library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(timetk)
library(umap)
library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## 
## Attaching package: 'h2o'
## 
## The following objects are masked from 'package:lubridate':
## 
##     day, hour, month, week, year
## 
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## 
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.0
## ✔ dials        1.2.0     ✔ tune         1.1.2
## ✔ infer        1.0.6     ✔ workflows    1.1.3
## ✔ modeldata    1.3.0     ✔ workflowsets 1.0.1
## ✔ parsnip      1.1.1     ✔ yardstick    1.3.0
## ✔ recipes      1.0.9     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ xts::first()      masks dplyr::first()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ xts::last()       masks dplyr::last()
## ✖ dials::momentum() masks TTR::momentum()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

Split data

set.seed(1234)

data_split <- initial_split(claims_tbl, strata = "claims")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)
recipe_obj <- recipe(claims ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 
# Initialize h2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         5 days 22 hours 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    4 months and 2 days 
##     H2O cluster name:           H2O_started_from_R_spencer_qns693 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   2.94 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.2.2 (2022-10-31)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (4 months and 2 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2345)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o <- as.h2o(test_tbl)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
y <- "claims"
x <- setdiff(names(train_tbl), y)

models_h2o <- h2o.automl(
  x = x,
  y = y,
  training_frame     = train_h2o, 
  validation_frame  = valid_h2o, 
  leaderboard_frame = test_h2o, 
  max_runtime_secs  = 30, 
  nfolds            = 5, 
  seed              = 3456
)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
## 16:11:03.273: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |===================================                                   |  51%
  |                                                                            
  |========================================                              |  57%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |======================================================                |  78%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |===================================================================== |  98%
  |                                                                            
  |======================================================================| 100%
models_h2o %>% typeof()
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                   model_id     rmse     mse
## 1                      XGBoost_2_AutoML_10_20240423_161103 1791.119 3208109
## 2 StackedEnsemble_BestOfFamily_3_AutoML_10_20240423_161103 1802.031 3247315
## 3 StackedEnsemble_BestOfFamily_2_AutoML_10_20240423_161103 1823.060 3323549
## 4 StackedEnsemble_BestOfFamily_4_AutoML_10_20240423_161103 1823.715 3325937
## 5    StackedEnsemble_AllModels_1_AutoML_10_20240423_161103 1845.937 3407484
## 6                      XGBoost_1_AutoML_10_20240423_161103 1996.418 3985683
##        mae rmsle mean_residual_deviance
## 1 696.1008   NaN                3208109
## 2 704.0922   NaN                3247315
## 3 719.9349   NaN                3323549
## 4 740.3592   NaN                3325937
## 5 684.5565   NaN                3407484
## 6 725.8394   NaN                3985683
## 
## [29 rows x 6 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2ORegressionModel: xgboost
## Model ID:  XGBoost_2_AutoML_10_20240423_161103 
## Model Summary: 
##   number_of_trees
## 1              75
## 
## 
## H2ORegressionMetrics: xgboost
## ** Reported on training data. **
## 
## MSE:  1608972
## RMSE:  1268.453
## MAE:  558.3463
## RMSLE:  NaN
## Mean Residual Deviance :  1608972
## 
## 
## H2ORegressionMetrics: xgboost
## ** Reported on validation data. **
## 
## MSE:  2548844
## RMSE:  1596.51
## MAE:  684.1506
## RMSLE:  NaN
## Mean Residual Deviance :  2548844
## 
## 
## H2ORegressionMetrics: xgboost
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  5571552
## RMSE:  2360.413
## MAE:  737.2327
## RMSLE:  NaN
## Mean Residual Deviance :  5571552
## 
## 
## Cross-Validation Metrics Summary: 
##                                  mean             sd      cv_1_valid
## mae                        737.232400      57.348873      743.818300
## mean_residual_deviance 5571020.000000 4213982.500000 12119702.000000
## mse                    5571020.000000 4213982.500000 12119702.000000
## r2                           0.763817       0.119151        0.663727
## residual_deviance      5571020.000000 4213982.500000 12119702.000000
## rmse                      2236.564200     843.208860     3481.336200
## rmsle                              NA       0.000000              NA
##                            cv_2_valid     cv_3_valid     cv_4_valid
## mae                        732.494400     762.334530     801.527830
## mean_residual_deviance 2774197.500000 2473772.000000 7536740.000000
## mse                    2774197.500000 2473772.000000 7536740.000000
## r2                           0.832005       0.814385       0.614147
## residual_deviance      2774197.500000 2473772.000000 7536740.000000
## rmse                      1665.592200    1572.823000    2745.312300
## rmsle                              NA             NA             NA
##                            cv_5_valid
## mae                        645.986940
## mean_residual_deviance 2950688.200000
## mse                    2950688.200000
## r2                           0.894822
## residual_deviance      2950688.200000
## rmse                      1717.756700
## rmsle                              NA
#h2o.getModel("XGBoost_2_AutoML_6_20240423_150448") %>%
  #h2o.saveModel("h2o_models/")

best_model <- h2o.loadModel("h2o_models/XGBoost_2_AutoML_6_20240423_150448")
predictions <- h2o.predict(best_model, newdata = test_h2o)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
predictions_tbl <- predictions %>%
  as_tibble()

predictions_tbl %>%
  bind_cols(test_tbl)
## # A tibble: 2,763 × 4
##    predict symbol      date       claims
##      <dbl> <fct>       <date>      <int>
##  1   5471. Connecticut 1989-01-14   6503
##  2   4149. Connecticut 1989-01-28   4663
##  3   3502. Connecticut 1989-04-08   3610
##  4   3859. Connecticut 1989-04-29   3191
##  5   3882. Connecticut 1989-05-06   3224
##  6   4474. Connecticut 1989-08-12   3704
##  7   4316. Connecticut 1989-08-26   3373
##  8   3719. Connecticut 1989-09-02   2902
##  9   3719. Connecticut 1989-09-09   2856
## 10   3719. Connecticut 1989-09-16   3025
## # ℹ 2,753 more rows
?h2o.performance
performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "XGBoost_2_AutoML_6_20240423_150448"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/XGBoost_2_AutoML_6_20240423_150448"
## 
## 
## $model_checksum
## [1] "899625653374478336"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_bd23_3"
## 
## 
## $frame_checksum
## [1] "8810563200150418260"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.713903e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 3139737
## 
## $RMSE
## [1] 1771.93
## 
## $nobs
## [1] 2763
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.8661028
## 
## $mean_residual_deviance
## [1] 3139737
## 
## $mae
## [1] 694.2018
## 
## $rmsle
## [1] "NaN"
h2o.auc(performance_h2o)
## NULL
h2o.confusionMatrix(performance_h2o)
## Warning in .local(object, ...): No Confusion Matrices for H2ORegressionMetrics
## NULL