Introduction

14th Weather Squadron Patch
14th Weather Squadron Patch

The 14th Weather Squadron (14WS) is the US Air Force’s only climatological unit. They are tasked to “Collect, Protect, [and] Exploit” global weather data. They do this by ingesting weather observations from around the world and storing them for climatological analysis to support the DOD. They produce many kinds of products – including the Operational Climate Data Summary (OCDS). The OCDS is a product that is produced for nearly 4000 locations around the world. An example OCDS is provided in Appendix A (Download Appendix A - KIND_Climogram.pdf). Each product is currently comprised of the following monthly statistics calculated from the previous complete 10 years of data for that location:

  • maximum (max) temperature [extreme],
  • minimum (min) temperature [extreme],
  • average max temperature,
  • average min temperature,
  • maximum precipitation (liquid and snow, where available) [extreme],
  • average precipitation (liquid and snow, where available),
  • monthly prevailing wind speed and direction [extreme],
  • and max and min average relative humidity.

These monthly temperature, precipitation, wind, and humidity statistics are averaged at the 15th day of each month, whereas the maximum and minimum temperature are absolutes that are recorded. The OCDS is updated whenever necessary – typically on a monthly to quarterly basis, or when errors are discovered that slipped through the Quality Check process. The purpose of updating the OCDS is to recalculate each of the above metrics with the most recent data. By updating these metrics, current, relevant weather data is presented. These OCDSs are exceedingly useful for decision makers during the planning phase of exercises, training experiences, and operations as these events take place up to years in the future after planning.

Domain 1

Business Understanding

Recently, a request was sent to the 14WS to investigate the reality of producing a 10-day OCDS instead of monthly. Meaning, it would encompass a 10-day interval for averages instead of a month’s worth of data. This prompted several questions:

  • Are there periods of time across specific climates that can be identified as beneficial to use 10-day OCDS?

  • Does it matter whether we use 10 years, 20 years, or 30 years of data for operational purposes? That is, how much of a difference is there?

  • How are the stations changing with time? Do these statistical analyses match up with meteorological effects for the stations?

The purpose of this report is to explore the benefits and costs of performing such an analysis by taking a small subset of locations from the largest three climate regions within the United States. Benefits for this analysis include the ability to identify drastic changes in the climate that should be accounted for in relaying climate information. E.g., if Location A gets 4 inches of rain in one month, but they only average one rain event per month, then those 4 inches likely come all at once and it would stand out in an analysis of the data.

Costs to this analysis include the following:

  • The cost to rewrite the software to produce the shorter interval analysis,

  • The time spent by analysts to work on the OCDSs (approximately 20 hours per OCDS which would likely increase to approximately 25 hours per OCDS), and

  • The computing time by the servers (currently it takes approximately 1 hour to run an OCDS, but by creating 3x the number of intervals it would take approximately 3 hours to run).

Keeping these constraints in mind, the zones and specific locations are:

Climate Zone Location Name Airport Identifier (ICAO)
Heavy Snow Winter Robert’s Field, OR KRDM
Heavy Snow Winter Buffalo, NY KBUF
Warm Summer, Cold Winter Topeka, KS KFOE
Warm Summer, Cold Winter Madison, WI KMSN
Warm Summer, Cold Winter Tri-Cities Airport, TN KTRI
Warm Summer, Cold Winter Juneau, AK PAJN
Arid El Paso, TX KELP
Arid St. George, UT KSGU

By comparing these locations and seeing if there are commonalities in the assessment, there is the potential for some assumptions to be made that could make transitioning to a 10-day OCDS much simpler. If similarities are found in the 10-, 20-, and 30-year climatology data and the future OCDS data, then the similarities in the general trends can be used for other locations in the same climate zones, regardless of the varying topography and other physical features surrounding each location. As an example, if there are similar temperature fluctuations for all locations in a climate zone, we could make a generalization about this for other locations not modeled in this study within the same climate zone.

Additionally, we can use similarities to generalize how long the OCDS may remain valid for all locations within the climate zone.

The above locations were chosen due to varying topographical locations, varying geographical features, and availability of weather data. For example, for the Arid climate locations, St. George is in a valley surrounded by mountains, whereas El Paso has mountains only to the West. Additionally, El Paso is over 1000 feet higher in elevation than St. George. The availability of the weather data is important – some locations have a short amount of time that they have been sending weather data – e.g., 5 years. This would not be sufficient to determine climate trends (see note 1). Currently, the 14WS is using a minimum of 10 years of data to develop an OCDS for a site. However, for the scope of this project, we are looking at up to 30 years of daily weather data to determine which interval should be used for climate study.

About the Data

We will be looking at the following variables in our calculations:

variables
                        Variable                                                                                          Description
1           Average Temperature                                                                          The air temperature (Celsius)
2  Average Dewpoint Temperature                                            The measure of moisture in the air at the station (Celsius)
3        Average Wind Direction                                                            The direction the wind comes from (degrees)
4            Average Wind Speed                                                           The 2-minute average speed of the wind (m/s)
5       Average Wind Gust Speed                                                                        The 3-second maximum wind (m/s)
6         Average Cloud Ceiling    The height of the lowest ceiling – a ceiling is 5/8 or more of sky coverage (ft above ground level)
7           Average Cloud Cover                                    The amount of the sky that is covered by clouds (octants [eighths])
8            Average Visibility                                     The distance you can see before 95% of light is scattered (meters)
9     Average Altimeter Setting                                          The measure of the atmospheric pressure at the station (inHg)
10        Average Precipitation                                                              The average amount of precipitation  (mm)

It has already been shown by other climate studies that maximum and minimum temperatures are increasing. However, this project looks at a targeted application of this data, as previously explained. Thus, the monthly maximum and minimum temperatures are currently irrelevant.

The data was procured from the 14th Weather Squadron. Appendix B (Download Appendix B - Data Dictionary.htm) is the data dictionary for the datasets used. This includes a description of the data and bounds associated with it.

To summarize the data, there are 190 columns and 2,379,050 rows:

  • 333,758 – KELP,

  • 294,122 – KFOE,

  • 413,290 – KBUF,

  • 362,321 – KMSN,

  • 333,637 – KSGU,

  • 284,865 – KRDM,

  • 318,127 – KTRI,

  • 338,930 – PAJN.

Within these datasets, there are a total of 373,164,955 null values. These account for 88% of the entries from within the entire datset. The next section details the method we will use for eliminating these null values.

Planned Methodology

The planned methodology includes the following:

  1. Download the complete weather observations for the eight desired locations.

  2. Identify null values within the dataset.

  3. Handle null values in the following methods:

    1. Because we are looking at hourly observations, and because of the C1 (continuous with 1st derivative – see note 2 below) nature of the weather, one way to observe conditions is to consider that conditions exist until they change. This implies that we can continue using a previous value until a new value is measured, e.g., visibility. Visibility isn’t going to change from 7 miles to 10 feet back to 7 miles without something happening to explain it and an interim decrease in visibility is recorded.

    2. Columns composed entirely of null values will be removed.

    3. Remove columns that are not directly being used for analysis

    4. For precipitation NULL values, replace them with 0s. (see note 3)

    5. Visualize data and identify trends and outliers.

  4. Create models for each variable.
    1. Use a variety of models to compare data for each climate zone.

    2. Linear regression

      1. Multivariate regression

      2. Spline with varying degrees of freedom

        1. Monthly – 11 knots + cubic natural spline (3) - 14 df

        2. 10-day – 36 knots + cubic natural spline (3) - 39 df

        3. Daily – 366 knots + cubic natural spline (3) - 369 df

          1. Identify times of year for each variable that are statistically different from the 10-, 20-, and 30-year data average.

          2. Utilize summaries across 10-, 20-, and 30-year models to identify times when the models are and are not statistically significant.

          3. Identify trend of data for each variable based on the 10-, 20-, and 30-year data.

    3. Perform ANOVA (Analysis of Variance) Tests on the spline models
    4. Compare ANOVA results and determine which subsets of data performed the best
    5. Rerun above analysis for different subsection of the data
      1. Split the datasets into 10-year intervals: 1994-2003, 2004-2013, and 2014-2023
      2. Generate spline regressions on each dataset in the above determined “best” model output
      3. Create a linear regression for each Julian Day
      4. Plot the slopes of the above regressions to determine how each variable is changing by Julian Day over each 10-year data period (see note 4)

    Notes:

    1. The 14WS uses shorter periods of complete or incomplete data for other products, not OCDSs.

    2. C1 is mathematical notation denoting the “smoothness” of a function. It means that given a function, you could take the 1st derivative of it at all points, but the resulting function may not be smooth. Weather is regarded as C1 smooth for most variables (not precipitation). This means that there are no disjointed variables, but there may be some “sharp” or “abrupt” curves that would not allow a 2nd derivative. An example would be that typically you wouldn’t see dense fog and low cloud cover – then 15 minutes later completely clear conditions, and 15 minutes after that back to dense fog and low cloud cover. That would be disjointed and not smooth. You would expect a gradual improvement or worsening of conditions with time – hence the C1 assumptions.

    3. Imputing 0s in for NULL precipitation amounts does increase the risk of miscalculating the amount of precipitation received on any given day. However, this risk is limited in impact because it creates a minimum amount received. Thus, we will risk over estimating the precipitation amounts. This forms a conservative basis when looking at precipitation trends.

    4. The initial desire was to use the code from a recent publication that shows promise in climate forecasting to run future forecasts for these sites. However, it was written in MATLAB and there are no simple ways to convert this within the project timeframe to R or Python. Therefore, we will omit this desired portion of the project, but instead use a statistical forecast to determine whether there is utility in either switching or continuing with the current OCDS process.

Domain 2

Data Understanding

Data Summaries:

Robert’s Field, OR

summary(krdm_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:285230      Length:285230      Length:285230      Length:285230     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE          MONTH          SECURITYID
##  Min.   :44.25   Min.   :-121.2   Min.   : 1.000   Min.   :1   
##  1st Qu.:44.25   1st Qu.:-121.2   1st Qu.: 3.000   1st Qu.:1   
##  Median :44.25   Median :-121.2   Median : 6.000   Median :1   
##  Mean   :44.25   Mean   :-121.1   Mean   : 6.445   Mean   :1   
##  3rd Qu.:44.25   3rd Qu.:-121.1   3rd Qu.:10.000   3rd Qu.:1   
##  Max.   :44.26   Max.   :-121.1   Max.   :12.000   Max.   :1   
##  NA's   :4       NA's   :4        NA's   :4        NA's   :4   
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT   CALLLETTER       
##  Length:285230      Min.   :0.00     Min.   :929.0   Length:285230     
##  Class :character   1st Qu.:0.00     1st Qu.:937.9   Class :character  
##  Mode  :character   Median :0.00     Median :938.0   Mode  :character  
##                     Mean   :0.03     Mean   :940.1                     
##                     3rd Qu.:0.00     3rd Qu.:938.0                     
##                     Max.   :1.00     Max.   :962.0                     
##                     NA's   :179124   NA's   :4                         
##     VERSION      WINDDIRECTION   WINDDIRECTIONQC WINDCONDITIONS    
##  Min.   :  0.0   Min.   :  1.0   Min.   :0.00    Length:285230     
##  1st Qu.:  0.0   1st Qu.:160.0   1st Qu.:1.00    Class :character  
##  Median :182.0   Median :220.0   Median :1.00    Mode  :character  
##  Mean   :114.3   Mean   :225.2   Mean   :0.98                      
##  3rd Qu.:182.0   3rd Qu.:310.0   3rd Qu.:1.00                      
##  Max.   :182.0   Max.   :360.0   Max.   :1.00                      
##  NA's   :4       NA's   :71856   NA's   :58087                     
##  WINDCONDITIONSQC   WINDSPEED      WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.00     Min.   : 0.00   Min.   :0.000   Min.   :  1.0   
##  1st Qu.:1.00     1st Qu.: 1.50   1st Qu.:1.000   1st Qu.:250.0   
##  Median :1.00     Median : 2.60   Median :1.000   Median :290.0   
##  Mean   :1.04     Mean   : 2.86   Mean   :1.014   Mean   :263.8   
##  3rd Qu.:1.00     3rd Qu.: 4.10   3rd Qu.:1.000   3rd Qu.:310.0   
##  Max.   :4.00     Max.   :22.10   Max.   :4.000   Max.   :360.0   
##  NA's   :180863   NA's   :646     NA's   :1247    NA's   :284285  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   :  1.0    Min.   : 1.00    Min.   :0.00     Min.   :1          
##  1st Qu.: 30.0    1st Qu.: 8.70    1st Qu.:0.00     1st Qu.:4          
##  Median :145.0    Median :10.30    Median :1.00     Median :4          
##  Mean   :169.4    Mean   :10.49    Mean   :0.72     Mean   :4          
##  3rd Qu.:330.0    3rd Qu.:11.80    3rd Qu.:1.00     3rd Qu.:4          
##  Max.   :360.0    Max.   :30.80    Max.   :4.00     Max.   :4          
##  NA's   :284286   NA's   :253698   NA's   :241106   NA's   :182802     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :   15   Min.   :0.000   Length:285230        Min.   :0.00          
##  1st Qu.: 1981   1st Qu.:1.000   Class :character     1st Qu.:0.00          
##  Median :22000   Median :1.000   Mode  :character     Median :0.00          
##  Mean   :14818   Mean   :1.093                        Mean   :0.14          
##  3rd Qu.:22000   3rd Qu.:1.000                        3rd Qu.:0.00          
##  Max.   :22000   Max.   :4.000                        Max.   :1.00          
##  NA's   :15674   NA's   :15642                        NA's   :269117        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY      VISIBILITYQC  
##  Length:285230      Min.   :1        Min.   :     0   Min.   :1.000  
##  Class :character   1st Qu.:1        1st Qu.: 16093   1st Qu.:1.000  
##  Mode  :character   Median :1        Median : 16093   Median :1.000  
##                     Mean   :1        Mean   : 14987   Mean   :1.004  
##                     3rd Qu.:1        3rd Qu.: 16093   3rd Qu.:1.000  
##                     Max.   :1        Max.   :160000   Max.   :5.000  
##                     NA's   :182346   NA's   :1238     NA's   :1234   
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE    AIRTEMPERATUREQC
##  Length:285230      Min.   :1        Min.   :-32.200   Min.   :0.000   
##  Class :character   1st Qu.:1        1st Qu.:  1.100   1st Qu.:1.000   
##  Mode  :character   Median :1        Median :  7.200   Median :1.000   
##                     Mean   :1        Mean   :  8.645   Mean   :1.003   
##                     3rd Qu.:1        3rd Qu.: 15.000   3rd Qu.:1.000   
##                     Max.   :1        Max.   : 43.900   Max.   :5.000   
##                     NA's   :849      NA's   :567       NA's   :544     
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-35.0000    Min.   :0.000         Min.   : 980.6   Min.   :   0      
##  1st Qu.: -4.0000    1st Qu.:1.000         1st Qu.:1012.9   1st Qu.:   1      
##  Median :  0.0000    Median :1.000         Median :1016.7   Median :   1      
##  Mean   : -0.2916    Mean   :1.003         Mean   :1017.1   Mean   :   1      
##  3rd Qu.:  3.3000    3rd Qu.:1.000         3rd Qu.:1021.3   3rd Qu.:   1      
##  Max.   : 31.0000    Max.   :5.000         Max.   :1045.4   Max.   :1010      
##  NA's   :806         NA's   :784           NA's   :77747    NA's   :76553     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 1.00        Min.   :1.00           Min.   : 0.0     Min.   :0.00    
##  1st Qu.: 1.00        1st Qu.:1.00           1st Qu.: 0.0     1st Qu.:1.00    
##  Median : 1.00        Median :1.00           Median : 0.0     Median :1.00    
##  Mean   : 3.13        Mean   :1.61           Mean   : 0.3     Mean   :1.56    
##  3rd Qu.: 6.00        3rd Qu.:3.00           3rd Qu.: 0.2     3rd Qu.:3.00    
##  Max.   :24.00        Max.   :4.00           Max.   :33.0     Max.   :4.00    
##  NA's   :247506       NA's   :266962         NA's   :248172   NA's   :265110  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :1.00     Min.   :1.00       Min.   : 1.00       
##  1st Qu.:2.00     1st Qu.:1.00       1st Qu.: 3.00       
##  Median :2.00     Median :1.00       Median : 3.00       
##  Mean   :2.22     Mean   :1.54       Mean   : 5.77       
##  3rd Qu.:2.00     3rd Qu.:3.00       3rd Qu.: 6.00       
##  Max.   :3.00     Max.   :4.00       Max.   :24.00       
##  NA's   :259758   NA's   :265062     NA's   :279016      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.0    Min.   :0.00     Min.   :1.00    
##  1st Qu.:1              1st Qu.:  0.0    1st Qu.:1.00     1st Qu.:2.00    
##  Median :1              Median :  0.2    Median :1.00     Median :2.00    
##  Mean   :1              Mean   :  2.1    Mean   :0.86     Mean   :2.37    
##  3rd Qu.:1              3rd Qu.:  1.0    3rd Qu.:1.00     3rd Qu.:3.00    
##  Max.   :1              Max.   :737.0    Max.   :1.00     Max.   :3.00    
##  NA's   :282882         NA's   :279020   NA's   :282502   NA's   :280924  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.00        Min.   :1             
##  1st Qu.:1          1st Qu.:24.00        1st Qu.:1             
##  Median :1          Median :24.00        Median :1             
##  Mean   :1          Mean   :19.55        Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.00        3rd Qu.:1             
##  Max.   :1          Max.   :24.00        Max.   :1             
##  NA's   :282493     NA's   :284858       NA's   :285065        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   : 0.0     Min.   :1        Min.   :1.00     Min.   :1         
##  1st Qu.: 0.5     1st Qu.:1        1st Qu.:3.00     1st Qu.:1         
##  Median : 1.5     Median :1        Median :3.00     Median :1         
##  Mean   : 2.8     Mean   :1        Mean   :2.81     Mean   :1         
##  3rd Qu.: 3.6     3rd Qu.:1        3rd Qu.:3.00     3rd Qu.:1         
##  Max.   :27.1     Max.   :1        Max.   :3.00     Max.   :1         
##  NA's   :284863   NA's   :285055   NA's   :285021   NA's   :285050    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4  PRECIPAMOUNT4QC
##  Length:285230        Mode:logical           Mode:logical   Mode:logical   
##  Class :character     NA's:285230            NA's:285230    NA's:285230    
##  Mode  :character                                                          
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR    PRECIPHISTDURQC 
##  Mode:logical     Length:285230      Min.   :726835   Min.   :0       
##  NA's:285230      Class :character   1st Qu.:726835   1st Qu.:0       
##                   Mode  :character   Median :726835   Median :0       
##                                      Mean   :726835   Mean   :0       
##                                      3rd Qu.:726835   3rd Qu.:0       
##                                      Max.   :726835   Max.   :0       
##                                      NA's   :285229   NA's   :283235  
##  PRECIPHISTCHAR PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Mode:logical   Min.   :   8.0   Min.   :0.00     Mode:logical  
##  NA's:285230    1st Qu.: 261.1   1st Qu.:1.00     NA's:285230   
##                 Median : 514.1   Median :1.00                   
##                 Mean   : 514.1   Mean   :0.95                   
##                 3rd Qu.: 767.2   3rd Qu.:1.00                   
##                 Max.   :1020.3   Max.   :3.00                   
##                 NA's   :285228   NA's   :236496                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   :0        Mode:logical   Min.   : 0.00    Mode:logical    
##  1st Qu.:0        NA's:285230    1st Qu.: 0.00    NA's:285230     
##  Median :0                       Median : 3.00                    
##  Mean   :0                       Mean   : 3.28                    
##  3rd Qu.:0                       3rd Qu.: 5.00                    
##  Max.   :2                       Max.   :20.00                    
##  NA's   :271094                  NA's   :284656                   
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV  DEPTHWTREQUIVQC
##  Mode:logical      Mode:logical        Mode:logical   Mode:logical   
##  NA's:285230       NA's:285230         NA's:285230    NA's:285230    
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##  DEPTHWECOND    DEPTHWECONDQC  HAILSIZE       PRECIPAMOUNTSF1 PRECIPAMOUNTSF1QC
##  Mode:logical   Mode:logical   Mode:logical   Mode:logical    Mode:logical     
##  NA's:285230    NA's:285230    NA's:285230    NA's:285230     NA's:285230      
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:285230        NA's:285230          NA's:285230         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2  PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Length:285230          Min.   :1023     Min.   :1         Mode:logical      
##  Class :character       1st Qu.:1023     1st Qu.:1         NA's:285230       
##  Mode  :character       Median :1023     Median :1                           
##                         Mean   :1023     Mean   :1                           
##                         3rd Qu.:1023     3rd Qu.:1                           
##                         Max.   :1023     Max.   :1                           
##                         NA's   :285229   NA's   :285229                      
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Length:285230        Min.   :     1        
##  NA's:285230          Class :character     1st Qu.:181710        
##                       Mode  :character     Median :363418        
##                                            Mean   :363418        
##                                            3rd Qu.:545127        
##                                            Max.   :726835        
##                                            NA's   :285228        
##  PRECIPAMOUNTSF3  PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Min.   :0.3      Min.   :1         Mode:logical       Mode:logical        
##  1st Qu.:0.3      1st Qu.:1         NA's:285230        NA's:285230         
##  Median :0.3      Median :1                                                
##  Mean   :0.3      Mean   :1                                                
##  3rd Qu.:0.3      3rd Qu.:1                                                
##  Max.   :0.3      Max.   :1                                                
##  NA's   :285229   NA's   :285229                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:285230          NA's:285230            NA's:285230     NA's:285230      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:285230        NA's:285230          NA's:285230         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC   PRESENTMANUAL2  
##  Mode:logical           Min.   : 0.00    Length:285230      Min.   : 0.00   
##  NA's:285230            1st Qu.: 0.00    Class :character   1st Qu.: 0.00   
##                         Median : 0.00    Mode  :character   Median : 0.00   
##                         Mean   : 7.14                       Mean   : 1.05   
##                         3rd Qu.: 0.00                       3rd Qu.: 0.00   
##                         Max.   :97.00                       Max.   :85.00   
##                         NA's   :216571                      NA's   :241672  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4    
##  Min.   :0.00     Min.   : 0.00    Min.   :0        Length:285230     
##  1st Qu.:1.00     1st Qu.: 0.00    1st Qu.:1        Class :character  
##  Median :1.00     Median : 0.00    Median :1        Mode  :character  
##  Mean   :0.99     Mean   : 0.01    Mean   :1                          
##  3rd Qu.:1.00     3rd Qu.: 0.00    3rd Qu.:1                          
##  Max.   :4.00     Max.   :49.00    Max.   :1                          
##  NA's   :221405   NA's   :243529   NA's   :223327                     
##  PRESENTMANUAL4QC   PRESENTMANUAL5 PRESENTMANUAL5QC PRESENTMANUAL6
##  Min.   :     1.0   Mode:logical   Min.   :1        Mode:logical  
##  1st Qu.:     1.0   NA's:285230    1st Qu.:1        NA's:285230   
##  Median :     1.0                  Median :1                      
##  Mean   :    13.5                  Mean   :1                      
##  3rd Qu.:     1.0                  3rd Qu.:1                      
##  Max.   :726835.0                  Max.   :1                      
##  NA's   :227140                    NA's   :227141                 
##  PRESENTMANUAL6QC PRESENTMANUAL7 PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Mode:logical   Min.   :1        Min.   : 4.00    
##  1st Qu.:1        NA's:285230    1st Qu.:1        1st Qu.:10.00    
##  Median :1                       Median :1        Median :61.00    
##  Mean   :1                       Mean   :1        Mean   :41.26    
##  3rd Qu.:1                       3rd Qu.:1        3rd Qu.:71.00    
##  Max.   :1                       Max.   :1        Max.   :95.00    
##  NA's   :227141                  NA's   :227141   NA's   :263139   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.00        Min.   : 4.00     Min.   :1           Min.   : 4.00    
##  1st Qu.:0.00        1st Qu.:10.00     1st Qu.:1           1st Qu.: 4.00    
##  Median :1.00        Median :10.00     Median :1           Median : 7.00    
##  Mean   :0.75        Mean   :10.99     Mean   :1           Mean   :14.33    
##  3rd Qu.:1.00        3rd Qu.:10.00     3rd Qu.:1           3rd Qu.:16.00    
##  Max.   :5.00        Max.   :71.00     Max.   :4           Max.   :64.00    
##  NA's   :255648      NA's   :279767    NA's   :279767      NA's   :285212   
##  PRESENTAUTOMATED3QC PASTMANUAL1    PASTMANUAL1QC    WXPASTPERIOD1 
##  Min.   :1.00        Mode:logical   Min.   :0        Mode:logical  
##  1st Qu.:1.00        NA's:285230    1st Qu.:0        NA's:285230   
##  Median :1.00                       Median :0                      
##  Mean   :1.33                       Mean   :0                      
##  3rd Qu.:1.00                       3rd Qu.:0                      
##  Max.   :4.00                       Max.   :0                      
##  NA's   :285212                     NA's   :283483                 
##  WXPASTPERIOD1QC PASTMANUAL2    PASTMANUAL2QC    WXPASTPERIOD2  WXPASTPERIOD2QC
##  Mode:logical    Mode:logical   Min.   :0        Mode:logical   Mode:logical   
##  NA's:285230     NA's:285230    1st Qu.:0        NA's:285230    NA's:285230    
##                                 Median :0                                      
##                                 Mean   :0                                      
##                                 3rd Qu.:0                                      
##                                 Max.   :0                                      
##                                 NA's   :284777                                 
##  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1 WXPASTAUTOPERIOD1QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:285230    1st Qu.:0        NA's:285230       NA's:285230        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :283483                                        
##  PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2 WXPASTAUTOPERIOD2QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:285230    1st Qu.:0        NA's:285230       NA's:285230        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :284777                                        
##  RUNWAYENDBEARING RUNWAYDESIGNATOR RUNWAYVISUALRANGE   CLOUDCOVER   
##  Mode:logical     Mode:logical     Mode:logical      Min.   : 0.00  
##  NA's:285230      NA's:285230      NA's:285230       1st Qu.: 0.00  
##                                                      Median : 0.00  
##                                                      Mean   : 2.36  
##                                                      3rd Qu.: 7.00  
##                                                      Max.   :10.00  
##                                                      NA's   :49936  
##   CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC   CLOUDBASEHEIGHT 
##  Min.   :0.00    Min.   :0.00     Min.   :0.00     Min.   :   0    
##  1st Qu.:1.00    1st Qu.:4.00     1st Qu.:0.00     1st Qu.: 457    
##  Median :1.00    Median :7.00     Median :0.00     Median :1341    
##  Mean   :1.08    Mean   :5.92     Mean   :0.19     Mean   :1373    
##  3rd Qu.:1.00    3rd Qu.:8.00     3rd Qu.:0.00     3rd Qu.:1981    
##  Max.   :4.00    Max.   :8.00     Max.   :1.00     Max.   :3658    
##  NA's   :46078   NA's   :284194   NA's   :279696   NA's   :239857  
##  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC     CLOUDTYPEMID   
##  Min.   :1         Min.   :0.00     Min.   :0.00     Min.   :0.00    
##  1st Qu.:1         1st Qu.:3.00     1st Qu.:0.00     1st Qu.:3.00    
##  Median :1         Median :5.00     Median :0.00     Median :5.00    
##  Mean   :1         Mean   :4.93     Mean   :0.09     Mean   :4.97    
##  3rd Qu.:1         3rd Qu.:7.00     3rd Qu.:0.00     3rd Qu.:7.00    
##  Max.   :1         Max.   :9.00     Max.   :1.00     Max.   :9.00    
##  NA's   :239857    NA's   :284792   NA's   :280294   NA's   :284775  
##  CLOUDTYPEMIDQC   CLOUDTYPEHI    CLOUDTYPEHIQC    SUNSHINE      
##  Min.   :0.00     Mode:logical   Min.   :0        Mode:logical  
##  1st Qu.:0.00     NA's:285230    1st Qu.:0        NA's:285230   
##  Median :0.00                    Median :0                      
##  Mean   :0.09                    Mean   :0                      
##  3rd Qu.:0.00                    3rd Qu.:0                      
##  Max.   :1.00                    Max.   :0                      
##  NA's   :280277                  NA's   :280732                 
##   SURFACECODE     SURFACECODEQC  SOILTEMPERATURE SOILTEMPERATUREQC
##  Min.   :1        Mode:logical   Mode:logical    Mode:logical     
##  1st Qu.:1        NA's:285230    NA's:285230     NA's:285230      
##  Median :1                                                        
##  Mean   :1                                                        
##  3rd Qu.:1                                                        
##  Max.   :1                                                        
##  NA's   :285227                                                   
##  SOILDEPTH      OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC
##  Mode:logical   Mode:logical           Mode:logical            
##  NA's:285230    NA's:285230            NA's:285230             
##                                                                
##                                                                
##                                                                
##                                                                
##                                                                
##  ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE STATIONPRESSUREQC
##  Min.   : 980.4   Min.   :0.000      Mode:logical    Min.   :0        
##  1st Qu.:1013.5   1st Qu.:1.000      NA's:285230     1st Qu.:0        
##  Median :1017.3   Median :1.000                      Median :0        
##  Mean   :1016.9   Mean   :1.001                      Mean   :0        
##  3rd Qu.:1021.0   3rd Qu.:1.000                      3rd Qu.:0        
##  Max.   :1041.3   Max.   :5.000                      Max.   :0        
##  NA's   :390      NA's   :387                        NA's   :271019   
##  PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG PRESSURE3HOURCHGQC
##  Min.   :0.00     Min.   :0.00       Min.   :-6.40    Min.   :0.00      
##  1st Qu.:1.00     1st Qu.:1.00       1st Qu.: 0.30    1st Qu.:1.00      
##  Median :3.00     Median :1.00       Median : 0.70    Median :1.00      
##  Mean   :4.13     Mean   :0.85       Mean   : 0.82    Mean   :0.86      
##  3rd Qu.:7.00     3rd Qu.:1.00       3rd Qu.: 1.30    3rd Qu.:1.00      
##  Max.   :8.00     Max.   :5.00       Max.   :13.00    Max.   :5.00      
##  NA's   :223796   NA's   :208978     NA's   :223164   NA's   :208591    
##  PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND  ISOBARICSURFACE
##  Min.   :0         Min.   :0.00        Mode:logical   Mode:logical   
##  1st Qu.:0         1st Qu.:0.00        NA's:285230    NA's:285230    
##  Median :0         Median :0.00                                      
##  Mean   :0         Mean   :0.05                                      
##  3rd Qu.:0         3rd Qu.:0.00                                      
##  Max.   :0         Max.   :1.00                                      
##  NA's   :284494    NA's   :270283                                    
##  ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT ISOBARICSURFACEHEIGHTQC SEASURFACETEMP
##  Mode:logical      Mode:logical          Mode:logical            Mode:logical  
##  NA's:285230       NA's:285230           NA's:285230             NA's:285230   
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  SEASURFACETEMPQC REMARKSYN       REMARKMET          REMARKAWY        
##  Min.   :5        Mode:logical   Length:285230      Length:285230     
##  1st Qu.:5        NA's:285230    Class :character   Class :character  
##  Median :5                       Mode  :character   Mode  :character  
##  Mean   :5                                                            
##  3rd Qu.:5                                                            
##  Max.   :5                                                            
##  NA's   :285227                                                       
##  HORIZONTALDATUM    VERTICALDATUM      LIGHTNINGFREQUENCY
##  Length:285230      Length:285230      Mode:logical      
##  Class :character   Class :character   NA's:285230       
##  Mode  :character   Mode  :character                     
##                                                          
##                                                          
##                                                          
##                                                          
##    RECEIPTDTG             INSERTIONTIME          BLKSTN      
##  Min.   :20130500000000   Length:285230      Min.   :726835  
##  1st Qu.:20160100000000   Class :character   1st Qu.:726835  
##  Median :20180900000000   Mode  :character   Median :726835  
##  Mean   :20182258996100                      Mean   :726847  
##  3rd Qu.:20210400000000                      3rd Qu.:726835  
##  Max.   :20231200000000                      Max.   :726920  
##  NA's   :182347                              NA's   :106113

