4. Clustering
# All_samples_Merged <- FindNeighbors(All_samples_Merged,
# dims = 1:8,
# verbose = FALSE)
#
# # understanding resolution
# All_samples_Merged <- FindClusters(All_samples_Merged,
# resolution = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 1.2, 1.5, 1.7, 2))
# non-linear dimensionality reduction --------------
# All_samples_Merged <- RunUMAP(All_samples_Merged,
# dims = 1:8,
# verbose = FALSE)
# note that you can set `label = TRUE` or use the LabelClusters function to help label
# individual clusters
UMAPPlot(All_samples_Merged,group.by = "cell_line",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.1",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.2",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.3",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.4",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.5",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.7",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

UMAPPlot(All_samples_Merged,
group.by = "SCT_snn_res.1",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

cluster_table <- table(Idents(All_samples_Merged))
cluster_table
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5246 4353 3799 3712 3690 3542 3490 2851 2511 2436 2414 2105 1983 1583 1172 1103 1093 986 837 200 87
LS0tCnRpdGxlOiAiUmVzb2x1dGlvbi0wLjEtdG8tMS1Ob3RlYm9vayIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiMjAyNC0wNC0yMyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKICAgIHRoZW1lOiBkYXJrbHkKICAgCi0tLQoKCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQoKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KEF6aW11dGgpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocm1hcmtkb3duKQpsaWJyYXJ5KHRpbnl0ZXgpCgoKYGBgCgoKIyAyLiBMb2FkIFNldXJhdCBPYmplY3QgCmBgYHtyIGxvYWRfc2V1cmF0fQoKI0xvYWQgU2V1cmF0IE9iamVjdCBtZXJnZWQgZnJvbSBjZWxsIGxpbmVzIGFuZCBhIGNvbnRyb2woUEJNQykgYWZ0ZXIgZmlsdHJhdGlvbgpTU19BbGxfc2FtcGxlc19NZXJnZWQgPC0gbG9hZCgiRGlmZmVyZW50X1Jlc29sdXRpb25fb25fbXlfVU1BUC0wLjEtdG8tMS5Sb2JqIikKCkFsbF9zYW1wbGVzX01lcmdlZApgYGAKCgoKCiMgMy4gTm9ybWFsaXplIGRhdGEKYGBge3IgTm9ybWFsaXplLCBmaWcuaGVpZ2h0PTQsIGZpZy53aWR0aD02fQoKCiMgQXBwbHkgU0NUcmFuc2Zvcm0KI0FsbF9zYW1wbGVzX01lcmdlZCA8LSBTQ1RyYW5zZm9ybShBbGxfc2FtcGxlc19NZXJnZWQsIHZlcmJvc2UgPSBUUlVFKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIApgYGAKCgojIDMuIFBlcmZvcm0gUENBCmBgYHtyIFBDQSwgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9Nn0KCiMgVmFyaWFibGVzX2dlbmVzIDwtIEFsbF9zYW1wbGVzX01lcmdlZEBhc3NheXMkU0NUQHZhci5mZWF0dXJlcwojIAojICMgRXhjbHVkZSBnZW5lcyBzdGFydGluZyB3aXRoICJITEEtIiBvciAiWGlzdCIKIyBWYXJpYWJsZXNfZ2VuZXNfYWZ0ZXJfZXhjbHVzaW9uIDwtIFZhcmlhYmxlc19nZW5lc1shZ3JlcGwoIl5ITEEtfF5YaXN0IiwgVmFyaWFibGVzX2dlbmVzKV0KIyAKIyAKIyAjIFRoZXNlIGFyZSBub3cgc3RhbmRhcmQgc3RlcHMgaW4gdGhlIFNldXJhdCB3b3JrZmxvdyBmb3IgdmlzdWFsaXphdGlvbiBhbmQgY2x1c3RlcmluZwojIEFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5QQ0EoQWxsX3NhbXBsZXNfTWVyZ2VkLAojICAgICAgICAgICAgICAgICAgICAgICAgIGZlYXR1cmVzID0gVmFyaWFibGVzX2dlbmVzX2FmdGVyX2V4Y2x1c2lvbiwKIyAgICAgICAgICAgICAgICAgICAgICAgICBkby5wcmludCA9IFRSVUUsIAojICAgICAgICAgICAgICAgICAgICAgICAgIHBjcy5wcmludCA9IDE6NSwgCiMgICAgICAgICAgICAgICAgICAgICAgICAgZ2VuZXMucHJpbnQgPSAxNSkKCiMgZGV0ZXJtaW5lIGRpbWVuc2lvbmFsaXR5IG9mIHRoZSBkYXRhCkVsYm93UGxvdChBbGxfc2FtcGxlc19NZXJnZWQpCmBgYAojIDQuIENsdXN0ZXJpbmcKYGBge3IgQzEsIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTZ9CiMgQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmROZWlnaGJvcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbXMgPSAxOjgsIAojICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmVyYm9zZSA9IEZBTFNFKQojIAojICMgdW5kZXJzdGFuZGluZyByZXNvbHV0aW9uCiMgQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmRDbHVzdGVycyhBbGxfc2FtcGxlc19NZXJnZWQsIAojICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlc29sdXRpb24gPSBjKDAuMSwgMC4yLCAwLjMsIDAuNCwgMC41LCAwLjcsIDEsIDEuMiwgMS41LCAxLjcsIDIpKQoKCmBgYAoKCmBgYHtyIEMyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCiMgbm9uLWxpbmVhciBkaW1lbnNpb25hbGl0eSByZWR1Y3Rpb24gLS0tLS0tLS0tLS0tLS0KIyBBbGxfc2FtcGxlc19NZXJnZWQgPC0gUnVuVU1BUChBbGxfc2FtcGxlc19NZXJnZWQsIAojICAgICAgICAgICAgICAgICAgICAgICAgICAgZGltcyA9IDE6OCwKIyAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlcmJvc2UgPSBGQUxTRSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAoKIyBub3RlIHRoYXQgeW91IGNhbiBzZXQgYGxhYmVsID0gVFJVRWAgb3IgdXNlIHRoZSBMYWJlbENsdXN0ZXJzIGZ1bmN0aW9uIHRvIGhlbHAgbGFiZWwKIyBpbmRpdmlkdWFsIGNsdXN0ZXJzClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCxncm91cC5ieSA9ICJjZWxsX2xpbmUiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjEiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKCgoKVU1BUFBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLAogICAgICAgIGdyb3VwLmJ5ID0gIlNDVF9zbm5fcmVzLjAuMiIsIAogICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwKICAgICAgICBsYWJlbC5zaXplID0gMywKICAgICAgICByZXBlbCA9IFQsCiAgICAgICAgbGFiZWwgPSBUKQoKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjMiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjQiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjUiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjciLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4xIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQpCgoKY2x1c3Rlcl90YWJsZSA8LSB0YWJsZShJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKSkKCmNsdXN0ZXJfdGFibGUKCmBgYAoKCgoKCgoKCg==