Rows: 64 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 48 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 64 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 61 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 21 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 64 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Rows: 48 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
f(dat[dat$ratio==25,],fnam,"ratio=25")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-6.0663 -2.7921 -0.5567 0.6360 13.6207
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.688e+00 4.979e+00 0.942 0.358
nlist 8.845e-04 1.492e-05 59.262 < 2e-16 ***
pq_bits 9.568e-01 6.293e-01 1.520 0.144
pq_dim 3.176e-01 5.817e-02 5.460 2.41e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.56 on 20 degrees of freedom
Multiple R-squared: 0.9944, Adjusted R-squared: 0.9935
F-statistic: 1181 on 3 and 20 DF, p-value: < 2.2e-16
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 6 68.504
2 17 187.637 -11 -119.13 0.9486 0.5568
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
Min 1Q Median 3Q Max
-5.2314 -1.8425 0.4141 1.4580 9.0718
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 60.2590 1.7942 33.585 < 2e-16 ***
factor(nlist)1e+05 51.2720 1.6611 30.866 2.27e-16 ***
factor(nlist)2e+05 134.0820 1.6611 80.717 < 2e-16 ***
factor(pq_dim)64 10.1627 1.3563 7.493 8.80e-07 ***
factor(pq_bits)5 1.1008 1.9181 0.574 0.5736
factor(pq_bits)6 0.9049 1.9181 0.472 0.6431
factor(pq_bits)8 3.9873 1.9181 2.079 0.0531 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.322 on 17 degrees of freedom
Multiple R-squared: 0.9975, Adjusted R-squared: 0.9966
F-statistic: 1116 on 6 and 17 DF, p-value: < 2.2e-16
f(dat[dat$ratio==10,],fnam,"ratio=10")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-5.956 -2.452 -1.498 1.014 12.709
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1967811 5.1042068 1.018 0.3208
nlist 0.0010484 0.0000153 68.517 < 2e-16 ***
pq_bits 1.5136234 0.6451531 2.346 0.0294 *
pq_dim 0.6078328 0.0596371 10.192 2.29e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.675 on 20 degrees of freedom
Multiple R-squared: 0.9959, Adjusted R-squared: 0.9952
F-statistic: 1601 on 3 and 20 DF, p-value: < 2.2e-16
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 6 142.39
2 17 240.49 -11 -98.104 0.3758 0.9241
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
Min 1Q Median 3Q Max
-7.4453 -1.9510 -0.4881 1.4497 8.6353
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 81.7010 2.0313 40.222 < 2e-16 ***
factor(nlist)1e+05 57.9460 1.8806 30.813 2.34e-16 ***
factor(nlist)2e+05 158.3636 1.8806 84.210 < 2e-16 ***
factor(pq_dim)64 19.4506 1.5355 12.667 4.38e-10 ***
factor(pq_bits)5 1.4814 2.1715 0.682 0.50431
factor(pq_bits)6 -0.4807 2.1715 -0.221 0.82744
factor(pq_bits)8 6.4335 2.1715 2.963 0.00872 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.761 on 17 degrees of freedom
Multiple R-squared: 0.9977, Adjusted R-squared: 0.9969
F-statistic: 1239 on 6 and 17 DF, p-value: < 2.2e-16
Rows: 64 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
f(dat[dat$ratio==25,],fnam,"ratio=25")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.12424 -0.04840 0.01840 0.05831 0.09975
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.642e-01 6.567e-02 7.068 1.09e-07 ***
nlist 2.343e-04 4.598e-06 50.955 < 2e-16 ***
pq_bits 8.435e-02 8.534e-03 9.884 1.24e-10 ***
pq_dim 5.702e-03 7.889e-04 7.229 7.21e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0714 on 28 degrees of freedom
Multiple R-squared: 0.9899, Adjusted R-squared: 0.9888
F-statistic: 915.5 on 3 and 28 DF, p-value: < 2.2e-16
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 0.0011307
2 24 0.0053017 -15 -0.0041709 2.2133 0.1152