Buffalo, NY

summary(kbuf_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:413352      Length:413352      Length:413352      Length:413352     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE      LONGITUDE             MONTH          SECURITYID     
##  Min.   : 1.00   Length:413352      Min.   : 1.000   Min.   :  1.000  
##  1st Qu.:42.93   Class :character   1st Qu.: 3.000   1st Qu.:  1.000  
##  Median :42.93   Mode  :character   Median : 6.000   Median :  1.000  
##  Mean   :42.93                      Mean   : 6.384   Mean   :  1.001  
##  3rd Qu.:42.94                      3rd Qu.:10.000   3rd Qu.:  1.000  
##  Max.   :42.94                      Max.   :12.000   Max.   :215.000  
##  NA's   :1                          NA's   :2        NA's   :1        
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT     CALLLETTER       
##  Length:413352      Min.   :  0.00   Min.   :-1000.0   Length:413352     
##  Class :character   1st Qu.:  0.00   1st Qu.:  215.0   Class :character  
##  Mode  :character   Median :  0.00   Median :  218.0   Mode  :character  
##                     Mean   :  0.22   Mean   :  208.3                     
##                     3rd Qu.:  0.00   3rd Qu.:  220.7                     
##                     Max.   :182.00   Max.   :  270.0                     
##                     NA's   :254385   NA's   :1                           
##    VERSION          WINDDIRECTION   WINDDIRECTIONQC WINDCONDITIONS    
##  Length:413352      Min.   : 10.0   Min.   :0.000   Length:413352     
##  Class :character   1st Qu.:150.0   1st Qu.:1.000   Class :character  
##  Mode  :character   Median :220.0   Median :1.000   Mode  :character  
##                     Mean   :202.2   Mean   :0.996                     
##                     3rd Qu.:260.0   3rd Qu.:1.000                     
##                     Max.   :360.0   Max.   :6.100                     
##                     NA's   :29998   NA's   :25421                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.00     Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1.00     1st Qu.: 2.600   1st Qu.:1.000   1st Qu.:185.0   
##  Median :1.00     Median : 4.100   Median :1.000   Median :220.0   
##  Mean   :1.01     Mean   : 4.566   Mean   :1.003   Mean   :214.3   
##  3rd Qu.:1.00     3rd Qu.: 6.200   3rd Qu.:1.000   3rd Qu.:270.0   
##  Max.   :5.00     Max.   :36.100   Max.   :5.000   Max.   :360.0   
##  NA's   :262276   NA's   :5682     NA's   :5896    NA's   :413081  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 10      Min.   :  0.0    Min.   :0        Length:413352      
##  1st Qu.:130      1st Qu.: 10.3    1st Qu.:1        Class :character   
##  Median :270      Median : 11.8    Median :1        Mode  :character   
##  Mean   :222      Mean   : 12.3    Mean   :1                           
##  3rd Qu.:310      3rd Qu.: 13.9    3rd Qu.:1                           
##  Max.   :360      Max.   :900.0    Max.   :4                           
##  NA's   :413081   NA's   :346504   NA's   :328946                      
##   CLOUDCEILING   CLOUDCEILINGQC     CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Length:413352      Length:413352        Min.   :    0.0       
##  1st Qu.:  690   Class :character   Class :character     1st Qu.:    0.0       
##  Median : 1950   Mode  :character   Mode  :character     Median :    0.0       
##  Mean   : 8168                                           Mean   :    2.2       
##  3rd Qu.:22000                                           3rd Qu.:    0.0       
##  Max.   :22000                                           Max.   :48280.0       
##  NA's   :57060                                           NA's   :390841        
##   CLOUDCAVOK        CLOUDCAVOKQC         VISIBILITY      VISIBILITYQC  
##  Length:413352      Length:413352      Min.   :     0   Min.   :1.000  
##  Class :character   Class :character   1st Qu.: 11265   1st Qu.:1.000  
##  Mode  :character   Mode  :character   Median : 16093   Median :1.000  
##                                        Mean   : 13622   Mean   :1.005  
##                                        3rd Qu.: 16093   3rd Qu.:1.000  
##                                        Max.   :112654   Max.   :4.000  
##                                        NA's   :5418     NA's   :5435   
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE    AIRTEMPERATUREQC  
##  Length:413352      Min.   :-5.6     Min.   :-81.100   Min.   :   0.000  
##  Class :character   1st Qu.: 1.0     1st Qu.:  0.000   1st Qu.:   1.000  
##  Mode  :character   Median : 1.0     Median :  8.300   Median :   1.000  
##                     Mean   : 1.0     Mean   :  8.607   Mean   :   1.008  
##                     3rd Qu.: 1.0     3rd Qu.: 18.000   3rd Qu.:   1.000  
##                     Max.   : 4.0     Max.   : 36.100   Max.   :1024.000  
##                     NA's   :5625     NA's   :8876      NA's   :8870      
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-27.800     Min.   :0.000         Min.   : 980.5   Min.   :0.00      
##  1st Qu.: -4.000     1st Qu.:1.000         1st Qu.:1011.4   1st Qu.:1.00      
##  Median :  3.300     Median :1.000         Median :1016.3   Median :1.00      
##  Mean   :  3.746     Mean   :1.006         Mean   :1016.2   Mean   :0.99      
##  3rd Qu.: 12.200     3rd Qu.:1.000         3rd Qu.:1021.2   3rd Qu.:1.00      
##  Max.   : 27.100     Max.   :5.000         Max.   :1046.0   Max.   :5.00      
##  NA's   :8991        NA's   :8960          NA's   :79351    NA's   :75954     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 0.00        Min.   :1.0            Min.   :  0.00   Min.   :1.0     
##  1st Qu.: 1.00        1st Qu.:1.0            1st Qu.:  0.00   1st Qu.:1.0     
##  Median : 1.00        Median :1.0            Median :  0.00   Median :1.0     
##  Mean   : 2.95        Mean   :1.3            Mean   :  0.88   Mean   :1.3     
##  3rd Qu.: 6.00        3rd Qu.:1.0            3rd Qu.:  0.50   3rd Qu.:1.0     
##  Max.   :24.00        Max.   :4.0            Max.   :509.00   Max.   :4.0     
##  NA's   :281866       NA's   :358881         NA's   :281029   NA's   :350564  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :0.00     Min.   :1.0        Min.   : 0.0        
##  1st Qu.:2.00     1st Qu.:1.0        1st Qu.: 3.0        
##  Median :2.00     Median :1.0        Median : 6.0        
##  Mean   :2.23     Mean   :1.2        Mean   : 9.1        
##  3rd Qu.:2.00     3rd Qu.:1.0        3rd Qu.:24.0        
##  Max.   :3.00     Max.   :4.0        Max.   :24.0        
##  NA's   :312472   NA's   :351047     NA's   :391683      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.0    Min.   :0.0      Min.   :1.0     
##  1st Qu.:1              1st Qu.:  0.0    1st Qu.:1.0      1st Qu.:2.0     
##  Median :1              Median :  0.5    Median :1.0      Median :2.0     
##  Mean   :1              Mean   :  2.9    Mean   :0.9      Mean   :2.5     
##  3rd Qu.:1              3rd Qu.:  2.8    3rd Qu.:1.0      3rd Qu.:3.0     
##  Max.   :4              Max.   :600.0    Max.   :4.0      Max.   :3.0     
##  NA's   :405670         NA's   :391469   NA's   :404100   NA's   :400089  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.0         Min.   :1             
##  1st Qu.:1          1st Qu.:24.0         1st Qu.:1             
##  Median :1          Median :24.0         Median :1             
##  Mean   :1          Mean   :19.1         Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.0         3rd Qu.:1             
##  Max.   :4          Max.   :24.0         Max.   :1             
##  NA's   :404102     NA's   :411593       NA's   :412608        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   : 0.0     Min.   :1        Min.   :1.0      Min.   :1         
##  1st Qu.: 0.5     1st Qu.:1        1st Qu.:3.0      1st Qu.:1         
##  Median : 2.5     Median :1        Median :3.0      Median :1         
##  Mean   : 6.3     Mean   :1        Mean   :2.8      Mean   :1         
##  3rd Qu.: 7.9     3rd Qu.:1        3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :99.1     Max.   :2        Max.   :3.0      Max.   :1         
##  NA's   :411558   NA's   :412336   NA's   :412202   NA's   :412333    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4    PRECIPAMOUNT4QC 
##  Min.   : 1.0         Min.   :1              Min.   : 0.2     Min.   :1       
##  1st Qu.:24.0         1st Qu.:1              1st Qu.: 0.7     1st Qu.:1       
##  Median :24.0         Median :1              Median : 2.4     Median :1       
##  Mean   :23.4         Mean   :1              Mean   : 6.8     Mean   :1       
##  3rd Qu.:24.0         3rd Qu.:1              3rd Qu.: 7.1     3rd Qu.:1       
##  Max.   :24.0         Max.   :1              Max.   :46.7     Max.   :2       
##  NA's   :413316       NA's   :413341         NA's   :413316   NA's   :413316  
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR    PRECIPHISTDURQC 
##  Min.   :3        Min.   :1          Min.   :0.0      Min.   :0       
##  1st Qu.:3        1st Qu.:1          1st Qu.:1.0      1st Qu.:0       
##  Median :3        Median :1          Median :2.0      Median :0       
##  Mean   :3        Mean   :1          Mean   :1.7      Mean   :0       
##  3rd Qu.:3        3rd Qu.:1          3rd Qu.:2.0      3rd Qu.:0       
##  Max.   :3        Max.   :1          Max.   :3.0      Max.   :1       
##  NA's   :413316   NA's   :413316     NA's   :412381   NA's   :405549  
##  PRECIPHISTCHAR     PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Length:413352      Mode:logical     Min.   :0        Mode:logical  
##  Class :character   NA's:413352      1st Qu.:1        NA's:413352   
##  Mode  :character                    Median :1                      
##                                      Mean   :1                      
##                                      3rd Qu.:1                      
##                                      Max.   :5                      
##                                      NA's   :351951                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   : 0.0     Mode:logical   Min.   :  0.0    Min.   :1       
##  1st Qu.: 0.0     NA's:413352    1st Qu.:  3.0    1st Qu.:1       
##  Median : 0.0                    Median :  8.0    Median :1       
##  Mean   : 0.4                    Mean   : 11.4    Mean   :1       
##  3rd Qu.: 0.0                    3rd Qu.: 15.0    3rd Qu.:1       
##  Max.   :17.0                    Max.   :996.0    Max.   :5       
##  NA's   :394813                  NA's   :394974   NA's   :403229  
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV    DEPTHWTREQUIVQC 
##  Min.   :0.0       Min.   :0           Min.   :  0.0    Min.   :4       
##  1st Qu.:0.0       1st Qu.:1           1st Qu.:  0.0    1st Qu.:4       
##  Median :3.0       Median :1           Median : 51.0    Median :4       
##  Mean   :2.1       Mean   :1           Mean   :108.6    Mean   :4       
##  3rd Qu.:3.0       3rd Qu.:1           3rd Qu.:152.0    3rd Qu.:4       
##  Max.   :3.0       Max.   :1           Max.   :740.0    Max.   :4       
##  NA's   :403470    NA's   :403470      NA's   :403147   NA's   :412692  
##  DEPTHWECOND    DEPTHWECONDQC     HAILSIZE      PRECIPAMOUNTSF1 
##  Mode:logical   Mode:logical   Min.   :0.1      Min.   : 0.0    
##  NA's:413352    NA's:413352    1st Qu.:0.1      1st Qu.: 0.0    
##                                Median :0.1      Median : 0.0    
##                                Mean   :0.4      Mean   : 0.7    
##                                3rd Qu.:0.6      3rd Qu.: 0.0    
##                                Max.   :1.0      Max.   :47.0    
##                                NA's   :413345   NA's   :409082  
##  PRECIPAMOUNTSF1QC PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Min.   :0         Min.   :0.0        Min.   :0            Min.   :1.0         
##  1st Qu.:1         1st Qu.:0.0        1st Qu.:1            1st Qu.:1.0         
##  Median :1         Median :0.0        Median :1            Median :1.0         
##  Mean   :1         Mean   :0.6        Mean   :1            Mean   :1.1         
##  3rd Qu.:1         3rd Qu.:0.0        3rd Qu.:1            3rd Qu.:1.0         
##  Max.   :1         Max.   :3.0        Max.   :1            Max.   :6.0         
##  NA's   :409503    NA's   :409505     NA's   :409503       NA's   :413071      
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2  PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Min.   :0              Min.   : 0.0     Min.   :1         Min.   :0.0       
##  1st Qu.:1              1st Qu.: 0.0     1st Qu.:1         1st Qu.:0.0       
##  Median :1              Median : 0.0     Median :1         Median :0.0       
##  Mean   :1              Mean   : 1.3     Mean   :1         Mean   :1.2       
##  3rd Qu.:1              3rd Qu.: 1.0     3rd Qu.:1         3rd Qu.:3.0       
##  Max.   :1              Max.   :47.0     Max.   :1         Max.   :3.0       
##  NA's   :413074         NA's   :412559   NA's   :412559    NA's   :412559    
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Min.   :1            Min.   :1            Min.   :0.0           
##  1st Qu.:1            1st Qu.:1            1st Qu.:0.0           
##  Median :1            Median :1            Median :1.0           
##  Mean   :1            Mean   :1            Mean   :0.6           
##  3rd Qu.:1            3rd Qu.:1            3rd Qu.:1.0           
##  Max.   :1            Max.   :1            Max.   :1.0           
##  NA's   :412559       NA's   :413347       NA's   :413344        
##  PRECIPAMOUNTSF3  PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Min.   : 0       Min.   :1         Min.   :0.0        Min.   :1           
##  1st Qu.: 0       1st Qu.:1         1st Qu.:0.0        1st Qu.:1           
##  Median : 0       Median :1         Median :0.0        Median :1           
##  Mean   : 1       Mean   :1         Mean   :0.9        Mean   :1           
##  3rd Qu.: 1       3rd Qu.:1         3rd Qu.:3.0        3rd Qu.:1           
##  Max.   :14       Max.   :1         Max.   :3.0        Max.   :1           
##  NA's   :413122   NA's   :413122    NA's   :413122     NA's   :413122      
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4  PRECIPAMOUNTSF4QC
##  Min.   :1            Min.   :1              Min.   :0        Min.   :1        
##  1st Qu.:1            1st Qu.:1              1st Qu.:0        1st Qu.:1        
##  Median :1            Median :1              Median :0        Median :1        
##  Mean   :1            Mean   :1              Mean   :1        Mean   :1        
##  3rd Qu.:1            3rd Qu.:1              3rd Qu.:1        3rd Qu.:1        
##  Max.   :1            Max.   :1              Max.   :9        Max.   :1        
##  NA's   :413349       NA's   :413349         NA's   :413330   NA's   :413330   
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Min.   :0.0        Min.   :0            Min.   :1           
##  1st Qu.:0.0        1st Qu.:1            1st Qu.:1           
##  Median :0.0        Median :1            Median :1           
##  Mean   :1.1        Mean   :1            Mean   :1           
##  3rd Qu.:3.0        3rd Qu.:1            3rd Qu.:1           
##  Max.   :3.0        Max.   :1            Max.   :1           
##  NA's   :413330     NA's   :413329       NA's   :413347      
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Min.   :1              Min.   : 0.00    Min.   :0.00     Min.   : 0.00   
##  1st Qu.:1              1st Qu.: 0.00    1st Qu.:1.00     1st Qu.: 0.00   
##  Median :1              Median :10.00    Median :1.00     Median : 0.00   
##  Mean   :1              Mean   :33.83    Mean   :0.97     Mean   : 8.67   
##  3rd Qu.:1              3rd Qu.:71.00    3rd Qu.:1.00     3rd Qu.:10.00   
##  Max.   :1              Max.   :99.00    Max.   :5.00     Max.   :97.00   
##  NA's   :413348         NA's   :256381   NA's   :251364   NA's   :315660  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4  
##  Min.   :0.00     Min.   : 0.0     Min.   :0        Min.   : 0.0    
##  1st Qu.:1.00     1st Qu.: 0.0     1st Qu.:1        1st Qu.: 0.0    
##  Median :1.00     Median : 0.0     Median :1        Median : 0.0    
##  Mean   :0.98     Mean   : 0.8     Mean   :1        Mean   : 6.9    
##  3rd Qu.:1.00     3rd Qu.: 0.0     3rd Qu.:1        3rd Qu.:10.0    
##  Max.   :4.00     Max.   :90.0     Max.   :1        Max.   :61.0    
##  NA's   :280631   NA's   :338986   NA's   :295832   NA's   :413093  
##  PRESENTMANUAL4QC PRESENTMANUAL5   PRESENTMANUAL5QC PRESENTMANUAL6  
##  Min.   :1        Min.   : 0.0     Min.   :1        Min.   :0.0     
##  1st Qu.:1        1st Qu.: 0.0     1st Qu.:1        1st Qu.:0.2     
##  Median :1        Median : 0.5     Median :1        Median :0.5     
##  Mean   :1        Mean   :15.3     Mean   :1        Mean   :0.5     
##  3rd Qu.:1        3rd Qu.: 7.8     3rd Qu.:1        3rd Qu.:0.8     
##  Max.   :1        Max.   :81.0     Max.   :1        Max.   :1.0     
##  NA's   :304877   NA's   :413346   NA's   :304929   NA's   :413350  
##  PRESENTMANUAL6QC PRESENTMANUAL7 PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Mode:logical   Min.   :1        Min.   : 4.0     
##  1st Qu.:1        NA's:413352    1st Qu.:1        1st Qu.:61.0     
##  Median :1                       Median :1        Median :63.0     
##  Mean   :1                       Mean   :1        Mean   :60.7     
##  3rd Qu.:1                       3rd Qu.:1        3rd Qu.:71.0     
##  Max.   :1                       Max.   :1        Max.   :96.0     
##  NA's   :304930                  NA's   :304930   NA's   :375711   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.0         Min.   : 4.0      Min.   :0.0         Min.   :10       
##  1st Qu.:0.0         1st Qu.:10.0      1st Qu.:1.0         1st Qu.:10       
##  Median :1.0         Median :10.0      Median :1.0         Median :29       
##  Mean   :0.8         Mean   :14.4      Mean   :1.1         Mean   :31       
##  3rd Qu.:1.0         3rd Qu.:10.0      3rd Qu.:1.0         3rd Qu.:54       
##  Max.   :4.0         Max.   :95.0      Max.   :4.0         Max.   :68       
##  NA's   :363033      NA's   :398406    NA's   :398391      NA's   :412971   
##  PRESENTAUTOMATED3QC  PASTMANUAL1     PASTMANUAL1QC    WXPASTPERIOD1   
##  Min.   :1           Min.   :0.0      Min.   :0.0      Min.   :1       
##  1st Qu.:1           1st Qu.:6.0      1st Qu.:0.0      1st Qu.:6       
##  Median :4           Median :8.0      Median :0.0      Median :6       
##  Mean   :3           Mean   :6.5      Mean   :0.2      Mean   :6       
##  3rd Qu.:4           3rd Qu.:8.0      3rd Qu.:0.0      3rd Qu.:6       
##  Max.   :4           Max.   :9.0      Max.   :1.0      Max.   :6       
##  NA's   :412971      NA's   :412119   NA's   :406196   NA's   :412120  
##  WXPASTPERIOD1QC   PASTMANUAL2     PASTMANUAL2QC    WXPASTPERIOD2   
##  Min.   :1        Min.   :0.0      Min.   :0.0      Min.   :1       
##  1st Qu.:1        1st Qu.:1.0      1st Qu.:0.0      1st Qu.:6       
##  Median :1        Median :2.0      Median :0.0      Median :6       
##  Mean   :1        Mean   :3.3      Mean   :0.4      Mean   :6       
##  3rd Qu.:1        3rd Qu.:6.0      3rd Qu.:1.0      3rd Qu.:6       
##  Max.   :1        Max.   :9.0      Max.   :1.0      Max.   :6       
##  NA's   :412120   NA's   :412119   NA's   :409898   NA's   :412120  
##  WXPASTPERIOD2QC  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1
##  Min.   :1        Mode:logical   Min.   :0        Mode:logical     
##  1st Qu.:1        NA's:413352    1st Qu.:0        NA's:413352      
##  Median :1                       Median :0                         
##  Mean   :1                       Mean   :0                         
##  3rd Qu.:1                       3rd Qu.:0                         
##  Max.   :1                       Max.   :0                         
##  NA's   :412120                  NA's   :407429                    
##  WXPASTAUTOPERIOD1QC PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2
##  Mode:logical        Mode:logical   Min.   :0        Mode:logical     
##  NA's:413352         NA's:413352    1st Qu.:0        NA's:413352      
##                                     Median :0                         
##                                     Mean   :0                         
##                                     3rd Qu.:0                         
##                                     Max.   :0                         
##                                     NA's   :411131                    
##  WXPASTAUTOPERIOD2QC RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE
##  Mode:logical        Min.   : 5.0     Length:413352      Min.   :  30     
##  NA's:413352         1st Qu.:23.0     Class :character   1st Qu.: 853     
##                      Median :23.0     Mode  :character   Median :1372     
##                      Mean   :22.5                        Mean   :1246     
##                      3rd Qu.:23.0                        3rd Qu.:1676     
##                      Max.   :32.0                        Max.   :6000     
##                      NA's   :401854                      NA's   :401855   
##    CLOUDCOVER      CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC  
##  Min.   : 0.00    Min.   :0.00    Min.   :0.0      Min.   :0.0     
##  1st Qu.: 4.00    1st Qu.:1.00    1st Qu.:0.0      1st Qu.:0.0     
##  Median : 7.00    Median :1.00    Median :0.0      Median :0.0     
##  Mean   : 5.64    Mean   :1.18    Mean   :1.5      Mean   :0.3     
##  3rd Qu.: 8.00    3rd Qu.:1.00    3rd Qu.:2.0      3rd Qu.:1.0     
##  Max.   :10.00    Max.   :4.00    Max.   :9.0      Max.   :1.0     
##  NA's   :100387   NA's   :88673   NA's   :406627   NA's   :391002  
##  CLOUDBASEHEIGHT  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC   
##  Min.   :    0    Min.   :0.00      Min.   :0.0      Min.   :0.0     
##  1st Qu.:  450    1st Qu.:1.00      1st Qu.:0.0      1st Qu.:0.0     
##  Median :  823    Median :1.00      Median :4.0      Median :1.0     
##  Mean   : 1389    Mean   :0.99      Mean   :2.9      Mean   :0.7     
##  3rd Qu.: 1524    3rd Qu.:1.00      3rd Qu.:5.0      3rd Qu.:1.0     
##  Max.   :10668    Max.   :1.00      Max.   :9.0      Max.   :1.0     
##  NA's   :250918   NA's   :248868    NA's   :378424   NA's   :362799  
##   CLOUDTYPEMID    CLOUDTYPEMIDQC    CLOUDTYPEHI     CLOUDTYPEHIQC   
##  Min.   :0.0      Min.   :0.0      Min.   :0.0      Min.   :0.0     
##  1st Qu.:0.0      1st Qu.:0.0      1st Qu.:0.0      1st Qu.:0.0     
##  Median :0.0      Median :1.0      Median :0.0      Median :1.0     
##  Mean   :2.8      Mean   :0.6      Mean   :2.5      Mean   :0.6     
##  3rd Qu.:7.0      3rd Qu.:1.0      3rd Qu.:7.0      3rd Qu.:1.0     
##  Max.   :9.0      Max.   :1.0      Max.   :9.0      Max.   :1.0     
##  NA's   :385880   NA's   :370255   NA's   :390349   NA's   :374724  
##  SUNSHINE        SURFACECODE     SURFACECODEQC  SOILTEMPERATURE
##  Mode:logical   Min.   :1        Mode:logical   Mode:logical   
##  NA's:413352    1st Qu.:1        NA's:413352    NA's:413352    
##                 Median :1                                      
##                 Mean   :1                                      
##                 3rd Qu.:1                                      
##                 Max.   :1                                      
##                 NA's   :413349                                 
##  SOILTEMPERATUREQC   SOILDEPTH      OBSERVATIONPERIODSOILT
##  Mode:logical      Min.   :1023     Min.   :1             
##  NA's:413352       1st Qu.:1023     1st Qu.:1             
##                    Median :1023     Median :1             
##                    Mean   :1023     Mean   :1             
##                    3rd Qu.:1023     3rd Qu.:1             
##                    Max.   :1023     Max.   :1             
##                    NA's   :413351   NA's   :413351        
##  OBSERVATIONPERIODSOILTQC ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE 
##  Min.   :997.6            Min.   :   1     Min.   :0.00       Min.   : 954.0  
##  1st Qu.:997.6            1st Qu.:1010     1st Qu.:1.00       1st Qu.: 984.9  
##  Median :997.6            Median :1015     Median :1.00       Median : 989.6  
##  Mean   :997.6            Mean   :1015     Mean   :0.99       Mean   : 989.4  
##  3rd Qu.:997.6            3rd Qu.:1020     3rd Qu.:1.00       3rd Qu.: 994.4  
##  Max.   :997.6            Max.   :1044     Max.   :5.00       Max.   :1018.2  
##  NA's   :413351           NA's   :68695    NA's   :64328      NA's   :275021  
##  STATIONPRESSUREQC PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG
##  Min.   :0.00      Min.   :0.00     Min.   :0.00       Min.   :-10.80  
##  1st Qu.:1.00      1st Qu.:2.00     1st Qu.:1.00       1st Qu.:  0.20  
##  Median :1.00      Median :5.00     Median :1.00       Median :  0.70  
##  Mean   :1.05      Mean   :4.38     Mean   :0.89       Mean   :  0.77  
##  3rd Qu.:1.00      3rd Qu.:7.00     3rd Qu.:1.00       3rd Qu.:  1.40  
##  Max.   :5.00      Max.   :8.00     Max.   :5.00       Max.   : 50.00  
##  NA's   :258403    NA's   :286367   NA's   :269469     NA's   :281170  
##  PRESSURE3HOURCHGQC PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND 
##  Min.   :0.0        Min.   :0         Min.   :0           Mode:logical  
##  1st Qu.:1.0        1st Qu.:0         1st Qu.:0           NA's:413352   
##  Median :1.0        Median :0         Median :0                         
##  Mean   :0.9        Mean   :0         Mean   :0                         
##  3rd Qu.:1.0        3rd Qu.:0         3rd Qu.:0                         
##  Max.   :5.0        Max.   :0         Max.   :1                         
##  NA's   :265382     NA's   :412488    NA's   :391547                    
##  ISOBARICSURFACE  ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT
##  Min.   :1.0      Mode:logical      Min.   : 888         
##  1st Qu.:1.0      NA's:413352       1st Qu.: 945         
##  Median :1.0                        Median :1002         
##  Mean   :1.3                        Mean   :1002         
##  3rd Qu.:1.5                        3rd Qu.:1059         
##  Max.   :2.0                        Max.   :1116         
##  NA's   :413349                     NA's   :413350       
##  ISOBARICSURFACEHEIGHTQC SEASURFACETEMP SEASURFACETEMPQC  REMARKSYN        
##  Mode:logical            Mode:logical   Min.   :5        Length:413352     
##  NA's:413352             NA's:413352    1st Qu.:5        Class :character  
##                                         Median :5        Mode  :character  
##                                         Mean   :5                          
##                                         3rd Qu.:5                          
##                                         Max.   :5                          
##                                         NA's   :413349                     
##   REMARKMET          REMARKAWY         HORIZONTALDATUM    VERTICALDATUM     
##  Length:413352      Length:413352      Length:413352      Length:413352     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  LIGHTNINGFREQUENCY   RECEIPTDTG             INSERTIONTIME     
##  Min.   :725280     Min.   :20130500000000   Length:413352     
##  1st Qu.:725280     1st Qu.:20151200000000   Class :character  
##  Median :725280     Median :20180900000000   Mode  :character  
##  Mean   :725280     Mean   :20182352548700                     
##  3rd Qu.:725280     3rd Qu.:20210500000000                     
##  Max.   :725280     Max.   :20231200000000                     
##  NA's   :413351     NA's   :262060                             
##      BLKSTN      
##  Min.   :725280  
##  1st Qu.:725280  
##  Median :725280  
##  Mean   :725280  
##  3rd Qu.:725280  
##  Max.   :725280  
##  NA's   :158969

