1. load libraries

2. Load Seurat Object


#Load Seurat Object merged from cell lines and a control(PBMC) after filtration
SS_All_samples_Merged <- load("Different_Resolution_on_my_UMAP-0.1-to-1.Robj")

All_samples_Merged
An object of class Seurat 
63098 features across 49193 samples within 3 assays 
Active assay: SCT (26469 features, 3000 variable features)
 3 layers present: counts, data, scale.data
 2 other assays present: RNA, ADT
 2 dimensional reductions calculated: pca, umap

3. Normalize data



# Apply SCTransform
#All_samples_Merged <- SCTransform(All_samples_Merged, verbose = TRUE)
                                      

3. Perform PCA


# Variables_genes <- All_samples_Merged@assays$SCT@var.features
# 
# # Exclude genes starting with "HLA-" or "Xist"
# Variables_genes_after_exclusion <- Variables_genes[!grepl("^HLA-|^Xist", Variables_genes)]
# 
# 
# # These are now standard steps in the Seurat workflow for visualization and clustering
# All_samples_Merged <- RunPCA(All_samples_Merged,
#                         features = Variables_genes_after_exclusion,
#                         do.print = TRUE, 
#                         pcs.print = 1:5, 
#                         genes.print = 15)

# determine dimensionality of the data
ElbowPlot(All_samples_Merged)

4. Clustering

# All_samples_Merged <- FindNeighbors(All_samples_Merged, 
#                                 dims = 1:8, 
#                                 verbose = FALSE)
# 
# # understanding resolution
# All_samples_Merged <- FindClusters(All_samples_Merged, 
#                                     resolution = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 1.2, 1.5, 1.7, 2))

# non-linear dimensionality reduction --------------
# All_samples_Merged <- RunUMAP(All_samples_Merged, 
#                           dims = 1:8,
#                           verbose = FALSE)
                                  

# note that you can set `label = TRUE` or use the LabelClusters function to help label
# individual clusters
UMAPPlot(All_samples_Merged,group.by = "cell_line", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)




UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)



UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.3", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.4", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.5", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.7", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


UMAPPlot(All_samples_Merged,
        group.by = "SCT_snn_res.1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)



cluster_table <- table(Idents(All_samples_Merged))