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.02084 -0.01069 -0.00248 0.00853 0.03706
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.270380 0.007431 170.948 <2e-16 ***
factor(nlist)2048 0.261966 0.007431 35.251 <2e-16 ***
factor(nlist)4096 0.765539 0.007431 103.014 <2e-16 ***
factor(nlist)8192 1.685642 0.007431 226.827 <2e-16 ***
factor(pq_dim)64 0.182478 0.005255 34.726 <2e-16 ***
factor(pq_bits)5 -0.006566 0.007431 -0.884 0.386
factor(pq_bits)6 0.012464 0.007431 1.677 0.106
factor(pq_bits)8 0.324446 0.007431 43.659 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01486 on 24 degrees of freedom
Multiple R-squared: 0.9996, Adjusted R-squared: 0.9995
F-statistic: 9143 on 7 and 24 DF, p-value: < 2.2e-16
f(dat[dat$ratio==10,],fnam,"ratio=10")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.17132 -0.07851 -0.00766 0.07367 0.53658
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.950e-01 1.255e-01 5.536 6.42e-06 ***
nlist 2.697e-04 8.788e-06 30.687 < 2e-16 ***
pq_bits 8.509e-02 1.631e-02 5.216 1.54e-05 ***
pq_dim 1.262e-02 1.508e-03 8.367 4.21e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1365 on 28 degrees of freedom
Multiple R-squared: 0.9738, Adjusted R-squared: 0.9709
F-statistic: 346.3 on 3 and 28 DF, p-value: < 2.2e-16
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 0.098824
2 24 0.243325 -15 -0.1445 0.8773 0.605
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.10615 -0.04673 -0.00208 0.02411 0.41818
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.84717 0.05035 36.690 < 2e-16 ***
factor(nlist)2048 0.18589 0.05035 3.692 0.00114 **
factor(nlist)4096 0.76698 0.05035 15.235 7.74e-14 ***
factor(nlist)8192 1.89957 0.05035 37.731 < 2e-16 ***
factor(pq_dim)64 0.40375 0.03560 11.341 3.98e-11 ***
factor(pq_bits)5 -0.02751 0.05035 -0.547 0.58976
factor(pq_bits)6 -0.04601 0.05035 -0.914 0.36983
factor(pq_bits)8 0.32686 0.05035 6.492 1.03e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1007 on 24 degrees of freedom
Multiple R-squared: 0.9878, Adjusted R-squared: 0.9842
F-statistic: 276.6 on 7 and 24 DF, p-value: < 2.2e-16
Rows: 61 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
f(dat[dat$ratio==25,],fnam,"ratio=25")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.028071 -0.010301 0.003018 0.013393 0.026537
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.183e-02 1.705e-02 3.039 0.0055 **
nlist 7.424e-05 1.121e-06 66.221 < 2e-16 ***
pq_bits 1.886e-02 2.010e-03 9.385 1.14e-09 ***
pq_dim 7.799e-03 1.918e-04 40.669 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01628 on 25 degrees of freedom
Multiple R-squared: 0.9955, Adjusted R-squared: 0.9949
F-statistic: 1824 on 3 and 25 DF, p-value: < 2.2e-16
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 6 0.0000363
2 21 0.0045580 -15 -0.0045217 49.783 4.917e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.018898 -0.012924 0.002513 0.009576 0.021932
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.435392 0.009645 45.143 < 2e-16 ***
factor(nlist)2048 0.088130 0.008638 10.203 1.36e-09 ***
factor(nlist)4096 0.250169 0.008638 28.962 < 2e-16 ***
factor(nlist)8192 0.538890 0.008638 62.388 < 2e-16 ***
factor(pq_dim)64 0.251911 0.005676 44.381 < 2e-16 ***
factor(pq_bits)5 0.029015 0.007875 3.684 0.00138 **
factor(pq_bits)6 0.042578 0.007875 5.407 2.31e-05 ***
factor(pq_bits)8 0.080135 0.007688 10.423 9.33e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01473 on 21 degrees of freedom
Multiple R-squared: 0.9969, Adjusted R-squared: 0.9958
F-statistic: 956.3 on 7 and 21 DF, p-value: < 2.2e-16
f(dat[dat$ratio==10,],fnam,"ratio=10")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.09329 -0.04351 -0.01738 0.00768 0.48621
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.715e-01 9.555e-02 -1.795 0.083467 .