Topeka, KS

summary(kfoe_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:294162      Length:294162      Length:294162      Length:294162     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE          MONTH          SECURITYID
##  Min.   :38.94   Min.   :-95.67   Min.   : 1.000   Min.   :1   
##  1st Qu.:38.95   1st Qu.:-95.67   1st Qu.: 3.000   1st Qu.:1   
##  Median :38.95   Median :-95.66   Median : 6.000   Median :1   
##  Mean   :38.95   Mean   :-95.66   Mean   : 6.447   Mean   :1   
##  3rd Qu.:38.95   3rd Qu.:-95.65   3rd Qu.: 9.000   3rd Qu.:1   
##  Max.   :38.95   Max.   :-95.65   Max.   :12.000   Max.   :1   
##  NA's   :3       NA's   :3        NA's   :3        NA's   :3   
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT   CALLLETTER       
##  Length:294162      Min.   :0.00     Min.   :328.6   Length:294162     
##  Class :character   1st Qu.:0.00     1st Qu.:328.6   Class :character  
##  Mode  :character   Median :0.00     Median :329.0   Mode  :character  
##                     Mean   :0.03     Mean   :329.7                     
##                     3rd Qu.:0.00     3rd Qu.:329.0                     
##                     Max.   :1.00     Max.   :337.0                     
##                     NA's   :177319   NA's   :3                         
##    VERSION          WINDDIRECTION   WINDDIRECTIONQC WINDCONDITIONS    
##  Length:294162      Min.   :  9.0   Min.   :0.000   Length:294162     
##  Class :character   1st Qu.:120.0   1st Qu.:1.000   Class :character  
##  Mode  :character   Median :180.0   Median :1.000   Mode  :character  
##                     Mean   :188.7   Mean   :0.993                     
##                     3rd Qu.:290.0   3rd Qu.:1.000                     
##                     Max.   :360.0   Max.   :2.000                     
##                     NA's   :33542   NA's   :29513                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.00     Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1.00     1st Qu.: 2.600   1st Qu.:1.000   1st Qu.:120.0   
##  Median :1.00     Median : 4.100   Median :1.000   Median :200.0   
##  Mean   :1.02     Mean   : 4.311   Mean   :1.007   Mean   :204.3   
##  3rd Qu.:1.00     3rd Qu.: 6.100   3rd Qu.:1.000   3rd Qu.:310.0   
##  Max.   :4.00     Max.   :62.200   Max.   :4.000   Max.   :360.0   
##  NA's   :179284   NA's   :2532     NA's   :2709    NA's   :293760  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 10.0    Min.   : 6.20    Min.   :0.00     Min.   :1          
##  1st Qu.: 70.0    1st Qu.:10.30    1st Qu.:1.00     1st Qu.:4          
##  Median :170.0    Median :11.80    Median :1.00     Median :4          
##  Mean   :169.9    Mean   :12.19    Mean   :0.79     Mean   :4          
##  3rd Qu.:250.0    3rd Qu.:13.90    3rd Qu.:1.00     3rd Qu.:4          
##  Max.   :360.0    Max.   :39.10    Max.   :2.00     Max.   :4          
##  NA's   :293772   NA's   :246957   NA's   :234105   NA's   :181704     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Min.   :0.000   Length:294162        Min.   :0.0           
##  1st Qu.:  975   1st Qu.:1.000   Class :character     1st Qu.:0.0           
##  Median :22000   Median :1.000   Mode  :character     Median :0.0           
##  Mean   :13806   Mean   :1.105                        Mean   :0.1           
##  3rd Qu.:22000   3rd Qu.:1.000                        3rd Qu.:0.0           
##  Max.   :22000   Max.   :4.000                        Max.   :1.0           
##  NA's   :3838    NA's   :3789                         NA's   :276797        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY      VISIBILITYQC  
##  Length:294162      Min.   :1        Min.   :     0   Min.   :1.000  
##  Class :character   1st Qu.:1        1st Qu.: 16093   1st Qu.:1.000  
##  Mode  :character   Median :1        Median : 16093   Median :1.000  
##                     Mean   :1        Mean   : 14219   Mean   :1.002  
##                     3rd Qu.:1        3rd Qu.: 16093   3rd Qu.:1.000  
##                     Max.   :1        Max.   :160000   Max.   :5.000  
##                     NA's   :180069   NA's   :1438     NA's   :1437   
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE   AIRTEMPERATUREQC
##  Length:294162      Min.   :1        Min.   :-29.00   Min.   :0.000   
##  Class :character   1st Qu.:1        1st Qu.:  3.30   1st Qu.:1.000   
##  Mode  :character   Median :1        Median : 13.90   Median :1.000   
##                     Mean   :1        Mean   : 12.63   Mean   :1.004   
##                     3rd Qu.:1        3rd Qu.: 22.00   3rd Qu.:1.000   
##                     Max.   :4        Max.   : 44.00   Max.   :5.000   
##                     NA's   :879      NA's   :1466     NA's   :1443    
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-31.000     Min.   :0.000         Min.   : 968.7   Min.   :0.00      
##  1st Qu.: -1.700     1st Qu.:1.000         1st Qu.:1011.4   1st Qu.:1.00      
##  Median :  8.000     Median :1.000         Median :1015.9   Median :1.00      
##  Mean   :  6.943     Mean   :1.004         Mean   :1016.3   Mean   :0.99      
##  3rd Qu.: 17.000     3rd Qu.:1.000         3rd Qu.:1020.9   3rd Qu.:1.00      
##  Max.   : 29.000     Max.   :5.000         Max.   :1073.9   Max.   :5.00      
##  NA's   :1748        NA's   :1713          NA's   :74091    NA's   :71413     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 1.00        Min.   :1.00           Min.   :  0.00   Min.   :0.00    
##  1st Qu.: 1.00        1st Qu.:1.00           1st Qu.:  0.00   1st Qu.:1.00    
##  Median : 1.00        Median :1.00           Median :  0.20   Median :1.00    
##  Mean   : 2.59        Mean   :1.43           Mean   :  1.48   Mean   :1.39    
##  3rd Qu.: 3.00        3rd Qu.:1.00           3rd Qu.:  1.00   3rd Qu.:1.00    
##  Max.   :24.00        Max.   :4.00           Max.   :725.10   Max.   :4.00    
##  NA's   :249614       NA's   :272994         NA's   :250144   NA's   :270610  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :1.00     Min.   :1.00       Min.   : 1.00       
##  1st Qu.:2.00     1st Qu.:1.00       1st Qu.: 3.00       
##  Median :2.00     Median :1.00       Median : 3.00       
##  Mean   :2.38     Mean   :1.36       Mean   : 6.04       
##  3rd Qu.:3.00     3rd Qu.:1.00       3rd Qu.: 6.00       
##  Max.   :3.00     Max.   :4.00       Max.   :24.00       
##  NA's   :264772   NA's   :270713     NA's   :287624      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.00   Min.   :0.00     Min.   :1.00    
##  1st Qu.:1              1st Qu.:  0.00   1st Qu.:1.00     1st Qu.:2.00    
##  Median :1              Median :  0.80   Median :1.00     Median :3.00    
##  Mean   :1              Mean   :  4.14   Mean   :0.86     Mean   :2.54    
##  3rd Qu.:1              3rd Qu.:  4.30   3rd Qu.:1.00     3rd Qu.:3.00    
##  Max.   :1              Max.   :123.70   Max.   :1.00     Max.   :3.00    
##  NA's   :291745         NA's   :287657   NA's   :291395   NA's   :290433  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.00        Min.   :1             
##  1st Qu.:1          1st Qu.:24.00        1st Qu.:1             
##  Median :1          Median :24.00        Median :1             
##  Mean   :1          Mean   :20.72        Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.00        3rd Qu.:1             
##  Max.   :1          Max.   :24.00        Max.   :1             
##  NA's   :291370     NA's   :293523       NA's   :293897        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   :  0.00   Min.   :0.00     Min.   :1.0      Min.   :1         
##  1st Qu.:  0.80   1st Qu.:1.00     1st Qu.:3.0      1st Qu.:1         
##  Median :  4.30   Median :1.00     Median :3.0      Median :1         
##  Mean   : 10.76   Mean   :0.99     Mean   :2.8      Mean   :1         
##  3rd Qu.: 14.43   3rd Qu.:1.00     3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :170.90   Max.   :1.00     Max.   :3.0      Max.   :1         
##  NA's   :293542   NA's   :293865   NA's   :293817   NA's   :293848    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4  PRECIPAMOUNT4QC
##  Mode:logical         Mode:logical           Mode:logical   Mode:logical   
##  NA's:294162          NA's:294162            NA's:294162    NA's:294162    
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR  PRECIPHISTDURQC 
##  Mode:logical     Mode:logical       Mode:logical   Min.   :0       
##  NA's:294162      NA's:294162        NA's:294162    1st Qu.:0       
##                                                     Median :0       
##                                                     Mean   :0       
##                                                     3rd Qu.:0       
##                                                     Max.   :0       
##                                                     NA's   :291575  
##  PRECIPHISTCHAR PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Mode:logical   Mode:logical     Min.   :0.00     Mode:logical  
##  NA's:294162    NA's:294162      1st Qu.:1.00     NA's:294162   
##                                  Median :1.00                   
##                                  Mean   :0.89                   
##                                  3rd Qu.:1.00                   
##                                  Max.   :3.00                   
##                                  NA's   :259349                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   : 0.00    Mode:logical   Min.   :  0.00   Mode:logical    
##  1st Qu.: 0.00    NA's:294162    1st Qu.:  0.00   NA's:294162     
##  Median : 0.00                   Median :  1.00                   
##  Mean   : 0.15                   Mean   :  4.14                   
##  3rd Qu.: 0.00                   3rd Qu.:  5.00                   
##  Max.   :15.00                   Max.   :490.00                   
##  NA's   :284681                  NA's   :293645                   
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV  DEPTHWTREQUIVQC
##  Mode:logical      Mode:logical        Mode:logical   Mode:logical   
##  NA's:294162       NA's:294162         NA's:294162    NA's:294162    
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##  DEPTHWECOND    DEPTHWECONDQC     HAILSIZE      PRECIPAMOUNTSF1
##  Mode:logical   Mode:logical   Min.   :0.1      Mode:logical   
##  NA's:294162    NA's:294162    1st Qu.:0.1      NA's:294162    
##                                Median :0.1                     
##                                Mean   :0.1                     
##                                3rd Qu.:0.1                     
##                                Max.   :0.1                     
##                                NA's   :294161                  
##  PRECIPAMOUNTSF1QC PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Mode:logical      Mode:logical       Mode:logical         Mode:logical        
##  NA's:294162       NA's:294162        NA's:294162          NA's:294162         
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2 PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Mode:logical           Mode:logical    Mode:logical      Mode:logical      
##  NA's:294162            NA's:294162     NA's:294162       NA's:294162       
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Mode:logical         Mode:logical          
##  NA's:294162          NA's:294162          NA's:294162           
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##  PRECIPAMOUNTSF3 PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Mode:logical    Mode:logical      Mode:logical       Mode:logical        
##  NA's:294162     NA's:294162       NA's:294162        NA's:294162         
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:294162          NA's:294162            NA's:294162     NA's:294162      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:294162        NA's:294162          NA's:294162         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Mode:logical           Min.   : 0.0     Min.   :0.00     Min.   : 0.00   
##  NA's:294162            1st Qu.: 0.0     1st Qu.:1.00     1st Qu.: 0.00   
##                         Median : 0.0     Median :1.00     Median : 0.00   
##                         Mean   :13.9     Mean   :0.96     Mean   : 4.15   
##                         3rd Qu.:10.0     3rd Qu.:1.00     3rd Qu.: 0.00   
##                         Max.   :99.0     Max.   :4.00     Max.   :90.00   
##                         NA's   :217716   NA's   :214749   NA's   :241033  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4
##  Min.   :0.00     Min.   : 0.00    Min.   :0        Mode:logical  
##  1st Qu.:1.00     1st Qu.: 0.00    1st Qu.:1        NA's:294162   
##  Median :1.00     Median : 0.00    Median :1                      
##  Mean   :0.99     Mean   : 0.37    Mean   :1                      
##  3rd Qu.:1.00     3rd Qu.: 0.00    3rd Qu.:1                      
##  Max.   :1.00     Max.   :90.00    Max.   :1                      
##  NA's   :223903   NA's   :246001   NA's   :228002                 
##  PRESENTMANUAL4QC PRESENTMANUAL5 PRESENTMANUAL5QC PRESENTMANUAL6
##  Min.   :1        Mode:logical   Min.   :1        Mode:logical  
##  1st Qu.:1        NA's:294162    1st Qu.:1        NA's:294162   
##  Median :1                       Median :1                      
##  Mean   :1                       Mean   :1                      
##  3rd Qu.:1                       3rd Qu.:1                      
##  Max.   :1                       Max.   :1                      
##  NA's   :232912                  NA's   :232912                 
##  PRESENTMANUAL6QC PRESENTMANUAL7 PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Mode:logical   Min.   :1        Min.   : 4.0     
##  1st Qu.:1        NA's:294162    1st Qu.:1        1st Qu.:10.0     
##  Median :1                       Median :1        Median :40.0     
##  Mean   :1                       Mean   :1        Mean   :40.5     
##  3rd Qu.:1                       3rd Qu.:1        3rd Qu.:62.0     
##  Max.   :1                       Max.   :1        Max.   :96.0     
##  NA's   :232912                  NA's   :232912   NA's   :261552   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.00        Min.   : 4.00     Min.   :1           Min.   :10.00    
##  1st Qu.:1.00        1st Qu.:10.00     1st Qu.:1           1st Qu.:10.00    
##  Median :1.00        Median :10.00     Median :1           Median :10.00    
##  Mean   :0.81        Mean   :16.53     Mean   :1           Mean   :10.35    
##  3rd Qu.:1.00        3rd Qu.:10.00     3rd Qu.:1           3rd Qu.:10.00    
##  Max.   :5.00        Max.   :95.00     Max.   :5           Max.   :30.00    
##  NA's   :253583      NA's   :284284    NA's   :284282      NA's   :293601   
##  PRESENTAUTOMATED3QC PASTMANUAL1    PASTMANUAL1QC    WXPASTPERIOD1 
##  Min.   :1.00        Mode:logical   Min.   :0        Mode:logical  
##  1st Qu.:1.00        NA's:294162    1st Qu.:0        NA's:294162   
##  Median :1.00                       Median :0                      
##  Mean   :1.03                       Mean   :0                      
##  3rd Qu.:1.00                       3rd Qu.:0                      
##  Max.   :4.00                       Max.   :0                      
##  NA's   :293601                     NA's   :291195                 
##  WXPASTPERIOD1QC PASTMANUAL2    PASTMANUAL2QC    WXPASTPERIOD2  WXPASTPERIOD2QC
##  Mode:logical    Mode:logical   Min.   :0        Mode:logical   Mode:logical   
##  NA's:294162     NA's:294162    1st Qu.:0        NA's:294162    NA's:294162    
##                                 Median :0                                      
##                                 Mean   :0                                      
##                                 3rd Qu.:0                                      
##                                 Max.   :0                                      
##                                 NA's   :293287                                 
##  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1 WXPASTAUTOPERIOD1QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:294162    1st Qu.:0        NA's:294162       NA's:294162        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :291195                                        
##  PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2 WXPASTAUTOPERIOD2QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:294162    1st Qu.:0        NA's:294162       NA's:294162        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :293287                                        
##  RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE   CLOUDCOVER   
##  Min.   :31       Length:294162      Min.   :  91      Min.   : 0.00  
##  1st Qu.:31       Class :character   1st Qu.: 732      1st Qu.: 0.00  
##  Median :31       Mode  :character   Median :1067      Median : 0.00  
##  Mean   :31                          Mean   :1121      Mean   : 2.55  
##  3rd Qu.:31                          3rd Qu.:1524      3rd Qu.: 7.00  
##  Max.   :31                          Max.   :1829      Max.   :10.00  
##  NA's   :292644                      NA's   :292642    NA's   :49495  
##   CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC   CLOUDBASEHEIGHT 
##  Min.   :0.00    Min.   :0        Min.   :0        Min.   :   0    
##  1st Qu.:1.00    1st Qu.:0        1st Qu.:0        1st Qu.: 244    
##  Median :1.00    Median :0        Median :0        Median : 579    
##  Mean   :1.07    Mean   :0        Mean   :0        Mean   : 948    
##  3rd Qu.:1.00    3rd Qu.:0        3rd Qu.:0        3rd Qu.:1372    
##  Max.   :4.00    Max.   :0        Max.   :1        Max.   :7620    
##  NA's   :43855   NA's   :294161   NA's   :288431   NA's   :239481  
##  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC     CLOUDTYPEMID   
##  Min.   :1         Min.   :7        Min.   :0        Min.   :1       
##  1st Qu.:1         1st Qu.:7        1st Qu.:0        1st Qu.:1       
##  Median :1         Median :7        Median :0        Median :1       
##  Mean   :1         Mean   :7        Mean   :0        Mean   :1       
##  3rd Qu.:1         3rd Qu.:7        3rd Qu.:0        3rd Qu.:1       
##  Max.   :1         Max.   :7        Max.   :1        Max.   :1       
##  NA's   :239481    NA's   :294161   NA's   :288431   NA's   :294161  
##  CLOUDTYPEMIDQC    CLOUDTYPEHI     CLOUDTYPEHIQC    SUNSHINE      
##  Min.   :0        Min.   :0        Min.   :0        Mode:logical  
##  1st Qu.:0        1st Qu.:0        1st Qu.:0        NA's:294162   
##  Median :0        Median :0        Median :0                      
##  Mean   :0        Mean   :0        Mean   :0                      
##  3rd Qu.:0        3rd Qu.:0        3rd Qu.:0                      
##  Max.   :1        Max.   :0        Max.   :1                      
##  NA's   :288431   NA's   :294161   NA's   :288431                 
##   SURFACECODE     SURFACECODEQC  SOILTEMPERATURE SOILTEMPERATUREQC
##  Min.   :1        Mode:logical   Mode:logical    Mode:logical     
##  1st Qu.:1        NA's:294162    NA's:294162     NA's:294162      
##  Median :1                                                        
##  Mean   :1                                                        
##  3rd Qu.:1                                                        
##  Max.   :1                                                        
##  NA's   :294160                                                   
##  SOILDEPTH      OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC
##  Mode:logical   Mode:logical           Mode:logical            
##  NA's:294162    NA's:294162            NA's:294162             
##                                                                
##                                                                
##                                                                
##                                                                
##                                                                
##  ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE STATIONPRESSUREQC
##  Min.   : 942.1   Min.   :0.000      Mode:logical    Min.   :0        
##  1st Qu.:1011.8   1st Qu.:1.000      NA's:294162     1st Qu.:0        
##  Median :1015.9   Median :1.000                      Median :0        
##  Mean   :1016.2   Mean   :1.002                      Mean   :0        
##  3rd Qu.:1020.7   3rd Qu.:1.000                      3rd Qu.:0        
##  Max.   :1085.7   Max.   :5.000                      Max.   :0        
##  NA's   :1020     NA's   :999                        NA's   :278370   
##  PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG PRESSURE3HOURCHGQC
##  Min.   :0.0      Min.   :0.00       Min.   :-7.30    Min.   :0.00      
##  1st Qu.:2.0      1st Qu.:1.00       1st Qu.: 0.30    1st Qu.:1.00      
##  Median :4.0      Median :1.00       Median : 0.80    Median :1.00      
##  Mean   :4.3      Mean   :0.78       Mean   : 0.89    Mean   :0.78      
##  3rd Qu.:6.0      3rd Qu.:1.00       3rd Qu.: 1.40    3rd Qu.:1.00      
##  Max.   :8.0      Max.   :5.00       Max.   :30.80    Max.   :5.00      
##  NA's   :240783   NA's   :225042     NA's   :239619   NA's   :224260    
##  PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND  ISOBARICSURFACE
##  Min.   :0         Min.   :0.00        Mode:logical   Mode:logical   
##  1st Qu.:0         1st Qu.:0.00        NA's:294162    NA's:294162    
##  Median :0         Median :0.00                                      
##  Mean   :0         Mean   :0.05                                      
##  3rd Qu.:0         3rd Qu.:0.00                                      
##  Max.   :0         Max.   :1.00                                      
##  NA's   :293348    NA's   :277556                                    
##  ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT ISOBARICSURFACEHEIGHTQC SEASURFACETEMP
##  Mode:logical      Mode:logical          Mode:logical            Mode:logical  
##  NA's:294162       NA's:294162           NA's:294162             NA's:294162   
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  SEASURFACETEMPQC REMARKSYN       REMARKMET          REMARKAWY        
##  Min.   :5        Mode:logical   Length:294162      Length:294162     
##  1st Qu.:5        NA's:294162    Class :character   Class :character  
##  Median :5                       Mode  :character   Mode  :character  
##  Mean   :5                                                            
##  3rd Qu.:5                                                            
##  Max.   :5                                                            
##  NA's   :294160                                                       
##  HORIZONTALDATUM    VERTICALDATUM      LIGHTNINGFREQUENCY
##  Length:294162      Length:294162      Mode:logical      
##  Class :character   Class :character   NA's:294162       
##  Mode  :character   Mode  :character                     
##                                                          
##                                                          
##                                                          
##                                                          
##    RECEIPTDTG             INSERTIONTIME          BLKSTN      
##  Min.   :20130500000000   Length:294162      Min.   :724565  
##  1st Qu.:20160100000000   Class :character   1st Qu.:724565  
##  Median :20180800000000   Mode  :character   Median :724565  
##  Mean   :20182024898100                      Mean   :724565  
##  3rd Qu.:20210300000000                      3rd Qu.:724565  
##  Max.   :20231200000000                      Max.   :724565  
##  NA's   :180069                              NA's   :116849

