Introduction
When should you write the function
# Create a data frame
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10)
)
# Rescale each column
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.444 0.623 1 0.819
## 2 0.363 0 0.482 1
## 3 0.572 0.475 0 0.332
## 4 0.390 0.255 0.231 0.555
## 5 1 0.380 0.479 0
## 6 0.774 0.619 0.0596 0.990
## 7 0.354 0.659 0.625 0.707
## 8 0.519 1 0.765 0.544
## 9 0.361 0.491 0.367 0.00119
## 10 0 0.435 0.536 0.673
rescale <- function(x) {
# Body
x <- (x- min(x, na.rm = TRUE)) /
(max(x, na.rm = TRUE) - min(x,na.rm = TRUE))
# Return
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.444 0.623 1 0.819
## 2 0.363 0 0.482 1
## 3 0.572 0.475 0 0.332
## 4 0.390 0.255 0.231 0.555
## 5 1 0.380 0.479 0
## 6 0.774 0.619 0.0596 0.990
## 7 0.354 0.659 0.625 0.707
## 8 0.519 1 0.765 0.544
## 9 0.361 0.491 0.367 0.00119
## 10 0 0.435 0.536 0.673
Functions are for humans and computers
Conditional execution
detect_sign <- function(x) {
if (x > 0) {
message("Value is positive")
print(x)
} else if (x ==0) {
warning("Value is not positive, but it can be accepted")
print(x)
} else {
message("Value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign()
## Value is positive
## [1] 3
0 %>% detect_sign()
## Warning in detect_sign(.): Value is not positive, but it can be accepted
## [1] 0
-1 %>% detect_sign()
## Value is negative, the function must stop
## [1] -1
Function arguments
?mean
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
Return value