                0.229773   6.148867       14.576227
## 9      0.110032                0.339806   9.734978       12.962477
## 10     0.119741                0.459547  19.417476       14.576227
## 11     0.113269                0.572816  12.962477       14.253477
## 12     0.113269                0.686084  16.100324       14.554321
## 13     0.100324                0.786408   0.052480       12.474599
## 14     0.097087                0.883495  -3.175020       10.511766
## 15     0.084142                0.967638 -16.085017        7.547666
## 16     0.032362                1.000000 -67.725007        0.000000
##    kolmogorov_smirnov
## 1            0.012945
## 2            0.025890
## 3            0.038835
## 4            0.048544
## 5            0.061489
## 6            0.099838
## 7            0.161327
## 8            0.179773
## 9            0.239806
## 10           0.359547
## 11           0.439482
## 12           0.536084
## 13           0.536408
## 14           0.516828
## 15           0.417638
## 16           0.000000
## 
## $residual_deviance
## [1] 237.3213
## 
## $null_deviance
## [1] 327.6898
## 
## $AIC
## [1] 247.3213
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 368
## 
## $residual_degrees_of_freedom
## [1] 364
h2o.auc(performance_h2o)
## [1] 0.8355987
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.46071624816231:
##        Left  No    Error     Rate
## Left     24  36 0.600000   =36/60
## No        6 303 0.019417   =6/309
## Totals   30 339 0.113821  =42/369
h2o.metric(performance_h2o)
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.998640 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.997506 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.997235 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.996570 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.996426 0.031847 0.020145 0.075988 0.176152  1.000000 0.016181    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.051645               0.016181                0.508091  60 304   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 1.000000 0.983819 0.000000 0.016181   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.211987 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.159938 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.156074 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.146337 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.053633 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.050832 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368