Madison, WI

summary(kmsn_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:362604      Length:362604      Length:362604      Length:362604     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE          MONTH         SECURITYID       
##  Min.   :43.13   Min.   :-89.35   Min.   : 1.000   Length:362604     
##  1st Qu.:43.13   1st Qu.:-89.35   1st Qu.: 3.000   Class :character  
##  Median :43.13   Median :-89.34   Median : 6.000   Mode  :character  
##  Mean   :43.13   Mean   :-89.34   Mean   : 6.467                     
##  3rd Qu.:43.14   3rd Qu.:-89.33   3rd Qu.:10.000                     
##  Max.   :43.14   Max.   :-89.33   Max.   :12.000                     
##  NA's   :2       NA's   :2        NA's   :2                          
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT   CALLLETTER       
##  Length:362604      Min.   :0.00     Min.   :261.0   Length:362604     
##  Class :character   1st Qu.:0.00     1st Qu.:261.0   Class :character  
##  Mode  :character   Median :0.00     Median :264.0   Mode  :character  
##                     Mean   :0.11     Mean   :265.2                     
##                     3rd Qu.:0.00     3rd Qu.:270.4                     
##                     Max.   :1.00     Max.   :270.4                     
##                     NA's   :224898   NA's   :2                         
##    VERSION          WINDDIRECTION   WINDDIRECTIONQC WINDCONDITIONS    
##  Length:362604      Min.   : 10.0   Min.   :0.00    Length:362604     
##  Class :character   1st Qu.:120.0   1st Qu.:1.00    Class :character  
##  Mode  :character   Median :200.0   Median :1.00    Mode  :character  
##                     Mean   :200.1   Mean   :0.98                      
##                     3rd Qu.:300.0   3rd Qu.:1.00                      
##                     Max.   :360.0   Max.   :4.00                      
##                     NA's   :77023   NA's   :64798                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.00     Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1.00     1st Qu.: 2.100   1st Qu.:1.000   1st Qu.:200.0   
##  Median :1.00     Median : 3.100   Median :1.000   Median :220.0   
##  Mean   :1.03     Mean   : 3.344   Mean   :1.011   Mean   :222.4   
##  3rd Qu.:1.00     3rd Qu.: 4.600   3rd Qu.:1.000   3rd Qu.:250.0   
##  Max.   :5.00     Max.   :50.900   Max.   :5.000   Max.   :360.0   
##  NA's   :226659   NA's   :1244     NA's   :2009    NA's   :359791  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 10.0    Min.   : 0.0     Min.   :0.00     Min.   :1          
##  1st Qu.:270.0    1st Qu.: 8.7     1st Qu.:0.00     1st Qu.:4          
##  Median :290.0    Median : 9.8     Median :1.00     Median :4          
##  Mean   :281.4    Mean   :10.3     Mean   :0.86     Mean   :4          
##  3rd Qu.:310.0    3rd Qu.:11.3     3rd Qu.:1.00     3rd Qu.:4          
##  Max.   :360.0    Max.   :42.0     Max.   :4.00     Max.   :4          
##  NA's   :359791   NA's   :316685   NA's   :300048   NA's   :228490     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Min.   :0.000   Length:362604        Min.   :0.0           
##  1st Qu.:  750   1st Qu.:1.000   Class :character     1st Qu.:0.0           
##  Median : 4500   Median :1.000   Mode  :character     Median :0.0           
##  Mean   :10847   Mean   :1.174                        Mean   :0.1           
##  3rd Qu.:22000   3rd Qu.:1.000                        3rd Qu.:0.0           
##  Max.   :22000   Max.   :4.000                        Max.   :5.0           
##  NA's   :25645   NA's   :23392                        NA's   :341854        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY     VISIBILITYQC  
##  Length:362604      Min.   :1        Min.   :    0   Min.   :1.000  
##  Class :character   1st Qu.:1        1st Qu.: 9656   1st Qu.:1.000  
##  Mode  :character   Median :1        Median :16093   Median :1.000  
##                     Mean   :1        Mean   :12856   Mean   :1.003  
##                     3rd Qu.:1        3rd Qu.:16093   3rd Qu.:1.000  
##                     Max.   :1        Max.   :50000   Max.   :4.000  
##                     NA's   :227891   NA's   :177     NA's   :176    
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE    AIRTEMPERATUREQC
##  Length:362604      Min.   :1        Min.   :-32.800   Min.   :1.000   
##  Class :character   1st Qu.:1        1st Qu.: -0.600   1st Qu.:1.000   
##  Mode  :character   Median :1        Median :  8.900   Median :1.000   
##                     Mean   :1        Mean   :  8.423   Mean   :1.003   
##                     3rd Qu.:1        3rd Qu.: 18.300   3rd Qu.:1.000   
##                     Max.   :4        Max.   : 60.000   Max.   :5.000   
##                     NA's   :547      NA's   :10904     NA's   :10903   
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-37.800     Min.   :1.000         Min.   : 976     Min.   :0.00      
##  1st Qu.: -4.000     1st Qu.:1.000         1st Qu.:1012     1st Qu.:1.00      
##  Median :  3.300     Median :1.000         Median :1016     Median :1.00      
##  Mean   :  3.487     Mean   :1.003         Mean   :1016     Mean   :0.99      
##  3rd Qu.: 13.000     3rd Qu.:1.000         3rd Qu.:1021     3rd Qu.:1.00      
##  Max.   : 27.200     Max.   :5.000         Max.   :1048     Max.   :5.00      
##  NA's   :10938       NA's   :10937         NA's   :61445    NA's   :57767     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 1.00        Min.   :1.0            Min.   : 0.00    Min.   :1.0     
##  1st Qu.: 1.00        1st Qu.:1.0            1st Qu.: 0.00    1st Qu.:1.0     
##  Median : 1.00        Median :1.0            Median : 0.00    Median :1.0     
##  Mean   : 3.25        Mean   :1.3            Mean   : 1.11    Mean   :1.3     
##  3rd Qu.: 6.00        3rd Qu.:1.0            3rd Qu.: 0.50    3rd Qu.:1.0     
##  Max.   :24.00        Max.   :4.0            Max.   :93.20    Max.   :4.0     
##  NA's   :277798       NA's   :326553         NA's   :277111   NA's   :321460  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :1.00     Min.   :1.0        Min.   : 1          
##  1st Qu.:2.00     1st Qu.:1.0        1st Qu.: 3          
##  Median :2.00     Median :1.0        Median : 6          
##  Mean   :2.28     Mean   :1.3        Mean   :10          
##  3rd Qu.:3.00     3rd Qu.:1.0        3rd Qu.:24          
##  Max.   :3.00     Max.   :4.0        Max.   :24          
##  NA's   :300206   NA's   :321794     NA's   :348101      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.0    Min.   :0.0      Min.   :2.0     
##  1st Qu.:1              1st Qu.:  0.0    1st Qu.:1.0      1st Qu.:2.0     
##  Median :1              Median :  0.5    Median :1.0      Median :2.0     
##  Mean   :1              Mean   :  3.7    Mean   :0.9      Mean   :2.5     
##  3rd Qu.:1              3rd Qu.:  3.6    3rd Qu.:1.0      3rd Qu.:3.0     
##  Max.   :1              Max.   :112.0    Max.   :2.0      Max.   :3.0     
##  NA's   :357610         NA's   :348172   NA's   :356786   NA's   :354513  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.0         Min.   :1             
##  1st Qu.:1          1st Qu.:24.0         1st Qu.:1             
##  Median :1          Median :24.0         Median :1             
##  Mean   :1          Mean   :19.5         Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.0         3rd Qu.:1             
##  Max.   :1          Max.   :24.0         Max.   :1             
##  NA's   :356789     NA's   :361525       NA's   :362158        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   :  0.0    Min.   :1        Min.   :0.0      Min.   :1         
##  1st Qu.:  0.7    1st Qu.:1        1st Qu.:3.0      1st Qu.:1         
##  Median :  2.8    Median :1        Median :3.0      Median :1         
##  Mean   :  7.3    Mean   :1        Mean   :2.9      Mean   :1         
##  3rd Qu.:  8.7    3rd Qu.:1        3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :112.0    Max.   :2        Max.   :3.0      Max.   :1         
##  NA's   :361524   NA's   :361996   NA's   :361955   NA's   :361996    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4    PRECIPAMOUNT4QC 
##  Min.   :24           Min.   :1              Min.   : 0.0     Min.   :1       
##  1st Qu.:24           1st Qu.:1              1st Qu.: 0.8     1st Qu.:1       
##  Median :24           Median :1              Median : 2.1     Median :1       
##  Mean   :24           Mean   :1              Mean   : 5.6     Mean   :1       
##  3rd Qu.:24           3rd Qu.:1              3rd Qu.: 4.4     3rd Qu.:1       
##  Max.   :24           Max.   :1              Max.   :51.5     Max.   :1       
##  NA's   :362578       NA's   :362601         NA's   :362578   NA's   :362578  
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR    PRECIPHISTDURQC 
##  Min.   :2        Min.   :1          Min.   :0.0      Min.   :0       
##  1st Qu.:3        1st Qu.:1          1st Qu.:1.0      1st Qu.:0       
##  Median :3        Median :1          Median :2.0      Median :0       
##  Mean   :3        Mean   :1          Mean   :1.7      Mean   :0       
##  3rd Qu.:3        3rd Qu.:1          3rd Qu.:2.0      3rd Qu.:0       
##  Max.   :3        Max.   :1          Max.   :3.0      Max.   :0       
##  NA's   :362578   NA's   :362578     NA's   :361687   NA's   :357402  
##  PRECIPHISTCHAR     PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Length:362604      Mode:logical     Min.   :0.00     Mode:logical  
##  Class :character   NA's:362604      1st Qu.:1.00     NA's:362604   
##  Mode  :character                    Median :1.00                   
##                                      Mean   :1.01                   
##                                      3rd Qu.:1.00                   
##                                      Max.   :5.00                   
##                                      NA's   :305512                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   : 0.0     Mode:logical   Min.   :  0.0    Min.   :1       
##  1st Qu.: 0.0     NA's:362604    1st Qu.:  5.0    1st Qu.:1       
##  Median : 0.0                    Median : 10.0    Median :1       
##  Mean   : 0.3                    Mean   : 12.6    Mean   :1       
##  3rd Qu.: 0.0                    3rd Qu.: 18.0    3rd Qu.:1       
##  Max.   :13.0                    Max.   :996.0    Max.   :1       
##  NA's   :345610                  NA's   :349150   NA's   :358019  
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV    DEPTHWTREQUIVQC 
##  Min.   :1         Min.   :0           Min.   :  5.0    Min.   :4       
##  1st Qu.:3         1st Qu.:1           1st Qu.: 50.0    1st Qu.:4       
##  Median :3         Median :1           Median : 80.0    Median :4       
##  Mean   :3         Mean   :1           Mean   :107.6    Mean   :4       
##  3rd Qu.:3         3rd Qu.:1           3rd Qu.:152.0    3rd Qu.:4       
##  Max.   :3         Max.   :1           Max.   :410.0    Max.   :4       
##  NA's   :358098    NA's   :358097      NA's   :357941   NA's   :361967  
##  DEPTHWECOND    DEPTHWECONDQC     HAILSIZE      PRECIPAMOUNTSF1 
##  Mode:logical   Mode:logical   Min.   : 0.1     Min.   : 0.0    
##  NA's:362604    NA's:362604    1st Qu.: 0.1     1st Qu.: 1.0    
##                                Median : 0.1     Median : 2.0    
##                                Mean   : 3.6     Mean   : 3.5    
##                                3rd Qu.: 6.3     3rd Qu.: 5.0    
##                                Max.   :12.7     Max.   :19.0    
##                                NA's   :362595   NA's   :362486  
##  PRECIPAMOUNTSF1QC PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Min.   :0         Mode:logical       Min.   :0            Min.   :1           
##  1st Qu.:0         NA's:362604        1st Qu.:0            1st Qu.:1           
##  Median :0                            Median :0            Median :1           
##  Mean   :0                            Mean   :0            Mean   :1           
##  3rd Qu.:0                            3rd Qu.:0            3rd Qu.:1           
##  Max.   :0                            Max.   :0            Max.   :6           
##  NA's   :362601                       NA's   :362601       NA's   :362501      
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2 PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Min.   :1              Mode:logical    Mode:logical      Mode:logical      
##  1st Qu.:1              NA's:362604     NA's:362604       NA's:362604       
##  Median :1                                                                  
##  Mean   :1                                                                  
##  3rd Qu.:1                                                                  
##  Max.   :1                                                                  
##  NA's   :362502                                                             
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Mode:logical         Mode:logical          
##  NA's:362604          NA's:362604          NA's:362604           
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##  PRECIPAMOUNTSF3 PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Mode:logical    Mode:logical      Mode:logical       Mode:logical        
##  NA's:362604     NA's:362604       NA's:362604        NA's:362604         
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:362604          NA's:362604            NA's:362604     NA's:362604      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:362604        NA's:362604          NA's:362604         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Mode:logical           Min.   : 0.00    Min.   :0.00     Min.   : 0.00   
##  NA's:362604            1st Qu.: 0.00    1st Qu.:1.00     1st Qu.: 0.00   
##                         Median :10.00    Median :1.00     Median : 0.00   
##                         Mean   :24.74    Mean   :0.97     Mean   : 8.34   
##                         3rd Qu.:61.00    3rd Qu.:1.00     3rd Qu.:10.00   
##                         Max.   :99.00    Max.   :5.00     Max.   :97.00   
##                         NA's   :226282   NA's   :221765   NA's   :276262  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4  
##  Min.   :0.00     Min.   : 0.00    Min.   :0        Min.   : 0.0    
##  1st Qu.:1.00     1st Qu.: 0.00    1st Qu.:1        1st Qu.: 0.0    
##  Median :1.00     Median : 0.00    Median :1        Median : 0.0    
##  Mean   :0.99     Mean   : 1.01    Mean   :1        Mean   : 9.7    
##  3rd Qu.:1.00     3rd Qu.: 0.00    3rd Qu.:1        3rd Qu.:10.0    
##  Max.   :4.00     Max.   :90.00    Max.   :1        Max.   :61.0    
##  NA's   :246295   NA's   :293078   NA's   :257503   NA's   :362309  
##  PRESENTMANUAL4QC PRESENTMANUAL5   PRESENTMANUAL5QC PRESENTMANUAL6  
##  Min.   :1        Min.   :53       Min.   :1        Min.   : 0.0    
##  1st Qu.:1        1st Qu.:62       1st Qu.:1        1st Qu.: 0.0    
##  Median :1        Median :71       Median :1        Median : 0.0    
##  Mean   :1        Mean   :65       Mean   :1        Mean   :12.7    
##  3rd Qu.:1        3rd Qu.:71       3rd Qu.:1        3rd Qu.:19.0    
##  Max.   :1        Max.   :71       Max.   :1        Max.   :38.0    
##  NA's   :265345   NA's   :362601   NA's   :265410   NA's   :362601  
##  PRESENTMANUAL6QC PRESENTMANUAL7   PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Min.   :0        Min.   :1        Min.   : 4.0     
##  1st Qu.:1        1st Qu.:0        1st Qu.:1        1st Qu.:10.0     
##  Median :1        Median :0        Median :1        Median :61.0     
##  Mean   :1        Mean   :0        Mean   :1        Mean   :47.8     
##  3rd Qu.:1        3rd Qu.:0        3rd Qu.:1        3rd Qu.:71.0     
##  Max.   :1        Max.   :0        Max.   :1        Max.   :96.0     
##  NA's   :265410   NA's   :362601   NA's   :265410   NA's   :329873   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.0         Min.   : 4.0      Min.   :1.0         Min.   :10.0     
##  1st Qu.:1.0         1st Qu.:10.0      1st Qu.:1.0         1st Qu.:10.0     
##  Median :1.0         Median :10.0      Median :1.0         Median :10.0     
##  Mean   :0.8         Mean   :14.2      Mean   :1.1         Mean   :20.5     
##  3rd Qu.:1.0         3rd Qu.:10.0      3rd Qu.:1.0         3rd Qu.:10.0     
##  Max.   :5.0         Max.   :95.0      Max.   :4.0         Max.   :68.0     
##  NA's   :319410      NA's   :350408    NA's   :350408      NA's   :362093   
##  PRESENTAUTOMATED3QC  PASTMANUAL1     PASTMANUAL1QC    WXPASTPERIOD1   
##  Min.   :1.0         Min.   :0.0      Min.   :0.0      Min.   :1       
##  1st Qu.:1.0         1st Qu.:2.0      1st Qu.:0.0      1st Qu.:6       
##  Median :1.0         Median :7.0      Median :0.0      Median :6       
##  Mean   :2.4         Mean   :5.8      Mean   :0.2      Mean   :6       
##  3rd Qu.:4.0         3rd Qu.:8.0      3rd Qu.:0.0      3rd Qu.:6       
##  Max.   :4.0         Max.   :9.0      Max.   :1.0      Max.   :6       
##  NA's   :362093      NA's   :361279   NA's   :356489   NA's   :361279  
##  WXPASTPERIOD1QC   PASTMANUAL2     PASTMANUAL2QC    WXPASTPERIOD2   
##  Min.   :1        Min.   :0        Min.   :0.0      Min.   :1       
##  1st Qu.:1        1st Qu.:1        1st Qu.:0.0      1st Qu.:6       
##  Median :1        Median :2        Median :0.0      Median :6       
##  Mean   :1        Mean   :3        Mean   :0.5      Mean   :6       
##  3rd Qu.:1        3rd Qu.:5        3rd Qu.:1.0      3rd Qu.:6       
##  Max.   :1        Max.   :9        Max.   :1.0      Max.   :6       
##  NA's   :361279   NA's   :361279   NA's   :359879   NA's   :361279  
##  WXPASTPERIOD2QC  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1
##  Min.   :1        Mode:logical   Min.   :0        Mode:logical     
##  1st Qu.:1        NA's:362604    1st Qu.:0        NA's:362604      
##  Median :1                       Median :0                         
##  Mean   :1                       Mean   :0                         
##  3rd Qu.:1                       3rd Qu.:0                         
##  Max.   :1                       Max.   :0                         
##  NA's   :361279                  NA's   :357814                    
##  WXPASTAUTOPERIOD1QC PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2
##  Mode:logical        Mode:logical   Min.   :0        Mode:logical     
##  NA's:362604         NA's:362604    1st Qu.:0        NA's:362604      
##                                     Median :0                         
##                                     Mean   :0                         
##                                     3rd Qu.:0                         
##                                     Max.   :0                         
##                                     NA's   :361204                    
##  WXPASTAUTOPERIOD2QC RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE
##  Mode:logical        Min.   :18       Length:362604      Min.   :   0     
##  NA's:362604         1st Qu.:36       Class :character   1st Qu.: 792     
##                      Median :36       Mode  :character   Median :1372     
##                      Mean   :36                          Mean   :1247     
##                      3rd Qu.:36                          3rd Qu.:1829     
##                      Max.   :36                          Max.   :1829     
##                      NA's   :359624                      NA's   :359623   
##    CLOUDCOVER     CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC  
##  Min.   : 0.00   Min.   :0.00    Min.   :0        Min.   :0.0     
##  1st Qu.: 0.00   1st Qu.:1.00    1st Qu.:0        1st Qu.:0.0     
##  Median : 4.00   Median :1.00    Median :0        Median :1.0     
##  Mean   : 4.06   Mean   :1.17    Mean   :1        Mean   :0.5     
##  3rd Qu.: 8.00   3rd Qu.:1.00    3rd Qu.:0        3rd Qu.:1.0     
##  Max.   :10.00   Max.   :4.00    Max.   :9        Max.   :1.0     
##  NA's   :82642   NA's   :72917   NA's   :350468   NA's   :338753  
##  CLOUDBASEHEIGHT  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC   
##  Min.   :   0     Min.   :0.00      Min.   :0.0      Min.   :0.0     
##  1st Qu.: 396     1st Qu.:1.00      1st Qu.:0.0      1st Qu.:0.0     
##  Median : 853     Median :1.00      Median :0.0      Median :1.0     
##  Mean   :1638     Mean   :0.99      Mean   :1.1      Mean   :0.6     
##  3rd Qu.:1829     3rd Qu.:1.00      3rd Qu.:0.0      3rd Qu.:1.0     
##  Max.   :9144     Max.   :1.00      Max.   :9.0      Max.   :1.0     
##  NA's   :244081   NA's   :243279    NA's   :346933   NA's   :335218  
##   CLOUDTYPEMID    CLOUDTYPEMIDQC    CLOUDTYPEHI     CLOUDTYPEHIQC   
##  Min.   :0        Min.   :0.0      Min.   :0.0      Min.   :0.0     
##  1st Qu.:0        1st Qu.:0.0      1st Qu.:0.0      1st Qu.:0.0     
##  Median :0        Median :1.0      Median :0.0      Median :1.0     
##  Mean   :1        Mean   :0.5      Mean   :0.7      Mean   :0.5     
##  3rd Qu.:0        3rd Qu.:1.0      3rd Qu.:0.0      3rd Qu.:1.0     
##  Max.   :9        Max.   :1.0      Max.   :9.0      Max.   :1.0     
##  NA's   :348805   NA's   :337090   NA's   :349432   NA's   :337717  
##  SUNSHINE        SURFACECODE     SURFACECODEQC  SOILTEMPERATURE
##  Mode:logical   Min.   :1        Mode:logical   Mode:logical   
##  NA's:362604    1st Qu.:1        NA's:362604    NA's:362604    
##                 Median :1                                      
##                 Mean   :1                                      
##                 3rd Qu.:1                                      
##                 Max.   :1                                      
##                 NA's   :362602                                 
##  SOILTEMPERATUREQC SOILDEPTH      OBSERVATIONPERIODSOILT
##  Mode:logical      Mode:logical   Mode:logical          
##  NA's:362604       NA's:362604    NA's:362604           
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##  OBSERVATIONPERIODSOILTQC ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE 
##  Mode:logical             Min.   : 976     Min.   :0          Min.   : 946.2  
##  NA's:362604              1st Qu.:1011     1st Qu.:1          1st Qu.: 979.9  
##                           Median :1016     Median :1          Median : 984.8  
##                           Mean   :1015     Mean   :1          Mean   : 984.4  
##                           3rd Qu.:1020     3rd Qu.:1          3rd Qu.: 989.1  
##                           Max.   :1045     Max.   :5          Max.   :1012.6  
##                           NA's   :34300    NA's   :32093      NA's   :267618  
##  STATIONPRESSUREQC PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG
##  Min.   :0.00      Min.   :0.00     Min.   :0.00       Min.   :-8.10   
##  1st Qu.:1.00      1st Qu.:2.00     1st Qu.:1.00       1st Qu.: 0.20   
##  Median :1.00      Median :4.00     Median :1.00       Median : 0.70   
##  Mean   :0.85      Mean   :4.37     Mean   :0.86       Mean   : 0.81   
##  3rd Qu.:1.00      3rd Qu.:7.00     3rd Qu.:1.00       3rd Qu.: 1.40   
##  Max.   :5.00      Max.   :8.00     Max.   :5.00       Max.   :13.20   
##  NA's   :250736    NA's   :262688   NA's   :245553     NA's   :260149  
##  PRESSURE3HOURCHGQC PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND 
##  Min.   :0.00       Min.   :0         Min.   :0           Mode:logical  
##  1st Qu.:1.00       1st Qu.:0         1st Qu.:0           NA's:362604   
##  Median :1.00       Median :0         Median :0                         
##  Mean   :0.87       Mean   :0         Mean   :0                         
##  3rd Qu.:1.00       3rd Qu.:0         3rd Qu.:0                         
##  Max.   :5.00       Max.   :0         Max.   :1                         
##  NA's   :243352     NA's   :361794    NA's   :342773                    
##  ISOBARICSURFACE ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT
##  Mode:logical    Mode:logical      Mode:logical         
##  NA's:362604     NA's:362604       NA's:362604          
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##  ISOBARICSURFACEHEIGHTQC SEASURFACETEMP SEASURFACETEMPQC  REMARKSYN        
##  Mode:logical            Mode:logical   Min.   :5        Length:362604     
##  NA's:362604             NA's:362604    1st Qu.:5        Class :character  
##                                         Median :5        Mode  :character  
##                                         Mean   :5                          
##                                         3rd Qu.:5                          
##                                         Max.   :5                          
##                                         NA's   :362602                     
##   REMARKMET          REMARKAWY         HORIZONTALDATUM    VERTICALDATUM     
##  Length:362604      Length:362604      Length:362604      Length:362604     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  LIGHTNINGFREQUENCY   RECEIPTDTG             INSERTIONTIME     
##  Mode:logical       Min.   :20130500000000   Length:362604     
##  NA's:362604        1st Qu.:20160100000000   Class :character  
##                     Median :20180800000000   Mode  :character  
##                     Mean   :20182136775300                     
##                     3rd Qu.:20210400000000                     
##                     Max.   :20231200000000                     
##                     NA's   :227886                             
##      BLKSTN      
##  Min.   :726410  
##  1st Qu.:726410  
##  Median :726410  
##  Mean   :726410  
##  3rd Qu.:726410  
##  Max.   :726410  
##  NA's   :137710