nlist 7.455e-05 6.689e-06 11.144 8.36e-12 ***
pq_bits 5.202e-02 1.242e-02 4.190 0.000252 ***
pq_dim 1.768e-02 1.148e-03 15.407 3.34e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1039 on 28 degrees of freedom
Multiple R-squared: 0.9312, Adjusted R-squared: 0.9239
F-statistic: 126.4 on 3 and 28 DF, p-value: 2.221e-16
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 0.10527
2 24 0.27241 -15 -0.16714 0.9527 0.5517
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.11670 -0.04953 0.00262 0.02053 0.43734
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.72701 0.05327 13.648 8.33e-13 ***
factor(nlist)2048 0.01367 0.05327 0.257 0.799609
factor(nlist)4096 0.17844 0.05327 3.350 0.002666 **
factor(nlist)8192 0.51153 0.05327 9.603 1.08e-09 ***
factor(pq_dim)64 0.56587 0.03767 15.023 1.05e-13 ***
factor(pq_bits)5 0.03914 0.05327 0.735 0.469622
factor(pq_bits)6 0.05951 0.05327 1.117 0.275001
factor(pq_bits)8 0.20875 0.05327 3.919 0.000647 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1065 on 24 degrees of freedom
Multiple R-squared: 0.938, Adjusted R-squared: 0.9199
F-statistic: 51.87 on 7 and 24 DF, p-value: 5.857e-13
Rows: 21 Columns: 11
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): algo_name, index_name
dbl (9): time, threads, cpu_time, GPU, niter, nlist, pq_bits, pq_dim, ratio
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
f(dat[dat$ratio==25,],fnam,"ratio=25")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.73696 -0.33772 -0.09933 0.31902 0.89036
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1255192 0.9332102 5.492 0.000914 ***
nlist 0.0009423 0.0001125 8.374 6.8e-05 ***
pq_bits 0.5786647 0.1334009 4.338 0.003405 **
pq_dim 0.0091787 0.0130170 0.705 0.503507
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5891 on 7 degrees of freedom
Multiple R-squared: 0.9534, Adjusted R-squared: 0.9335
F-statistic: 47.77 on 3 and 7 DF, p-value: 4.983e-05
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 0 0.0000
2 5 1.8596 -5 -1.8596 NaN NaN
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
1 2 3 4 5 6 7 8
0.90893 -0.45727 -0.45166 0.01629 -0.45826 0.22410 0.21787 -0.01629
9 10 11
-0.45067 0.23317 0.23379
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.189e+01 4.546e-01 26.162 1.52e-06 ***
factor(nlist)8192 3.807e+00 4.821e-01 7.896 0.000524 ***
factor(pq_dim)64 2.937e-01 4.312e-01 0.681 0.526056
factor(pq_bits)5 7.139e-04 4.979e-01 0.001 0.998911
factor(pq_bits)6 8.405e-01 4.979e-01 1.688 0.152227
factor(pq_bits)8 2.228e+00 5.750e-01 3.874 0.011709 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6099 on 5 degrees of freedom
Multiple R-squared: 0.9643, Adjusted R-squared: 0.9287
F-statistic: 27.05 on 5 and 5 DF, p-value: 0.001255
f(dat[dat$ratio==10,],fnam,"ratio=10")
Call:
lm(formula = time ~ nlist + pq_bits + pq_dim, data = dd)
Residuals:
Min 1Q Median 3Q Max
-0.55063 -0.23947 0.05224 0.34204 0.37335
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0389453 0.7645348 6.591 0.000586 ***
nlist 0.0013413 0.0001014 13.231 1.15e-05 ***
pq_bits 0.5116543 0.1069908 4.782 0.003056 **
pq_dim 0.0195855 0.0100304 1.953 0.098700 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4539 on 6 degrees of freedom
Multiple R-squared: 0.9831, Adjusted R-squared: 0.9747
F-statistic: 116.5 on 3 and 6 DF, p-value: 1.046e-05
Analysis of Variance Table
Model 1: time ~ (factor(nlist) + factor(pq_dim) + factor(pq_bits))^2
Model 2: time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 0 0.0000000
2 4 0.0040451 -4 -0.0040451 NaN NaN
Call:
lm(formula = time ~ factor(nlist) + factor(pq_dim) + factor(pq_bits),
data = dd)
Residuals:
1 2 3 4 5 6 7 8
0.003665 -0.003665 0.035091 -0.022965 -0.017118 0.004993 -0.035091 0.022965
9 10
0.013453 -0.001327
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.46793 0.02597 518.694 8.29e-11 ***
factor(nlist)8192 5.58871 0.02975 187.877 4.81e-09 ***
factor(pq_dim)64 0.62674 0.02249 27.872 9.86e-06 ***
factor(pq_bits)5 -0.01158 0.02597 -0.446 0.6787
factor(pq_bits)6 0.13933 0.03045 4.576 0.0102 *
factor(pq_bits)8 2.02856 0.03045 66.627 3.04e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.0318 on 4 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
F-statistic: 1.448e+04 on 5 and 4 DF, p-value: 1.335e-08