cluster_table

   0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20 
5246 4353 3799 3712 3690 3542 3490 2851 2511 2436 2414 2105 1983 1583 1172 1103 1093  986  837  200   87 
LS0tCnRpdGxlOiAiUmVzb2x1dGlvbi0wLjEtdG8tMS1Ob3RlYm9vayIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiMjAyNC0wNC0yMyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IAogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKICAgIHRoZW1lOiBkYXJrbHkKICAgCi0tLQoKCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQoKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KEF6aW11dGgpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocm1hcmtkb3duKQpsaWJyYXJ5KHRpbnl0ZXgpCgoKYGBgCgoKIyAyLiBMb2FkIFNldXJhdCBPYmplY3QgCmBgYHtyIGxvYWRfc2V1cmF0fQoKI0xvYWQgU2V1cmF0IE9iamVjdCBtZXJnZWQgZnJvbSBjZWxsIGxpbmVzIGFuZCBhIGNvbnRyb2woUEJNQykgYWZ0ZXIgZmlsdHJhdGlvbgpTU19BbGxfc2FtcGxlc19NZXJnZWQgPC0gbG9hZCgiRGlmZmVyZW50X1Jlc29sdXRpb25fb25fbXlfVU1BUC0wLjEtdG8tMS5Sb2JqIikKCkFsbF9zYW1wbGVzX01lcmdlZApgYGAKCgoKCiMgMy4gTm9ybWFsaXplIGRhdGEKYGBge3IgTm9ybWFsaXplLCBmaWcuaGVpZ2h0PTQsIGZpZy53aWR0aD02fQoKCiMgQXBwbHkgU0NUcmFuc2Zvcm0KI0FsbF9zYW1wbGVzX01lcmdlZCA8LSBTQ1RyYW5zZm9ybShBbGxfc2FtcGxlc19NZXJnZWQsIHZlcmJvc2UgPSBUUlVFKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIApgYGAKCgojIDMuIFBlcmZvcm0gUENBCmBgYHtyIFBDQSwgZmlnLmhlaWdodD00LCBmaWcud2lkdGg9Nn0KCiMgVmFyaWFibGVzX2dlbmVzIDwtIEFsbF9zYW1wbGVzX01lcmdlZEBhc3NheXMkU0NUQHZhci5mZWF0dXJlcwojIAojICMgRXhjbHVkZSBnZW5lcyBzdGFydGluZyB3aXRoICJITEEtIiBvciAiWGlzdCIKIyBWYXJpYWJsZXNfZ2VuZXNfYWZ0ZXJfZXhjbHVzaW9uIDwtIFZhcmlhYmxlc19nZW5lc1shZ3JlcGwoIl5ITEEtfF5YaXN0IiwgVmFyaWFibGVzX2dlbmVzKV0KIyAKIyAKIyAjIFRoZXNlIGFyZSBub3cgc3RhbmRhcmQgc3RlcHMgaW4gdGhlIFNldXJhdCB3b3JrZmxvdyBmb3IgdmlzdWFsaXphdGlvbiBhbmQgY2x1c3RlcmluZwojIEFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5QQ0EoQWxsX3NhbXBsZXNfTWVyZ2VkLAojICAgICAgICAgICAgICAgICAgICAgICAgIGZlYXR1cmVzID0gVmFyaWFibGVzX2dlbmVzX2FmdGVyX2V4Y2x1c2lvbiwKIyAgICAgICAgICAgICAgICAgICAgICAgICBkby5wcmludCA9IFRSVUUsIAojICAgICAgICAgICAgICAgICAgICAgICAgIHBjcy5wcmludCA9IDE6NSwgCiMgICAgICAgICAgICAgICAgICAgICAgICAgZ2VuZXMucHJpbnQgPSAxNSkKCiMgZGV0ZXJtaW5lIGRpbWVuc2lvbmFsaXR5IG9mIHRoZSBkYXRhCkVsYm93UGxvdChBbGxfc2FtcGxlc19NZXJnZWQpCmBgYAojIDQuIENsdXN0ZXJpbmcKYGBge3IgQzEsIGZpZy5oZWlnaHQ9NCwgZmlnLndpZHRoPTZ9CiMgQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmROZWlnaGJvcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCAKIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRpbXMgPSAxOjgsIAojICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdmVyYm9zZSA9IEZBTFNFKQojIAojICMgdW5kZXJzdGFuZGluZyByZXNvbHV0aW9uCiMgQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmRDbHVzdGVycyhBbGxfc2FtcGxlc19NZXJnZWQsIAojICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlc29sdXRpb24gPSBjKDAuMSwgMC4yLCAwLjMsIDAuNCwgMC41LCAwLjcsIDEsIDEuMiwgMS41LCAxLjcsIDIpKQoKCmBgYAoKCmBgYHtyIEMyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCiMgbm9uLWxpbmVhciBkaW1lbnNpb25hbGl0eSByZWR1Y3Rpb24gLS0tLS0tLS0tLS0tLS0KIyBBbGxfc2FtcGxlc19NZXJnZWQgPC0gUnVuVU1BUChBbGxfc2FtcGxlc19NZXJnZWQsIAojICAgICAgICAgICAgICAgICAgICAgICAgICAgZGltcyA9IDE6OCwKIyAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlcmJvc2UgPSBGQUxTRSkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAoKIyBub3RlIHRoYXQgeW91IGNhbiBzZXQgYGxhYmVsID0gVFJVRWAgb3IgdXNlIHRoZSBMYWJlbENsdXN0ZXJzIGZ1bmN0aW9uIHRvIGhlbHAgbGFiZWwKIyBpbmRpdmlkdWFsIGNsdXN0ZXJzClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCxncm91cC5ieSA9ICJjZWxsX2xpbmUiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjEiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKCgoKVU1BUFBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLAogICAgICAgIGdyb3VwLmJ5ID0gIlNDVF9zbm5fcmVzLjAuMiIsIAogICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwKICAgICAgICBsYWJlbC5zaXplID0gMywKICAgICAgICByZXBlbCA9IFQsCiAgICAgICAgbGFiZWwgPSBUKQoKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjMiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjQiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjUiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjciLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKClVNQVBQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4xIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQpCgoKY2x1c3Rlcl90YWJsZSA8LSB0YWJsZShJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKSkKCmNsdXN0ZXJfdGFibGUKCmBgYAoKCgoKCgoKCg==