Tri-cities Airport, TN

summary(ktri_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:318155      Length:318155      Length:318155      Length:318155     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE          MONTH          SECURITYID
##  Min.   :36.47   Min.   :-82.41   Min.   : 1.000   Min.   :1   
##  1st Qu.:36.47   1st Qu.:-82.41   1st Qu.: 3.000   1st Qu.:1   
##  Median :36.48   Median :-82.40   Median : 7.000   Median :1   
##  Mean   :36.48   Mean   :-82.40   Mean   : 6.487   Mean   :1   
##  3rd Qu.:36.48   3rd Qu.:-82.40   3rd Qu.: 9.000   3rd Qu.:1   
##  Max.   :36.48   Max.   :-82.38   Max.   :12.000   Max.   :1   
##                                                                
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT     CALLLETTER       
##  Length:318155      Min.   :0.00     Min.   :-1000.0   Length:318155     
##  Class :character   1st Qu.:0.00     1st Qu.:  463.0   Class :character  
##  Mode  :character   Median :0.00     Median :  463.0   Mode  :character  
##                     Mean   :0.03     Mean   :  464.2                     
##                     3rd Qu.:0.00     3rd Qu.:  463.0                     
##                     Max.   :1.00     Max.   :  475.0                     
##                     NA's   :203807                                       
##     VERSION      WINDDIRECTION    WINDDIRECTIONQC  WINDCONDITIONS    
##  Min.   :  0.0   Min.   : 10.0    Min.   :0.00     Length:318155     
##  1st Qu.:  0.0   1st Qu.:150.0    1st Qu.:1.00     Class :character  
##  Median :182.0   Median :240.0    Median :1.00     Mode  :character  
##  Mean   :116.6   Mean   :212.1    Mean   :0.96                       
##  3rd Qu.:182.0   3rd Qu.:280.0    3rd Qu.:1.00                       
##  Max.   :182.0   Max.   :360.0    Max.   :4.00                       
##                  NA's   :157154   NA's   :127614                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.0      Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1.0      1st Qu.: 0.000   1st Qu.:1.000   1st Qu.:170.0   
##  Median :1.0      Median : 1.500   Median :1.000   Median :220.0   
##  Mean   :1.1      Mean   : 1.845   Mean   :1.038   Mean   :209.7   
##  3rd Qu.:1.0      3rd Qu.: 3.100   3rd Qu.:1.000   3rd Qu.:260.0   
##  Max.   :4.0      Max.   :19.600   Max.   :4.000   Max.   :360.0   
##  NA's   :202804   NA's   :248      NA's   :1083    NA's   :317679  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 10.0    Min.   : 6.10    Min.   :0.00     Min.   :1          
##  1st Qu.:160.0    1st Qu.: 9.20    1st Qu.:0.00     1st Qu.:4          
##  Median :270.0    Median :10.30    Median :1.00     Median :4          
##  Mean   :231.4    Mean   :10.82    Mean   :0.51     Mean   :4          
##  3rd Qu.:310.0    3rd Qu.:11.80    3rd Qu.:1.00     3rd Qu.:4          
##  Max.   :360.0    Max.   :29.30    Max.   :5.00     Max.   :4          
##  NA's   :317679   NA's   :301825   NA's   :286413   NA's   :206930     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Min.   :0.000   Length:318155        Min.   :0.00          
##  1st Qu.: 1080   1st Qu.:1.000   Class :character     1st Qu.:0.00          
##  Median : 4800   Median :1.000   Mode  :character     Median :0.00          
##  Mean   :10772   Mean   :1.248                        Mean   :0.12          
##  3rd Qu.:22000   3rd Qu.:1.000                        3rd Qu.:0.00          
##  Max.   :22000   Max.   :4.000                        Max.   :1.00          
##  NA's   :5621    NA's   :5514                         NA's   :300166        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY      VISIBILITYQC  
##  Length:318155      Min.   :1        Min.   :     0   Min.   :1.000  
##  Class :character   1st Qu.:1        1st Qu.:  9656   1st Qu.:1.000  
##  Mode  :character   Median :1        Median : 16093   Median :1.000  
##                     Mean   :1        Mean   : 13013   Mean   :1.007  
##                     3rd Qu.:1        3rd Qu.: 16093   3rd Qu.:1.000  
##                     Max.   :1        Max.   :128747   Max.   :4.000  
##                     NA's   :206795   NA's   :307      NA's   :337    
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE   AIRTEMPERATUREQC
##  Length:318155      Min.   :1.000    Min.   :-25.00   Min.   :1.000   
##  Class :character   1st Qu.:1.000    1st Qu.:  6.00   1st Qu.:1.000   
##  Mode  :character   Median :1.000    Median : 14.00   Median :1.000   
##                     Mean   :1.002    Mean   : 13.28   Mean   :1.009   
##                     3rd Qu.:1.000    3rd Qu.: 21.00   3rd Qu.:1.000   
##                     Max.   :4.000    Max.   : 39.00   Max.   :5.000   
##                     NA's   :172      NA's   :1862     NA's   :1857    
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-88.000     Min.   :1.000         Min.   : 986.3   Min.   :0.00      
##  1st Qu.:  1.000     1st Qu.:1.000         1st Qu.:1013.9   1st Qu.:1.00      
##  Median : 10.000     Median :1.000         Median :1017.5   Median :1.00      
##  Mean   :  8.338     Mean   :1.009         Mean   :1017.6   Mean   :0.99      
##  3rd Qu.: 16.700     3rd Qu.:1.000         3rd Qu.:1021.4   3rd Qu.:1.00      
##  Max.   : 26.000     Max.   :5.000         Max.   :1045.1   Max.   :5.00      
##  NA's   :1994        NA's   :1975          NA's   :59034    NA's   :56003     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 1.00        Min.   :1.00           Min.   :  0.00   Min.   :0.00    
##  1st Qu.: 1.00        1st Qu.:1.00           1st Qu.:  0.00   1st Qu.:1.00    
##  Median : 1.00        Median :1.00           Median :  0.20   Median :1.00    
##  Mean   : 2.87        Mean   :1.43           Mean   :  1.18   Mean   :1.38    
##  3rd Qu.: 6.00        3rd Qu.:1.00           3rd Qu.:  1.00   3rd Qu.:1.00    
##  Max.   :24.00        Max.   :4.00           Max.   :762.80   Max.   :4.00    
##  NA's   :258517       NA's   :292668         NA's   :260034   NA's   :289320  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :1.00     Min.   :1.00       Min.   : 1.0        
##  1st Qu.:2.00     1st Qu.:1.00       1st Qu.: 3.0        
##  Median :2.00     Median :1.00       Median : 3.0        
##  Mean   :2.37     Mean   :1.36       Mean   : 6.4        
##  3rd Qu.:3.00     3rd Qu.:1.00       3rd Qu.: 6.0        
##  Max.   :3.00     Max.   :4.00       Max.   :24.0        
##  NA's   :280603   NA's   :289582     NA's   :307763      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.00   Min.   :0.00     Min.   :1.00    
##  1st Qu.:1              1st Qu.:  0.00   1st Qu.:1.00     1st Qu.:2.00    
##  Median :1              Median :  0.80   Median :1.00     Median :3.00    
##  Mean   :1              Mean   :  3.43   Mean   :0.86     Mean   :2.55    
##  3rd Qu.:1              3rd Qu.:  4.00   3rd Qu.:1.00     3rd Qu.:3.00    
##  Max.   :1              Max.   :254.00   Max.   :2.00     Max.   :3.00    
##  NA's   :314260         NA's   :307792   NA's   :313623   NA's   :311913  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.0         Min.   :1             
##  1st Qu.:1          1st Qu.:24.0         1st Qu.:1             
##  Median :1          Median :24.0         Median :1             
##  Mean   :1          Mean   :19.6         Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.0         3rd Qu.:1             
##  Max.   :1          Max.   :24.0         Max.   :1             
##  NA's   :313622     NA's   :317212       NA's   :317750        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   : 0.0     Min.   :0        Min.   :1.0      Min.   :1         
##  1st Qu.: 0.8     1st Qu.:1        1st Qu.:3.0      1st Qu.:1         
##  Median : 3.8     Median :1        Median :3.0      Median :1         
##  Mean   : 8.3     Mean   :1        Mean   :2.9      Mean   :1         
##  3rd Qu.:11.6     3rd Qu.:1        3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :67.5     Max.   :1        Max.   :3.0      Max.   :1         
##  NA's   :317214   NA's   :317680   NA's   :317612   NA's   :317679    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4    PRECIPAMOUNT4QC 
##  Min.   :24           Min.   :1              Min.   : 3.5     Min.   :1       
##  1st Qu.:24           1st Qu.:1              1st Qu.:10.8     1st Qu.:1       
##  Median :24           Median :1              Median :13.8     Median :1       
##  Mean   :24           Mean   :1              Mean   :20.3     Mean   :1       
##  3rd Qu.:24           3rd Qu.:1              3rd Qu.:22.0     3rd Qu.:1       
##  Max.   :24           Max.   :1              Max.   :56.3     Max.   :1       
##  NA's   :318149       NA's   :318151         NA's   :318149   NA's   :318149  
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR  PRECIPHISTDURQC 
##  Min.   :3        Min.   :1          Mode:logical   Min.   :0       
##  1st Qu.:3        1st Qu.:1          NA's:318155    1st Qu.:0       
##  Median :3        Median :1                         Median :0       
##  Mean   :3        Mean   :1                         Mean   :0       
##  3rd Qu.:3        3rd Qu.:1                         3rd Qu.:0       
##  Max.   :3        Max.   :1                         Max.   :0       
##  NA's   :318149   NA's   :318149                    NA's   :314727  
##  PRECIPHISTCHAR PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Mode:logical   Mode:logical     Min.   :0.00     Mode:logical  
##  NA's:318155    NA's:318155      1st Qu.:0.00     NA's:318155   
##                                  Median :0.00                   
##                                  Mean   :0.06                   
##                                  3rd Qu.:0.00                   
##                                  Max.   :3.00                   
##                                  NA's   :266624                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   : 0.00    Mode:logical   Min.   : 0.0     Min.   :1       
##  1st Qu.: 0.00    NA's:318155    1st Qu.: 2.0     1st Qu.:1       
##  Median : 0.00                   Median : 5.0     Median :1       
##  Mean   : 0.37                   Mean   : 4.9     Mean   :1       
##  3rd Qu.: 0.00                   3rd Qu.: 6.0     3rd Qu.:1       
##  Max.   :15.00                   Max.   :33.0     Max.   :4       
##  NA's   :300890                  NA's   :316984   NA's   :317900  
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV    DEPTHWTREQUIVQC 
##  Min.   :3         Min.   :1           Min.   : 25.0    Min.   :4       
##  1st Qu.:3         1st Qu.:1           1st Qu.: 25.0    1st Qu.:4       
##  Median :3         Median :1           Median : 51.0    Median :4       
##  Mean   :3         Mean   :1           Mean   : 74.5    Mean   :4       
##  3rd Qu.:3         3rd Qu.:1           3rd Qu.:102.0    3rd Qu.:4       
##  Max.   :3         Max.   :1           Max.   :406.0    Max.   :4       
##  NA's   :317931    NA's   :317931      NA's   :317897   NA's   :318131  
##  DEPTHWECOND    DEPTHWECONDQC     HAILSIZE      PRECIPAMOUNTSF1 
##  Mode:logical   Mode:logical   Min.   :0.0      Min.   :1       
##  NA's:318155    NA's:318155    1st Qu.:0.1      1st Qu.:1       
##                                Median :6.3      Median :1       
##                                Mean   :4.0      Mean   :1       
##                                3rd Qu.:6.3      3rd Qu.:1       
##                                Max.   :6.3      Max.   :1       
##                                NA's   :318147   NA's   :318154  
##  PRECIPAMOUNTSF1QC PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Min.   :1         Min.   :3          Min.   :1            Min.   :1           
##  1st Qu.:1         1st Qu.:3          1st Qu.:1            1st Qu.:1           
##  Median :1         Median :3          Median :1            Median :1           
##  Mean   :1         Mean   :3          Mean   :1            Mean   :1           
##  3rd Qu.:1         3rd Qu.:3          3rd Qu.:1            3rd Qu.:1           
##  Max.   :1         Max.   :3          Max.   :1            Max.   :1           
##  NA's   :318154    NA's   :318154     NA's   :318154       NA's   :318123      
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2 PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Min.   :1              Mode:logical    Mode:logical      Mode:logical      
##  1st Qu.:1              NA's:318155     NA's:318155       NA's:318155       
##  Median :1                                                                  
##  Mean   :1                                                                  
##  3rd Qu.:1                                                                  
##  Max.   :1                                                                  
##  NA's   :318123                                                             
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Min.   :1            Min.   :1             
##  NA's:318155          1st Qu.:1            1st Qu.:1             
##                       Median :1            Median :1             
##                       Mean   :1            Mean   :1             
##                       3rd Qu.:1            3rd Qu.:1             
##                       Max.   :1            Max.   :1             
##                       NA's   :318154       NA's   :318154        
##  PRECIPAMOUNTSF3 PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Mode:logical    Mode:logical      Mode:logical       Mode:logical        
##  NA's:318155     NA's:318155       NA's:318155        NA's:318155         
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:318155          NA's:318155            NA's:318155     NA's:318155      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:318155        NA's:318155          NA's:318155         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Mode:logical           Min.   : 0.00    Min.   :0.00     Min.   : 0.0    
##  NA's:318155            1st Qu.: 0.00    1st Qu.:1.00     1st Qu.: 0.0    
##                         Median :10.00    Median :1.00     Median : 0.0    
##                         Mean   :20.38    Mean   :0.97     Mean   : 5.1    
##                         3rd Qu.:45.00    3rd Qu.:1.00     3rd Qu.: 0.0    
##                         Max.   :99.00    Max.   :4.00     Max.   :90.0    
##                         NA's   :188449   NA's   :184070   NA's   :237805  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4  
##  Min.   :0.00     Min.   : 0.00    Min.   :1        Min.   : 5.0    
##  1st Qu.:1.00     1st Qu.: 0.00    1st Qu.:1        1st Qu.:10.0    
##  Median :1.00     Median : 0.00    Median :1        Median :18.0    
##  Mean   :0.99     Mean   : 0.42    Mean   :1        Mean   :24.6    
##  3rd Qu.:1.00     3rd Qu.: 0.00    3rd Qu.:1        3rd Qu.:45.0    
##  Max.   :4.00     Max.   :90.00    Max.   :2        Max.   :45.0    
##  NA's   :203534   NA's   :248482   NA's   :210435   NA's   :318150  
##  PRESENTMANUAL4QC PRESENTMANUAL5 PRESENTMANUAL5QC PRESENTMANUAL6
##  Min.   :1        Mode:logical   Min.   :1        Mode:logical  
##  1st Qu.:1        NA's:318155    1st Qu.:1        NA's:318155   
##  Median :1                       Median :1                      
##  Mean   :1                       Mean   :1                      
##  3rd Qu.:1                       3rd Qu.:1                      
##  Max.   :1                       Max.   :1                      
##  NA's   :217076                  NA's   :217076                 
##  PRESENTMANUAL6QC PRESENTMANUAL7 PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Mode:logical   Min.   :1        Min.   : 4.00    
##  1st Qu.:1        NA's:318155    1st Qu.:1        1st Qu.:10.00    
##  Median :1                       Median :1        Median :61.00    
##  Mean   :1                       Mean   :1        Mean   :42.45    
##  3rd Qu.:1                       3rd Qu.:1        3rd Qu.:62.00    
##  Max.   :1                       Max.   :1        Max.   :96.00    
##  NA's   :217076                  NA's   :217076   NA's   :291129   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.00        Min.   : 4.00     Min.   :1.00        Min.   : 4       
##  1st Qu.:1.00        1st Qu.:10.00     1st Qu.:1.00        1st Qu.:10       
##  Median :1.00        Median :10.00     Median :1.00        Median :10       
##  Mean   :0.77        Mean   :10.91     Mean   :1.02        Mean   :14       
##  3rd Qu.:1.00        3rd Qu.:10.00     3rd Qu.:1.00        3rd Qu.:10       
##  Max.   :4.00        Max.   :95.00     Max.   :4.00        Max.   :33       
##  NA's   :282133      NA's   :310178    NA's   :310178      NA's   :318125   
##  PRESENTAUTOMATED3QC PASTMANUAL1    PASTMANUAL1QC    WXPASTPERIOD1 
##  Min.   :1.0         Mode:logical   Min.   :0        Mode:logical  
##  1st Qu.:1.0         NA's:318155    1st Qu.:0        NA's:318155   
##  Median :4.0                        Median :0                      
##  Mean   :3.1                        Mean   :0                      
##  3rd Qu.:4.0                        3rd Qu.:0                      
##  Max.   :4.0                        Max.   :0                      
##  NA's   :318125                     NA's   :313772                 
##  WXPASTPERIOD1QC PASTMANUAL2    PASTMANUAL2QC    WXPASTPERIOD2  WXPASTPERIOD2QC
##  Mode:logical    Mode:logical   Min.   :0        Mode:logical   Mode:logical   
##  NA's:318155     NA's:318155    1st Qu.:0        NA's:318155    NA's:318155    
##                                 Median :0                                      
##                                 Mean   :0                                      
##                                 3rd Qu.:0                                      
##                                 Max.   :0                                      
##                                 NA's   :317147                                 
##  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1 WXPASTAUTOPERIOD1QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:318155    1st Qu.:0        NA's:318155       NA's:318155        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :313772                                        
##  PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2 WXPASTAUTOPERIOD2QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:318155    1st Qu.:0        NA's:318155       NA's:318155        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :317147                                        
##  RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE   CLOUDCOVER   
##  Min.   :13       Length:318155      Min.   : 122.0    Min.   : 0.00  
##  1st Qu.:23       Class :character   1st Qu.: 305.0    1st Qu.: 2.00  
##  Median :23       Mode  :character   Median : 732.0    Median : 4.00  
##  Mean   :23                          Mean   : 963.7    Mean   : 4.44  
##  3rd Qu.:23                          3rd Qu.:1829.0    3rd Qu.: 8.00  
##  Max.   :24                          Max.   :1900.0    Max.   :10.00  
##  NA's   :317353                      NA's   :317352    NA's   :73468  
##   CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC   CLOUDBASEHEIGHT 
##  Min.   :0.00    Min.   :0        Min.   :0        Min.   :   0    
##  1st Qu.:1.00    1st Qu.:0        1st Qu.:0        1st Qu.: 549    
##  Median :1.00    Median :0        Median :0        Median :1280    
##  Mean   :1.26    Mean   :0        Mean   :0        Mean   :2029    
##  3rd Qu.:1.00    3rd Qu.:0        3rd Qu.:0        3rd Qu.:2134    
##  Max.   :4.00    Max.   :0        Max.   :1        Max.   :8534    
##  NA's   :63942   NA's   :318154   NA's   :307403   NA's   :222245  
##  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC     CLOUDTYPEMID   
##  Min.   :1         Min.   :0.00     Min.   :0.00     Min.   :0.00    
##  1st Qu.:1         1st Qu.:0.00     1st Qu.:0.00     1st Qu.:0.00    
##  Median :1         Median :4.00     Median :0.00     Median :2.00    
##  Mean   :1         Mean   :2.93     Mean   :0.27     Mean   :3.48    
##  3rd Qu.:1         3rd Qu.:5.00     3rd Qu.:1.00     3rd Qu.:7.00    
##  Max.   :1         Max.   :9.00     Max.   :1.00     Max.   :8.00    
##  NA's   :222245    NA's   :314260   NA's   :303509   NA's   :314935  
##  CLOUDTYPEMIDQC    CLOUDTYPEHI     CLOUDTYPEHIQC    SUNSHINE      
##  Min.   :0.00     Min.   :0.0      Min.   :0.0      Mode:logical  
##  1st Qu.:0.00     1st Qu.:0.0      1st Qu.:0.0      NA's:318155   
##  Median :0.00     Median :1.0      Median :0.0                    
##  Mean   :0.23     Mean   :2.5      Mean   :0.2                    
##  3rd Qu.:0.00     3rd Qu.:7.0      3rd Qu.:0.0                    
##  Max.   :1.00     Max.   :9.0      Max.   :1.0                    
##  NA's   :304184   NA's   :315539   NA's   :304788                 
##   SURFACECODE     SURFACECODEQC  SOILTEMPERATURE SOILTEMPERATUREQC
##  Min.   :1        Mode:logical   Mode:logical    Mode:logical     
##  1st Qu.:1        NA's:318155    NA's:318155     NA's:318155      
##  Median :1                                                        
##  Mean   :1                                                        
##  3rd Qu.:1                                                        
##  Max.   :1                                                        
##  NA's   :318153                                                   
##  SOILDEPTH      OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC
##  Mode:logical   Mode:logical           Mode:logical            
##  NA's:318155    NA's:318155            NA's:318155             
##                                                                
##                                                                
##                                                                
##                                                                
##                                                                
##  ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE STATIONPRESSUREQC
##  Min.   : 987.8   Min.   :1.000      Mode:logical    Min.   :0        
##  1st Qu.:1014.9   1st Qu.:1.000      NA's:318155     1st Qu.:0        
##  Median :1018.3   Median :1.000                      Median :0        
##  Mean   :1018.2   Mean   :1.002                      Mean   :0        
##  3rd Qu.:1022.0   3rd Qu.:1.000                      3rd Qu.:0        
##  Max.   :1042.7   Max.   :5.000                      Max.   :0        
##  NA's   :98       NA's   :93                         NA's   :301938   
##  PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG PRESSURE3HOURCHGQC
##  Min.   :0.00     Min.   :0.00       Min.   :-7.70    Min.   :0.00      
##  1st Qu.:2.00     1st Qu.:1.00       1st Qu.: 0.30    1st Qu.:1.00      
##  Median :3.00     Median :1.00       Median : 0.70    Median :1.00      
##  Mean   :4.21     Mean   :0.81       Mean   : 0.83    Mean   :0.82      
##  3rd Qu.:6.00     3rd Qu.:1.00       3rd Qu.: 1.40    3rd Qu.:1.00      
##  Max.   :8.00     Max.   :4.00       Max.   :11.20    Max.   :4.00      
##  NA's   :252279   NA's   :236117     NA's   :249617   NA's   :233876    
##  PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND  ISOBARICSURFACE
##  Min.   :0         Min.   :0.00        Mode:logical   Mode:logical   
##  1st Qu.:0         1st Qu.:0.00        NA's:318155    NA's:318155    
##  Median :0         Median :0.00                                      
##  Mean   :0         Mean   :0.05                                      
##  3rd Qu.:0         3rd Qu.:0.00                                      
##  Max.   :0         Max.   :1.00                                      
##  NA's   :317316    NA's   :301099                                    
##  ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT ISOBARICSURFACEHEIGHTQC SEASURFACETEMP
##  Mode:logical      Mode:logical          Mode:logical            Mode:logical  
##  NA's:318155       NA's:318155           NA's:318155             NA's:318155   
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  SEASURFACETEMPQC REMARKSYN       REMARKMET          REMARKAWY        
##  Min.   :5        Mode:logical   Length:318155      Length:318155     
##  1st Qu.:5        NA's:318155    Class :character   Class :character  
##  Median :5                       Mode  :character   Mode  :character  
##  Mean   :5                                                            
##  3rd Qu.:5                                                            
##  Max.   :5                                                            
##  NA's   :318153                                                       
##  HORIZONTALDATUM    VERTICALDATUM      LIGHTNINGFREQUENCY
##  Length:318155      Length:318155      Mode:logical      
##  Class :character   Class :character   NA's:318155       
##  Mode  :character   Mode  :character                     
##                                                          
##                                                          
##                                                          
##                                                          
##    RECEIPTDTG             INSERTIONTIME          BLKSTN      
##  Min.   :20130500000000   Length:318155      Min.   :703610  
##  1st Qu.:20151200000000   Class :character   1st Qu.:723183  
##  Median :20180700000000   Mode  :character   Median :723183  
##  Mean   :20181634982000                      Mean   :723206  
##  3rd Qu.:20210400000000                      3rd Qu.:723183  
##  Max.   :20231200000000                      Max.   :723350  
##  NA's   :206795                              NA's   :114348

Juneau, AK

summary(pajn_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:338952      Length:338952      Length:338952      Length:338952     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE          MONTH          SECURITYID
##  Min.   :58.35   Min.   :-134.6   Min.   : 1.000   Min.   :1   
##  1st Qu.:58.35   1st Qu.:-134.6   1st Qu.: 3.000   1st Qu.:1   
##  Median :58.35   Median :-134.6   Median : 7.000   Median :1   
##  Mean   :58.36   Mean   :-134.6   Mean   : 6.521   Mean   :1   
##  3rd Qu.:58.37   3rd Qu.:-134.6   3rd Qu.:10.000   3rd Qu.:1   
##  Max.   :58.37   Max.   :-134.6   Max.   :12.000   Max.   :1   
##  NA's   :3       NA's   :3        NA's   :3        NA's   :3   
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT   CALLLETTER       
##  Length:338952      Min.   :0.00     Min.   :6.400   Length:338952     
##  Class :character   1st Qu.:0.00     1st Qu.:6.400   Class :character  
##  Mode  :character   Median :0.00     Median :7.000   Mode  :character  
##                     Mean   :0.16     Mean   :6.803                     
##                     3rd Qu.:0.00     3rd Qu.:7.000                     
##                     Max.   :1.00     Max.   :7.000                     
##                     NA's   :212050   NA's   :3                         
##     VERSION      WINDDIRECTION    WINDDIRECTIONQC WINDCONDITIONS    
##  Min.   :  0.0   Min.   :  2.0    Min.   :0.00    Length:338952     
##  1st Qu.:  0.0   1st Qu.: 80.0    1st Qu.:1.00    Class :character  
##  Median :182.0   Median :110.0    Median :1.00    Mode  :character  
##  Mean   :113.9   Mean   :134.5    Mean   :0.98                      
##  3rd Qu.:182.0   3rd Qu.:140.0    3rd Qu.:1.00                      
##  Max.   :182.0   Max.   :360.0    Max.   :4.00                      
##  NA's   :3       NA's   :102930   NA's   :87370                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.00     Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1.00     1st Qu.: 0.000   1st Qu.:1.000   1st Qu.: 50.0   
##  Median :1.00     Median : 2.600   Median :1.000   Median : 70.0   
##  Mean   :1.05     Mean   : 3.201   Mean   :1.018   Mean   :121.5   
##  3rd Qu.:1.00     3rd Qu.: 5.100   3rd Qu.:1.000   3rd Qu.:220.0   
##  Max.   :5.00     Max.   :28.200   Max.   :5.000   Max.   :360.0   
##  NA's   :210054   NA's   :524      NA's   :851     NA's   :338625  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 20.0    Min.   : 0.00    Min.   :0.00     Min.   :1          
##  1st Qu.:110.0    1st Qu.:10.30    1st Qu.:0.00     1st Qu.:4          
##  Median :140.0    Median :12.30    Median :1.00     Median :4          
##  Mean   :164.1    Mean   :12.43    Mean   :0.77     Mean   :4          
##  3rd Qu.:205.0    3rd Qu.:14.40    3rd Qu.:1.00     3rd Qu.:4          
##  Max.   :360.0    Max.   :31.90    Max.   :4.00     Max.   :4          
##  NA's   :338625   NA's   :310591   NA's   :293547   NA's   :212127     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Min.   :0.0     Length:338952        Min.   :0.0           
##  1st Qu.:  884   1st Qu.:1.0     Class :character     1st Qu.:0.0           
##  Median : 1350   Median :1.0     Mode  :character     Median :0.0           
##  Mean   : 5499   Mean   :1.2                          Mean   :0.1           
##  3rd Qu.: 3658   3rd Qu.:1.0                          3rd Qu.:0.0           
##  Max.   :22000   Max.   :4.0                          Max.   :5.0           
##  NA's   :29769   NA's   :27522                        NA's   :318998        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY      VISIBILITYQC  
##  Length:338952      Min.   :1        Min.   :     0   Min.   :1.000  
##  Class :character   1st Qu.:1        1st Qu.: 11265   1st Qu.:1.000  
##  Mode  :character   Median :1        Median : 16093   Median :1.000  
##                     Mean   :1        Mean   : 14655   Mean   :1.003  
##                     3rd Qu.:1        3rd Qu.: 16093   3rd Qu.:1.000  
##                     Max.   :1        Max.   :160000   Max.   :4.000  
##                     NA's   :212055   NA's   :497      NA's   :497    
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE    AIRTEMPERATUREQC
##  Length:338952      Min.   :1        Min.   :-23.000   Min.   :1.000   
##  Class :character   1st Qu.:1        1st Qu.:  1.000   1st Qu.:1.000   
##  Mode  :character   Median :1        Median :  5.000   Median :1.000   
##                     Mean   :1        Mean   :  5.482   Mean   :1.004   
##                     3rd Qu.:1        3rd Qu.: 11.000   3rd Qu.:1.000   
##                     Max.   :4        Max.   : 29.400   Max.   :5.000   
##                     NA's   :445      NA's   :2324      NA's   :2322    
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-34.00      Min.   :1.000         Min.   : 960     Min.   :0.00      
##  1st Qu.: -1.00      1st Qu.:1.000         1st Qu.:1006     1st Qu.:1.00      
##  Median :  3.00      Median :1.000         Median :1013     Median :1.00      
##  Mean   :  2.57      Mean   :1.004         Mean   :1012     Mean   :0.99      
##  3rd Qu.:  8.00      3rd Qu.:1.000         3rd Qu.:1019     3rd Qu.:1.00      
##  Max.   : 17.00      Max.   :5.000         Max.   :1055     Max.   :5.00      
##  NA's   :2456        NA's   :2452          NA's   :79571    NA's   :76870     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 1.00        Min.   :1.00           Min.   :  0.00   Min.   :0.00    
##  1st Qu.: 1.00        1st Qu.:1.00           1st Qu.:  0.00   1st Qu.:1.00    
##  Median : 1.00        Median :1.00           Median :  0.20   Median :1.00    
##  Mean   : 2.59        Mean   :1.28           Mean   :  0.74   Mean   :1.27    
##  3rd Qu.: 6.00        3rd Qu.:1.00           3rd Qu.:  0.70   3rd Qu.:1.00    
##  Max.   :24.00        Max.   :4.00           Max.   :263.00   Max.   :4.00    
##  NA's   :200862       NA's   :274168         NA's   :200426   NA's   :264933  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :1.00     Min.   :1.00       Min.   : 1.00       
##  1st Qu.:2.00     1st Qu.:1.00       1st Qu.: 3.00       
##  Median :2.00     Median :1.00       Median : 6.00       
##  Mean   :2.36     Mean   :1.23       Mean   : 7.88       
##  3rd Qu.:3.00     3rd Qu.:1.00       3rd Qu.: 6.00       
##  Max.   :3.00     Max.   :4.00       Max.   :24.00       
##  NA's   :241816   NA's   :266081     NA's   :306276      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.00   Min.   :0.0      Min.   :0.0     
##  1st Qu.:1              1st Qu.:  0.20   1st Qu.:1.0      1st Qu.:2.0     
##  Median :1              Median :  1.00   Median :1.0      Median :3.0     
##  Mean   :1              Mean   :  2.91   Mean   :0.9      Mean   :2.6     
##  3rd Qu.:1              3rd Qu.:  3.30   3rd Qu.:1.0      3rd Qu.:3.0     
##  Max.   :4              Max.   :227.40   Max.   :4.0      Max.   :3.0     
##  NA's   :325060         NA's   :306346   NA's   :322935   NA's   :319397  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.0         Min.   :1             
##  1st Qu.:1          1st Qu.:24.0         1st Qu.:1             
##  Median :1          Median :24.0         Median :1             
##  Mean   :1          Mean   :20.4         Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.0         3rd Qu.:1             
##  Max.   :4          Max.   :24.0         Max.   :1             
##  NA's   :322931     NA's   :335749       NA's   :337508        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   :  0.0    Min.   :0        Min.   :1.0      Min.   :1         
##  1st Qu.:  1.5    1st Qu.:1        1st Qu.:3.0      1st Qu.:1         
##  Median :  4.6    Median :1        Median :3.0      Median :1         
##  Mean   :  7.7    Mean   :1        Mean   :2.9      Mean   :1         
##  3rd Qu.: 10.9    3rd Qu.:1        3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :129.0    Max.   :2        Max.   :3.0      Max.   :1         
##  NA's   :335760   NA's   :337176   NA's   :337026   NA's   :337168    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4    PRECIPAMOUNT4QC 
##  Min.   :24           Min.   :1              Min.   : 0.2     Min.   :1       
##  1st Qu.:24           1st Qu.:1              1st Qu.: 2.2     1st Qu.:1       
##  Median :24           Median :1              Median : 5.0     Median :1       
##  Mean   :24           Mean   :1              Mean   : 8.7     Mean   :1       
##  3rd Qu.:24           3rd Qu.:1              3rd Qu.:12.9     3rd Qu.:1       
##  Max.   :24           Max.   :1              Max.   :35.8     Max.   :1       
##  NA's   :338907       NA's   :338938         NA's   :338907   NA's   :338907  
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR  PRECIPHISTDURQC 
##  Min.   :3        Min.   :1          Mode:logical   Min.   :0       
##  1st Qu.:3        1st Qu.:1          NA's:338952    1st Qu.:0       
##  Median :3        Median :1                         Median :0       
##  Mean   :3        Mean   :1                         Mean   :0       
##  3rd Qu.:3        3rd Qu.:1                         3rd Qu.:0       
##  Max.   :3        Max.   :1                         Max.   :0       
##  NA's   :338907   NA's   :338907                    NA's   :329825  
##  PRECIPHISTCHAR PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Mode:logical   Mode:logical     Min.   :0.00     Mode:logical  
##  NA's:338952    NA's:338952      1st Qu.:1.00     NA's:338952   
##                                  Median :1.00                   
##                                  Mean   :0.91                   
##                                  3rd Qu.:1.00                   
##                                  Max.   :4.00                   
##                                  NA's   :288021                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   :0.0      Mode:logical   Min.   :  0.0    Min.   :1       
##  1st Qu.:0.0      NA's:338952    1st Qu.:  5.0    1st Qu.:1       
##  Median :0.0                     Median : 13.0    Median :1       
##  Mean   :0.3                     Mean   : 49.3    Mean   :1       
##  3rd Qu.:0.0                     3rd Qu.: 20.0    3rd Qu.:1       
##  Max.   :7.0                     Max.   :996.0    Max.   :4       
##  NA's   :324454                  NA's   :325733   NA's   :334179  
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV    DEPTHWTREQUIVQC 
##  Min.   :1.0       Min.   :1           Min.   :  0.0    Min.   :4       
##  1st Qu.:3.0       1st Qu.:1           1st Qu.: 51.0    1st Qu.:4       
##  Median :3.0       Median :1           Median :127.0    Median :4       
##  Mean   :2.8       Mean   :1           Mean   :138.7    Mean   :4       
##  3rd Qu.:3.0       3rd Qu.:1           3rd Qu.:180.0    3rd Qu.:4       
##  Max.   :3.0       Max.   :1           Max.   :690.0    Max.   :4       
##  NA's   :333954    NA's   :334413      NA's   :334217   NA's   :338441  
##  DEPTHWECOND    DEPTHWECONDQC  HAILSIZE       PRECIPAMOUNTSF1 PRECIPAMOUNTSF1QC
##  Mode:logical   Mode:logical   Mode:logical   Mode:logical    Mode:logical     
##  NA's:338952    NA's:338952    NA's:338952    NA's:338952     NA's:338952      
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Mode:logical       Mode:logical         Min.   :1           
##  NA's:338952        NA's:338952          1st Qu.:1           
##                                          Median :1           
##                                          Mean   :1           
##                                          3rd Qu.:1           
##                                          Max.   :1           
##                                          NA's   :338701      
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2 PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Min.   :1              Mode:logical    Mode:logical      Mode:logical      
##  1st Qu.:1              NA's:338952     NA's:338952       NA's:338952       
##  Median :1                                                                  
##  Mean   :1                                                                  
##  3rd Qu.:1                                                                  
##  Max.   :1                                                                  
##  NA's   :338701                                                             
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Mode:logical         Mode:logical          
##  NA's:338952          NA's:338952          NA's:338952           
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##  PRECIPAMOUNTSF3 PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Mode:logical    Mode:logical      Mode:logical       Mode:logical        
##  NA's:338952     NA's:338952       NA's:338952        NA's:338952         
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:338952          NA's:338952            NA's:338952     NA's:338952      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:338952        NA's:338952          NA's:338952         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Mode:logical           Min.   : 0.00    Min.   :0.00     Min.   : 0.00   
##  NA's:338952            1st Qu.: 0.00    1st Qu.:1.00     1st Qu.: 0.00   
##                         Median :61.00    Median :1.00     Median : 0.00   
##                         Mean   :36.87    Mean   :0.95     Mean   : 5.77   
##                         3rd Qu.:61.00    3rd Qu.:1.00     3rd Qu.:10.00   
##                         Max.   :97.00    Max.   :4.00     Max.   :89.00   
##                         NA's   :189418   NA's   :182264   NA's   :253836  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4  
##  Min.   :0.00     Min.   : 0.00    Min.   :0        Min.   : 0.0    
##  1st Qu.:1.00     1st Qu.: 0.00    1st Qu.:1        1st Qu.: 0.0    
##  Median :1.00     Median : 0.00    Median :1        Median : 0.0    
##  Mean   :0.98     Mean   : 0.56    Mean   :1        Mean   : 4.1    
##  3rd Qu.:1.00     3rd Qu.: 0.00    3rd Qu.:1        3rd Qu.:10.0    
##  Max.   :4.00     Max.   :87.00    Max.   :4        Max.   :66.0    
##  NA's   :218954   NA's   :271903   NA's   :233075   NA's   :338582  
##  PRESENTMANUAL4QC PRESENTMANUAL5   PRESENTMANUAL5QC PRESENTMANUAL6  
##  Min.   :1        Min.   : 0.0     Min.   :1        Min.   : 0.0    
##  1st Qu.:1        1st Qu.: 0.0     1st Qu.:1        1st Qu.: 0.0    
##  Median :1        Median : 0.0     Median :1        Median : 0.0    
##  Mean   :1        Mean   :15.5     Mean   :1        Mean   : 1.6    
##  3rd Qu.:1        3rd Qu.:10.0     3rd Qu.:1        3rd Qu.: 0.0    
##  Max.   :4        Max.   :71.0     Max.   :4        Max.   :10.0    
##  NA's   :240209   NA's   :338928   NA's   :240261   NA's   :338933  
##  PRESENTMANUAL6QC PRESENTMANUAL7   PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Min.   :0        Min.   :1        Min.   : 4.00    
##  1st Qu.:1        1st Qu.:0        1st Qu.:1        1st Qu.:61.00    
##  Median :1        Median :0        Median :1        Median :61.00    
##  Mean   :1        Mean   :0        Mean   :1        Mean   :56.85    
##  3rd Qu.:1        3rd Qu.:0        3rd Qu.:1        3rd Qu.:61.00    
##  Max.   :1        Max.   :0        Max.   :1        Max.   :92.00    
##  NA's   :240265   NA's   :338947   NA's   :240267   NA's   :288353   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.00        Min.   :10.0      Min.   :0           Min.   :10.0     
##  1st Qu.:1.00        1st Qu.:10.0      1st Qu.:1           1st Qu.:10.0     
##  Median :1.00        Median :10.0      Median :1           Median :31.0     
##  Mean   :0.84        Mean   :11.3      Mean   :1           Mean   :32.3     
##  3rd Qu.:1.00        3rd Qu.:10.0      3rd Qu.:1           3rd Qu.:54.0     
##  Max.   :5.00        Max.   :72.0      Max.   :5           Max.   :67.0     
##  NA's   :277663      NA's   :321077    NA's   :321069      NA's   :338759   
##  PRESENTAUTOMATED3QC PASTMANUAL1    PASTMANUAL1QC    WXPASTPERIOD1 
##  Min.   :1.0         Mode:logical   Min.   :0        Mode:logical  
##  1st Qu.:1.0         NA's:338952    1st Qu.:0        NA's:338952   
##  Median :1.0                        Median :0                      
##  Mean   :2.5                        Mean   :0                      
##  3rd Qu.:4.0                        3rd Qu.:0                      
##  Max.   :4.0                        Max.   :0                      
##  NA's   :338759                     NA's   :330958                 
##  WXPASTPERIOD1QC PASTMANUAL2    PASTMANUAL2QC    WXPASTPERIOD2  WXPASTPERIOD2QC
##  Mode:logical    Mode:logical   Min.   :0        Mode:logical   Mode:logical   
##  NA's:338952     NA's:338952    1st Qu.:0        NA's:338952    NA's:338952    
##                                 Median :0                                      
##                                 Mean   :0                                      
##                                 3rd Qu.:0                                      
##                                 Max.   :0                                      
##                                 NA's   :336525                                 
##  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1 WXPASTAUTOPERIOD1QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:338952    1st Qu.:0        NA's:338952       NA's:338952        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :330958                                        
##  PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2 WXPASTAUTOPERIOD2QC
##  Mode:logical   Min.   :0        Mode:logical      Mode:logical       
##  NA's:338952    1st Qu.:0        NA's:338952       NA's:338952        
##                 Median :0                                             
##                 Mean   :0                                             
##                 3rd Qu.:0                                             
##                 Max.   :0                                             
##                 NA's   :336525                                        
##  RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE   CLOUDCOVER   
##  Min.   : 8.0     Length:338952      Min.   :  30      Min.   : 0.00  
##  1st Qu.: 8.0     Class :character   1st Qu.: 488      1st Qu.: 6.00  
##  Median :26.0     Mode  :character   Median : 914      Median : 8.00  
##  Mean   :18.3                        Mean   :1020      Mean   : 6.41  
##  3rd Qu.:26.0                        3rd Qu.:1524      3rd Qu.: 8.00  
##  Max.   :27.0                        Max.   :1829      Max.   :10.00  
##  NA's   :335642                      NA's   :335642    NA's   :92291  
##   CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC   CLOUDBASEHEIGHT  
##  Min.   :0.0     Min.   :0.0      Min.   :0.0      Min.   :    0.0  
##  1st Qu.:1.0     1st Qu.:0.0      1st Qu.:0.0      1st Qu.:  150.0  
##  Median :1.0     Median :0.0      Median :0.0      Median :  366.0  
##  Mean   :1.1     Mean   :0.8      Mean   :0.1      Mean   :  885.3  
##  3rd Qu.:1.0     3rd Qu.:0.0      3rd Qu.:0.0      3rd Qu.: 1128.0  
##  Max.   :4.0     Max.   :9.0      Max.   :1.0      Max.   :10668.0  
##  NA's   :79582   NA's   :337425   NA's   :324082   NA's   :205022   
##  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC     CLOUDTYPEMID   
##  Min.   :0.00      Min.   :0.0      Min.   :0.0      Min.   :0.0     
##  1st Qu.:1.00      1st Qu.:0.0      1st Qu.:0.0      1st Qu.:0.0     
##  Median :1.00      Median :0.0      Median :0.0      Median :0.0     
##  Mean   :0.99      Mean   :1.7      Mean   :0.1      Mean   :0.7     
##  3rd Qu.:1.00      3rd Qu.:5.0      3rd Qu.:0.0      3rd Qu.:0.0     
##  Max.   :1.00      Max.   :8.0      Max.   :1.0      Max.   :9.0     
##  NA's   :204090    NA's   :336727   NA's   :323384   NA's   :337219  
##  CLOUDTYPEMIDQC    CLOUDTYPEHI     CLOUDTYPEHIQC    SUNSHINE      
##  Min.   :0.0      Min.   :0.0      Min.   :0.0      Mode:logical  
##  1st Qu.:0.0      1st Qu.:0.0      1st Qu.:0.0      NA's:338952   
##  Median :0.0      Median :0.0      Median :0.0                    
##  Mean   :0.1      Mean   :0.4      Mean   :0.1                    
##  3rd Qu.:0.0      3rd Qu.:0.0      3rd Qu.:0.0                    
##  Max.   :1.0      Max.   :9.0      Max.   :1.0                    
##  NA's   :323876   NA's   :337385   NA's   :324042                 
##   SURFACECODE     SURFACECODEQC  SOILTEMPERATURE SOILTEMPERATUREQC
##  Min.   :1        Mode:logical   Mode:logical    Mode:logical     
##  1st Qu.:1        NA's:338952    NA's:338952     NA's:338952      
##  Median :1                                                        
##  Mean   :1                                                        
##  3rd Qu.:1                                                        
##  Max.   :1                                                        
##  NA's   :338950                                                   
##  SOILDEPTH      OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC
##  Mode:logical   Mode:logical           Mode:logical            
##  NA's:338952    NA's:338952            NA's:338952             
##                                                                
##                                                                
##                                                                
##                                                                
##                                                                
##  ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE  STATIONPRESSUREQC
##  Min.   : 960     Min.   :0.000      Min.   : 959.2   Min.   :0.00     
##  1st Qu.:1005     1st Qu.:1.000      1st Qu.:1004.8   1st Qu.:1.00     
##  Median :1013     Median :1.000      Median :1012.2   Median :1.00     
##  Mean   :1012     Mean   :0.995      Mean   :1011.0   Mean   :0.77     
##  3rd Qu.:1019     3rd Qu.:1.000      3rd Qu.:1018.0   3rd Qu.:1.00     
##  Max.   :1084     Max.   :5.000      Max.   :1045.0   Max.   :5.00     
##  NA's   :33334    NA's   :31151      NA's   :287933   NA's   :271974   
##  PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG PRESSURE3HOURCHGQC
##  Min.   :0.00     Min.   :0.00       Min.   :-10.20   Min.   :0.00      
##  1st Qu.:2.00     1st Qu.:1.00       1st Qu.:  0.20   1st Qu.:1.00      
##  Median :3.00     Median :1.00       Median :  0.60   Median :1.00      
##  Mean   :4.37     Mean   :0.86       Mean   :  0.79   Mean   :0.87      
##  3rd Qu.:7.00     3rd Qu.:1.00       3rd Qu.:  1.40   3rd Qu.:1.00      
##  Max.   :8.00     Max.   :5.00       Max.   : 40.60   Max.   :5.00      
##  NA's   :248516   NA's   :232420     NA's   :244280   NA's   :228862    
##  PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND  ISOBARICSURFACE 
##  Min.   :0.0       Min.   :0           Mode:logical   Min.   :4       
##  1st Qu.:0.0       1st Qu.:0           NA's:338952    1st Qu.:4       
##  Median :0.0       Median :0                          Median :4       
##  Mean   :0.0       Mean   :0                          Mean   :4       
##  3rd Qu.:0.0       3rd Qu.:0                          3rd Qu.:4       
##  Max.   :0.3       Max.   :1                          Max.   :4       
##  NA's   :338094    NA's   :320084                     NA's   :338951  
##  ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT ISOBARICSURFACEHEIGHTQC SEASURFACETEMP
##  Mode:logical      Min.   :2944          Mode:logical            Mode:logical  
##  NA's:338952       1st Qu.:2944          NA's:338952             NA's:338952   
##                    Median :2944                                                
##                    Mean   :2944                                                
##                    3rd Qu.:2944                                                
##                    Max.   :2944                                                
##                    NA's   :338951                                              
##  SEASURFACETEMPQC  REMARKSYN          REMARKMET          REMARKAWY        
##  Min.   :5        Length:338952      Length:338952      Length:338952     
##  1st Qu.:5        Class :character   Class :character   Class :character  
##  Median :5        Mode  :character   Mode  :character   Mode  :character  
##  Mean   :5                                                                
##  3rd Qu.:5                                                                
##  Max.   :5                                                                
##  NA's   :338950                                                           
##  HORIZONTALDATUM    VERTICALDATUM      LIGHTNINGFREQUENCY
##  Length:338952      Length:338952      Mode:logical      
##  Class :character   Class :character   NA's:338952       
##  Mode  :character   Mode  :character                     
##                                                          
##                                                          
##                                                          
##                                                          
##    RECEIPTDTG             INSERTIONTIME          BLKSTN      
##  Min.   :20130500000000   Length:338952      Min.   :703810  
##  1st Qu.:20151200000000   Class :character   1st Qu.:703810  
##  Median :20181000000000   Mode  :character   Median :703810  
##  Mean   :20182663424500                      Mean   :703810  
##  3rd Qu.:20210500000000                      3rd Qu.:703810  
##  Max.   :20231200000000                      Max.   :703810  
##  NA's   :212050                              NA's   :126908

El Paso, TX

summary(kelp_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:333824      Length:333824      Length:333824      Length:333824     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE          MONTH          SECURITYID
##  Min.   :31.79   Min.   :-106.4   Min.   : 1.000   Min.   :1   
##  1st Qu.:31.80   1st Qu.:-106.4   1st Qu.: 3.000   1st Qu.:1   
##  Median :31.80   Median :-106.4   Median : 7.000   Median :1   
##  Mean   :31.80   Mean   :-106.4   Mean   : 6.509   Mean   :1   
##  3rd Qu.:31.81   3rd Qu.:-106.4   3rd Qu.:10.000   3rd Qu.:1   
##  Max.   :31.81   Max.   :-106.4   Max.   :12.000   Max.   :1   
##                                                                
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT  CALLLETTER       
##  Length:333824      Min.   :0.00     Min.   :1194   Length:333824     
##  Class :character   1st Qu.:0.00     1st Qu.:1194   Class :character  
##  Mode  :character   Median :0.00     Median :1194   Mode  :character  
##                     Mean   :0.26     Mean   :1198                     
##                     3rd Qu.:1.00     3rd Qu.:1206                     
##                     Max.   :1.00     Max.   :1206                     
##                     NA's   :203629                                    
##    VERSION          WINDDIRECTION   WINDDIRECTIONQC WINDCONDITIONS    
##  Length:333824      Min.   : 10.0   Min.   :0.00    Length:333824     
##  Class :character   1st Qu.:100.0   1st Qu.:1.00    Class :character  
##  Mode  :character   Median :180.0   Median :1.00    Mode  :character  
##                     Mean   :183.7   Mean   :0.99                      
##                     3rd Qu.:260.0   3rd Qu.:1.00                      
##                     Max.   :360.0   Max.   :4.00                      
##                     NA's   :55389   NA's   :47220                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1.00     Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1.00     1st Qu.: 2.100   1st Qu.:1.000   1st Qu.:120.0   
##  Median :1.00     Median : 3.100   Median :1.000   Median :200.0   
##  Mean   :1.02     Mean   : 3.837   Mean   :1.007   Mean   :184.3   
##  3rd Qu.:1.00     3rd Qu.: 5.100   3rd Qu.:1.000   3rd Qu.:240.0   
##  Max.   :5.00     Max.   :27.300   Max.   :5.000   Max.   :360.0   
##  NA's   :205785   NA's   :1325     NA's   :2156    NA's   :332776  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 10.0    Min.   : 0.00    Min.   :0.00     Min.   :1          
##  1st Qu.:170.0    1st Qu.: 9.30    1st Qu.:0.00     1st Qu.:4          
##  Median :260.0    Median :11.30    Median :1.00     Median :4          
##  Mean   :230.8    Mean   :12.01    Mean   :0.96     Mean   :4          
##  3rd Qu.:300.0    3rd Qu.:13.90    3rd Qu.:1.00     3rd Qu.:4          
##  Max.   :360.0    Max.   :37.60    Max.   :4.00     Max.   :4          
##  NA's   :332777   NA's   :287522   NA's   :271958   NA's   :206652     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Min.   :0.00    Length:333824        Min.   :0.00          
##  1st Qu.: 7620   1st Qu.:1.00    Class :character     1st Qu.:0.00          
##  Median :22000   Median :1.00    Mode  :character     Median :0.00          
##  Mean   :17270   Mean   :1.39                         Mean   :0.01          
##  3rd Qu.:22000   3rd Qu.:1.00                         3rd Qu.:0.00          
##  Max.   :22000   Max.   :4.00                         Max.   :5.00          
##  NA's   :40062   NA's   :35622                        NA's   :315743        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY      VISIBILITYQC
##  Length:333824      Min.   :1        Min.   :     0   Min.   :1    
##  Class :character   1st Qu.:1        1st Qu.: 16093   1st Qu.:1    
##  Mode  :character   Median :1        Median : 16093   Median :1    
##                     Mean   :1        Mean   : 17297   Mean   :1    
##                     3rd Qu.:1        3rd Qu.: 16093   3rd Qu.:1    
##                     Max.   :1        Max.   :120700   Max.   :4    
##                     NA's   :206565   NA's   :209      NA's   :207  
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE   AIRTEMPERATUREQC
##  Length:333824      Min.   :1        Min.   :-17.00   Min.   :0.000   
##  Class :character   1st Qu.:1        1st Qu.: 12.00   1st Qu.:1.000   
##  Mode  :character   Median :1        Median : 20.00   Median :1.000   
##                     Mean   :1        Mean   : 19.19   Mean   :1.001   
##                     3rd Qu.:1        3rd Qu.: 26.70   3rd Qu.:1.000   
##                     Max.   :4        Max.   : 45.00   Max.   :5.000   
##                     NA's   :563      NA's   :338      NA's   :332     
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-29.40      Min.   :0.000         Min.   : 987.4   Min.   :0.000     
##  1st Qu.: -6.00      1st Qu.:1.000         1st Qu.:1008.0   1st Qu.:1.000     
##  Median :  1.00      Median :1.000         Median :1011.5   Median :1.000     
##  Mean   :  1.45      Mean   :1.002         Mean   :1012.3   Mean   :0.999     
##  3rd Qu.:  9.00      3rd Qu.:1.000         3rd Qu.:1015.9   3rd Qu.:1.000     
##  Max.   : 23.00      Max.   :5.000         Max.   :1038.7   Max.   :5.000     
##  NA's   :413         NA's   :369           NA's   :12623    NA's   :12088     
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 1.00        Min.   :1.0            Min.   : 0.00    Min.   :0.0     
##  1st Qu.: 1.00        1st Qu.:1.0            1st Qu.: 0.00    1st Qu.:1.0     
##  Median : 6.00        Median :1.0            Median : 0.00    Median :1.0     
##  Mean   : 4.82        Mean   :1.7            Mean   : 0.76    Mean   :1.6     
##  3rd Qu.: 6.00        3rd Qu.:3.0            3rd Qu.: 0.20    3rd Qu.:3.0     
##  Max.   :24.00        Max.   :4.0            Max.   :66.50    Max.   :4.0     
##  NA's   :299985       NA's   :321156         NA's   :296543   NA's   :319520  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :1.00     Min.   :1.0        Min.   : 1.0        
##  1st Qu.:2.00     1st Qu.:1.0        1st Qu.: 3.0        
##  Median :2.00     Median :1.0        Median : 6.0        
##  Mean   :2.16     Mean   :1.6        Mean   :11.9        
##  3rd Qu.:2.00     3rd Qu.:3.0        3rd Qu.:24.0        
##  Max.   :3.00     Max.   :4.0        Max.   :24.0        
##  NA's   :308095   NA's   :319599     NA's   :329579      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   :  0.0    Min.   :0.0      Min.   :0.0     
##  1st Qu.:1              1st Qu.:  0.0    1st Qu.:1.0      1st Qu.:2.0     
##  Median :1              Median :  0.5    Median :1.0      Median :2.0     
##  Mean   :1              Mean   :  2.8    Mean   :0.9      Mean   :2.5     
##  3rd Qu.:1              3rd Qu.:  2.5    3rd Qu.:1.0      3rd Qu.:3.0     
##  Max.   :1              Max.   :298.1    Max.   :4.0      Max.   :3.0     
##  NA's   :332354         NA's   :329627   NA's   :332113   NA's   :331581  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.0         Min.   :1             
##  1st Qu.:1          1st Qu.:24.0         1st Qu.:1             
##  Median :1          Median :24.0         Median :1             
##  Mean   :1          Mean   :19.6         Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.0         3rd Qu.:1             
##  Max.   :1          Max.   :24.0         Max.   :1             
##  NA's   :332113     NA's   :333604       NA's   :333727        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   : 0.0     Min.   :1        Min.   :2.0      Min.   :1         
##  1st Qu.: 0.7     1st Qu.:1        1st Qu.:3.0      1st Qu.:1         
##  Median : 2.4     Median :1        Median :3.0      Median :1         
##  Mean   : 6.2     Mean   :1        Mean   :2.9      Mean   :1         
##  3rd Qu.: 7.2     3rd Qu.:1        3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :49.7     Max.   :1        Max.   :3.0      Max.   :1         
##  NA's   :333604   NA's   :333711   NA's   :333693   NA's   :333711    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4  PRECIPAMOUNT4QC
##  Mode:logical         Mode:logical           Mode:logical   Mode:logical   
##  NA's:333824          NA's:333824            NA's:333824    NA's:333824    
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR    PRECIPHISTDURQC 
##  Mode:logical     Mode:logical       Min.   :0.0      Min.   :0       
##  NA's:333824      NA's:333824        1st Qu.:1.0      1st Qu.:0       
##                                      Median :1.0      Median :0       
##                                      Mean   :1.3      Mean   :0       
##                                      3rd Qu.:2.0      3rd Qu.:0       
##                                      Max.   :3.0      Max.   :0       
##                                      NA's   :333662   NA's   :332351  
##  PRECIPHISTCHAR     PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Length:333824      Mode:logical     Min.   :0.00     Mode:logical  
##  Class :character   NA's:333824      1st Qu.:1.00     NA's:333824   
##  Mode  :character                    Median :1.00                   
##                                      Mean   :1.15                   
##                                      3rd Qu.:1.00                   
##                                      Max.   :5.00                   
##                                      NA's   :285242                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   : 0.0     Mode:logical   Min.   :  0.0    Min.   :1       
##  1st Qu.: 0.0     NA's:333824    1st Qu.:  0.0    1st Qu.:1       
##  Median : 0.0                    Median :  3.0    Median :1       
##  Mean   : 0.1                    Mean   :  4.9    Mean   :1       
##  3rd Qu.: 0.0                    3rd Qu.:  5.0    3rd Qu.:1       
##  Max.   :17.0                    Max.   :996.0    Max.   :1       
##  NA's   :319424                  NA's   :333268   NA's   :333787  
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV    DEPTHWTREQUIVQC
##  Min.   :1.0       Min.   :1           Min.   :  0.0    Mode:logical   
##  1st Qu.:3.0       1st Qu.:1           1st Qu.: 25.0    NA's:333824    
##  Median :3.0       Median :1           Median : 30.0                   
##  Mean   :2.8       Mean   :1           Mean   : 47.3                   
##  3rd Qu.:3.0       3rd Qu.:1           3rd Qu.: 51.0                   
##  Max.   :3.0       Max.   :1           Max.   :152.0                   
##  NA's   :333790    NA's   :333791      NA's   :333787                  
##  DEPTHWECOND    DEPTHWECONDQC  HAILSIZE       PRECIPAMOUNTSF1 PRECIPAMOUNTSF1QC
##  Mode:logical   Mode:logical   Mode:logical   Mode:logical    Mode:logical     
##  NA's:333824    NA's:333824    NA's:333824    NA's:333824     NA's:333824      
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Mode:logical       Mode:logical         Min.   :1           
##  NA's:333824        NA's:333824          1st Qu.:1           
##                                          Median :1           
##                                          Mean   :1           
##                                          3rd Qu.:1           
##                                          Max.   :1           
##                                          NA's   :333814      
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2 PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Min.   :1              Mode:logical    Mode:logical      Mode:logical      
##  1st Qu.:1              NA's:333824     NA's:333824       NA's:333824       
##  Median :1                                                                  
##  Mean   :1                                                                  
##  3rd Qu.:1                                                                  
##  Max.   :1                                                                  
##  NA's   :333814                                                             
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Mode:logical         Mode:logical          
##  NA's:333824          NA's:333824          NA's:333824           
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##  PRECIPAMOUNTSF3 PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Mode:logical    Mode:logical      Mode:logical       Mode:logical        
##  NA's:333824     NA's:333824       NA's:333824        NA's:333824         
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:333824          NA's:333824            NA's:333824     NA's:333824      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Mode:logical        
##  NA's:333824        NA's:333824          NA's:333824         
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Mode:logical           Min.   : 0.0     Min.   :0.00     Min.   : 0.00   
##  NA's:333824            1st Qu.: 0.0     1st Qu.:1.00     1st Qu.: 0.00   
##                         Median : 0.0     Median :1.00     Median : 0.00   
##                         Mean   : 6.4     Mean   :0.99     Mean   : 1.96   
##                         3rd Qu.: 0.0     3rd Qu.:1.00     3rd Qu.: 0.00   
##                         Max.   :99.0     Max.   :5.00     Max.   :99.00   
##                         NA's   :252811   NA's   :252117   NA's   :274388  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4  
##  Min.   :0        Min.   : 0.00    Min.   :1        Min.   : 0.0    
##  1st Qu.:1        1st Qu.: 0.00    1st Qu.:1        1st Qu.: 0.0    
##  Median :1        Median : 0.00    Median :1        Median : 0.0    
##  Mean   :1        Mean   : 0.09    Mean   :1        Mean   : 4.7    
##  3rd Qu.:1        3rd Qu.: 0.00    3rd Qu.:1        3rd Qu.: 0.0    
##  Max.   :1        Max.   :89.00    Max.   :1        Max.   :90.0    
##  NA's   :257997   NA's   :275911   NA's   :258859   NA's   :333805  
##  PRESENTMANUAL4QC PRESENTMANUAL5   PRESENTMANUAL5QC PRESENTMANUAL6
##  Min.   :1        Min.   :18       Min.   :1        Mode:logical  
##  1st Qu.:1        1st Qu.:18       1st Qu.:1        NA's:333824   
##  Median :1        Median :18       Median :1                      
##  Mean   :1        Mean   :18       Mean   :1                      
##  3rd Qu.:1        3rd Qu.:18       3rd Qu.:1                      
##  Max.   :1        Max.   :18       Max.   :1                      
##  NA's   :264138   NA's   :333823   NA's   :264140                 
##  PRESENTMANUAL6QC PRESENTMANUAL7 PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Mode:logical   Min.   :1        Min.   : 4       
##  1st Qu.:1        NA's:333824    1st Qu.:1        1st Qu.:61       
##  Median :1                       Median :1        Median :61       
##  Mean   :1                       Mean   :1        Mean   :66       
##  3rd Qu.:1                       3rd Qu.:1        3rd Qu.:91       
##  Max.   :1                       Max.   :1        Max.   :96       
##  NA's   :264140                  NA's   :264140   NA's   :328742   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.0         Min.   : 4.0      Min.   :0.0         Min.   :18.0     
##  1st Qu.:0.0         1st Qu.:10.0      1st Qu.:1.0         1st Qu.:18.0     
##  Median :0.0         Median :10.0      Median :1.0         Median :54.0     
##  Mean   :0.3         Mean   :16.6      Mean   :1.2         Mean   :37.9     
##  3rd Qu.:1.0         3rd Qu.:10.0      3rd Qu.:1.0         3rd Qu.:54.0     
##  Max.   :5.0         Max.   :95.0      Max.   :4.0         Max.   :64.0     
##  NA's   :318700      NA's   :333271    NA's   :333268      NA's   :333809   
##  PRESENTAUTOMATED3QC  PASTMANUAL1     PASTMANUAL1QC    WXPASTPERIOD1   
##  Min.   :1.0         Min.   :0.0      Min.   :0.0      Min.   :1.0     
##  1st Qu.:1.0         1st Qu.:2.0      1st Qu.:0.0      1st Qu.:6.0     
##  Median :4.0         Median :8.0      Median :0.0      Median :6.0     
##  Mean   :2.8         Mean   :5.8      Mean   :0.2      Mean   :5.9     
##  3rd Qu.:4.0         3rd Qu.:8.0      3rd Qu.:0.0      3rd Qu.:6.0     
##  Max.   :4.0         Max.   :9.0      Max.   :1.0      Max.   :6.0     
##  NA's   :333809      NA's   :333589   NA's   :332774   NA's   :333589  
##  WXPASTPERIOD1QC   PASTMANUAL2     PASTMANUAL2QC    WXPASTPERIOD2   
##  Min.   :1        Min.   :0.0      Min.   :0.0      Min.   :1.0     
##  1st Qu.:1        1st Qu.:1.0      1st Qu.:0.0      1st Qu.:6.0     
##  Median :1        Median :2.0      Median :1.0      Median :6.0     
##  Mean   :1        Mean   :2.6      Mean   :0.7      Mean   :5.9     
##  3rd Qu.:1        3rd Qu.:2.0      3rd Qu.:1.0      3rd Qu.:6.0     
##  Max.   :1        Max.   :8.0      Max.   :1.0      Max.   :6.0     
##  NA's   :333589   NA's   :333589   NA's   :333501   NA's   :333589  
##  WXPASTPERIOD2QC  PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1
##  Min.   :1        Mode:logical   Min.   :0        Mode:logical     
##  1st Qu.:1        NA's:333824    1st Qu.:0        NA's:333824      
##  Median :1                       Median :0                         
##  Mean   :1                       Mean   :0                         
##  3rd Qu.:1                       3rd Qu.:0                         
##  Max.   :1                       Max.   :0                         
##  NA's   :333589                  NA's   :333009                    
##  WXPASTAUTOPERIOD1QC PASTAUTOMATED2 PASTAUTOMATED2QC WXPASTAUTOPERIOD2
##  Mode:logical        Mode:logical   Min.   :0        Mode:logical     
##  NA's:333824         NA's:333824    1st Qu.:0        NA's:333824      
##                                     Median :0                         
##                                     Mean   :0                         
##                                     3rd Qu.:0                         
##                                     Max.   :0                         
##                                     NA's   :333736                    
##  WXPASTAUTOPERIOD2QC RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE
##  Mode:logical        Min.   :22       Length:333824      Min.   : 201.0   
##  NA's:333824         1st Qu.:22       Class :character   1st Qu.: 302.0   
##                      Median :22       Mode  :character   Median : 352.0   
##                      Mean   :22                          Mean   : 708.1   
##                      3rd Qu.:22                          3rd Qu.: 805.0   
##                      Max.   :22                          Max.   :2213.0   
##                      NA's   :333798                      NA's   :333798   
##    CLOUDCOVER     CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC  
##  Min.   : 0      Min.   :0.00    Min.   :0.0      Min.   :0.00    
##  1st Qu.: 0      1st Qu.:1.00    1st Qu.:0.0      1st Qu.:0.00    
##  Median : 2      Median :1.00    Median :0.0      Median :1.00    
##  Mean   : 3      Mean   :1.44    Mean   :0.2      Mean   :0.57    
##  3rd Qu.: 4      3rd Qu.:1.00    3rd Qu.:0.0      3rd Qu.:1.00    
##  Max.   :10      Max.   :4.00    Max.   :9.0      Max.   :1.00    
##  NA's   :42511   NA's   :37433   NA's   :319937   NA's   :309356  
##  CLOUDBASEHEIGHT  CLOUDBASEHEIGHTQC  CLOUDTYPELO     CLOUDTYPELOQC   
##  Min.   :    0    Min.   :0.00      Min.   :0.0      Min.   :0.00    
##  1st Qu.: 1829    1st Qu.:1.00      1st Qu.:0.0      1st Qu.:0.00    
##  Median : 3048    Median :1.00      Median :0.0      Median :1.00    
##  Mean   : 3590    Mean   :0.98      Mean   :0.2      Mean   :0.59    
##  3rd Qu.: 5182    3rd Qu.:1.00      3rd Qu.:0.0      3rd Qu.:1.00    
##  Max.   :10668    Max.   :1.00      Max.   :9.0      Max.   :1.00    
##  NA's   :244121   NA's   :242059    NA's   :318424   NA's   :307843  
##   CLOUDTYPEMID    CLOUDTYPEMIDQC    CLOUDTYPEHI     CLOUDTYPEHIQC   
##  Min.   :0.0      Min.   :0.00     Min.   :0.0      Min.   :0.00    
##  1st Qu.:0.0      1st Qu.:0.00     1st Qu.:0.0      1st Qu.:0.00    
##  Median :0.0      Median :1.00     Median :0.0      Median :1.00    
##  Mean   :0.6      Mean   :0.59     Mean   :0.8      Mean   :0.59    
##  3rd Qu.:0.0      3rd Qu.:1.00     3rd Qu.:0.0      3rd Qu.:1.00    
##  Max.   :8.0      Max.   :1.00     Max.   :9.0      Max.   :1.00    
##  NA's   :318635   NA's   :308054   NA's   :318592   NA's   :308011  
##  SUNSHINE        SURFACECODE     SURFACECODEQC  SOILTEMPERATURE
##  Mode:logical   Min.   :1        Mode:logical   Mode:logical   
##  NA's:333824    1st Qu.:1        NA's:333824    NA's:333824    
##                 Median :1                                      
##                 Mean   :1                                      
##                 3rd Qu.:1                                      
##                 Max.   :1                                      
##                 NA's   :333821                                 
##  SOILTEMPERATUREQC SOILDEPTH      OBSERVATIONPERIODSOILT
##  Mode:logical      Mode:logical   Mode:logical          
##  NA's:333824       NA's:333824    NA's:333824           
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##  OBSERVATIONPERIODSOILTQC ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE 
##  Mode:logical             Min.   : 986.8   Min.   :0.00       Min.   :861.1   
##  NA's:333824              1st Qu.:1014.6   1st Qu.:1.00       1st Qu.:878.7   
##                           Median :1017.6   Median :1.00       Median :881.4   
##                           Mean   :1017.7   Mean   :0.98       Mean   :881.6   
##                           3rd Qu.:1020.7   3rd Qu.:1.00       3rd Qu.:884.4   
##                           Max.   :1039.6   Max.   :5.00       Max.   :901.3   
##                           NA's   :63805    NA's   :59434      NA's   :228536  
##  STATIONPRESSUREQC PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG
##  Min.   :0.00      Min.   :0.00     Min.   :0.00       Min.   :-5.50   
##  1st Qu.:1.00      1st Qu.:1.00     1st Qu.:1.00       1st Qu.: 0.20   
##  Median :1.00      Median :3.00     Median :1.00       Median : 0.70   
##  Mean   :0.89      Mean   :4.14     Mean   :0.91       Mean   : 0.75   
##  3rd Qu.:1.00      3rd Qu.:6.00     3rd Qu.:1.00       3rd Qu.: 1.40   
##  Max.   :5.00      Max.   :8.00     Max.   :5.00       Max.   :11.00   
##  NA's   :214913    NA's   :207496   NA's   :193486     NA's   :202823  
##  PRESSURE3HOURCHGQC PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND 
##  Min.   :0.00       Min.   :0         Min.   :0.00        Mode:logical  
##  1st Qu.:1.00       1st Qu.:0         1st Qu.:0.00        NA's:333824   
##  Median :1.00       Median :0         Median :0.00                      
##  Mean   :0.92       Mean   :0         Mean   :0.03                      
##  3rd Qu.:1.00       3rd Qu.:0         3rd Qu.:0.00                      
##  Max.   :5.00       Max.   :0         Max.   :1.00                      
##  NA's   :189536     NA's   :333175    NA's   :315196                    
##  ISOBARICSURFACE ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT
##  Mode:logical    Mode:logical      Mode:logical         
##  NA's:333824     NA's:333824       NA's:333824          
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##  ISOBARICSURFACEHEIGHTQC SEASURFACETEMP SEASURFACETEMPQC  REMARKSYN        
##  Mode:logical            Mode:logical   Min.   :5        Length:333824     
##  NA's:333824             NA's:333824    1st Qu.:5        Class :character  
##                                         Median :5        Mode  :character  
##                                         Mean   :5                          
##                                         3rd Qu.:5                          
##                                         Max.   :5                          
##                                         NA's   :333821                     
##   REMARKMET          REMARKAWY         HORIZONTALDATUM    VERTICALDATUM     
##  Length:333824      Length:333824      Length:333824      Length:333824     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  LIGHTNINGFREQUENCY   RECEIPTDTG             INSERTIONTIME     
##  Mode:logical       Min.   :20130500000000   Length:333824     
##  NA's:333824        1st Qu.:20151200000000   Class :character  
##                     Median :20180800000000   Mode  :character  
##                     Mean   :20182138943500                     
##                     3rd Qu.:20210500000000                     
##                     Max.   :20231200000000                     
##                     NA's   :206560                             
##      BLKSTN      
##  Min.   :722700  
##  1st Qu.:722700  
##  Median :722700  
##  Mean   :722700  
##  3rd Qu.:722700  
##  Max.   :722700  
##  NA's   :130195

St George, UT

summary(ksgu_data)
##   PLATFORMID        NETWORKTYPE        OBSERVATIONTIME    REPORTTYPECODE    
##  Length:484391      Length:484391      Length:484391      Length:484391     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##     LATITUDE       LONGITUDE                 MONTH             SECURITYID
##  Min.   :37.07   Min.   :          -114   Length:484391      Min.   :1   
##  1st Qu.:37.08   1st Qu.:          -114   Class :character   1st Qu.:1   
##  Median :37.08   Median :          -114   Mode  :character   Median :1   
##  Mean   :37.09   Mean   :      41745673                      Mean   :1   
##  3rd Qu.:37.09   3rd Qu.:          -114                      3rd Qu.:1   
##  Max.   :42.70   Max.   :20221200000000                      Max.   :1   
##  NA's   :3       NA's   :2                                   NA's   :2   
##  DISTRIBUTIONCD      STATIONMODE     PLATFORMHEIGHT   CALLLETTER       
##  Length:484391      Min.   :0        Min.   :896.0   Length:484391     
##  Class :character   1st Qu.:0        1st Qu.:896.0   Class :character  
##  Mode  :character   Median :0        Median :896.0   Mode  :character  
##                     Mean   :0        Mean   :896.1                     
##                     3rd Qu.:0        3rd Qu.:896.4                     
##                     Max.   :1        Max.   :896.4                     
##                     NA's   :324434   NA's   :4                         
##    VERSION          WINDDIRECTION    WINDDIRECTIONQC  WINDCONDITIONS    
##  Length:484391      Min.   : 10.0    Min.   :0.00     Length:484391     
##  Class :character   1st Qu.: 90.0    1st Qu.:1.00     Class :character  
##  Mode  :character   Median :180.0    Median :1.00     Mode  :character  
##                     Mean   :176.3    Mean   :0.97                       
##                     3rd Qu.:260.0    3rd Qu.:1.00                       
##                     Max.   :360.0    Max.   :1.00                       
##                     NA's   :137503   NA's   :117192                     
##  WINDCONDITIONSQC   WINDSPEED       WINDSPEEDQC    STARTDIRECTION  
##  Min.   :1        Min.   : 0.000   Min.   :0.000   Min.   : 10.0   
##  1st Qu.:1        1st Qu.: 0.000   1st Qu.:1.000   1st Qu.:180.0   
##  Median :1        Median : 2.100   Median :1.000   Median :230.0   
##  Mean   :1        Mean   : 2.728   Mean   :1.013   Mean   :212.6   
##  3rd Qu.:1        3rd Qu.: 3.600   3rd Qu.:1.000   3rd Qu.:260.0   
##  Max.   :4        Max.   :40.700   Max.   :4.000   Max.   :360.0   
##  NA's   :322045   NA's   :1011     NA's   :840     NA's   :482986  
##   ENDDIRECTION    WINDGUSTSPEED    WINDGUSTSPEEDQC  WINDMEASUREMENTMODE
##  Min.   : 10.0    Min.   : 7.2     Min.   :0.0      Min.   :4          
##  1st Qu.:180.0    1st Qu.: 9.3     1st Qu.:0.0      1st Qu.:4          
##  Median :290.0    Median :11.3     Median :1.0      Median :4          
##  Mean   :240.9    Mean   :11.7     Mean   :0.6      Mean   :4          
##  3rd Qu.:310.0    3rd Qu.:13.4     3rd Qu.:1.0      3rd Qu.:4          
##  Max.   :360.0    Max.   :48.9     Max.   :4.0      Max.   :4          
##  NA's   :482986   NA's   :432129   NA's   :398324   NA's   :324665     
##   CLOUDCEILING   CLOUDCEILINGQC  CEILINGDETERMINATION CEILINGDETERMINATIONQC
##  Min.   :    0   Min.   :0.000   Length:484391        Min.   :0             
##  1st Qu.:22000   1st Qu.:1.000   Class :character     1st Qu.:0             
##  Median :22000   Median :1.000   Mode  :character     Median :0             
##  Mean   :19816   Mean   :1.056                        Mean   :0             
##  3rd Qu.:22000   3rd Qu.:1.000                        3rd Qu.:0             
##  Max.   :22000   Max.   :4.000                        Max.   :1             
##  NA's   :18320   NA's   :18130                        NA's   :446271        
##   CLOUDCAVOK         CLOUDCAVOKQC      VISIBILITY     VISIBILITYQC  
##  Length:484391      Min.   :1        Min.   :    0   Min.   :1.000  
##  Class :character   1st Qu.:1        1st Qu.:16093   1st Qu.:1.000  
##  Mode  :character   Median :1        Median :16093   Median :1.000  
##                     Mean   :1        Mean   :15953   Mean   :1.001  
##                     3rd Qu.:1        3rd Qu.:16093   3rd Qu.:1.000  
##                     Max.   :1        Max.   :64374   Max.   :4.000  
##                     NA's   :324434   NA's   :1695    NA's   :1695   
##  VISIBILITYTYPE     VISIBILITYTYPEQC AIRTEMPERATURE  AIRTEMPERATUREQC
##  Length:484391      Min.   :1        Min.   :-17.0   Min.   :0       
##  Class :character   1st Qu.:1        1st Qu.:  9.0   1st Qu.:1       
##  Mode  :character   Median :1        Median : 17.2   Median :1       
##                     Mean   :1        Mean   : 17.9   Mean   :1       
##                     3rd Qu.:1        3rd Qu.: 27.0   3rd Qu.:1       
##                     Max.   :1        Max.   : 46.0   Max.   :5       
##                     NA's   :233      NA's   :811     NA's   :645     
##  DEWPOINTTEMPERATURE DEWPOINTTEMPERATUREQC SEALEVELPRESSURE SEALEVELPRESSUREQC
##  Min.   :-24.0000    Min.   :0             Min.   :   0     Min.   :0.0       
##  1st Qu.: -5.0000    1st Qu.:1             1st Qu.:1009     1st Qu.:0.0       
##  Median : -1.0000    Median :1             Median :1013     Median :1.0       
##  Mean   : -0.4715    Mean   :1             Mean   :1014     Mean   :0.6       
##  3rd Qu.:  3.0000    3rd Qu.:1             3rd Qu.:1019     3rd Qu.:1.0       
##  Max.   : 24.0000    Max.   :5             Max.   :1039     Max.   :4.0       
##  NA's   :1665        NA's   :1489          NA's   :425357   NA's   :387387    
##  OBSERVATIONPERIODPP1 OBSERVATIONPERIODPP1QC PRECIPAMOUNT1    PRECIPAMOUNT1QC 
##  Min.   : 0.0         Min.   :1              Min.   :  0.0    Min.   :1       
##  1st Qu.: 1.0         1st Qu.:1              1st Qu.:  0.0    1st Qu.:1       
##  Median : 1.0         Median :1              Median :  0.0    Median :1       
##  Mean   : 4.4         Mean   :1              Mean   :  1.3    Mean   :1       
##  3rd Qu.: 6.0         3rd Qu.:1              3rd Qu.:  0.5    3rd Qu.:1       
##  Max.   :24.0         Max.   :4              Max.   :253.2    Max.   :4       
##  NA's   :470051       NA's   :479509         NA's   :470430   NA's   :479484  
##  PRECIPCONDITION1 PRECIPCONDITION1QC OBSERVATIONPERIODPP2
##  Min.   :0.0      Min.   :1          Min.   : 1.0        
##  1st Qu.:2.0      1st Qu.:1          1st Qu.: 3.0        
##  Median :2.0      Median :1          Median : 6.0        
##  Mean   :2.4      Mean   :1          Mean   : 7.2        
##  3rd Qu.:3.0      3rd Qu.:1          3rd Qu.: 6.0        
##  Max.   :3.0      Max.   :1          Max.   :24.0        
##  NA's   :479115   NA's   :479115     NA's   :483206      
##  OBSERVATIONPERIODPP2QC PRECIPAMOUNT2    PRECIPAMOUNT2QC  PRECIPCONDITION2
##  Min.   :1              Min.   : 0.0     Min.   :0.0      Min.   :1.0     
##  1st Qu.:1              1st Qu.: 0.0     1st Qu.:1.0      1st Qu.:2.0     
##  Median :1              Median : 0.8     Median :1.0      Median :3.0     
##  Mean   :1              Mean   : 2.5     Mean   :0.9      Mean   :2.6     
##  3rd Qu.:1              3rd Qu.: 2.8     3rd Qu.:1.0      3rd Qu.:3.0     
##  Max.   :1              Max.   :96.5     Max.   :2.0      Max.   :3.0     
##  NA's   :483606         NA's   :483216   NA's   :483574   NA's   :483560  
##  PRECIPCONDITION2QC OBSERVATIONPERIODPP3 OBSERVATIONPERIODPP3QC
##  Min.   :1          Min.   : 1.0         Min.   :0             
##  1st Qu.:1          1st Qu.:24.0         1st Qu.:1             
##  Median :1          Median :24.0         Median :1             
##  Mean   :1          Mean   :18.8         Mean   :1             
##  3rd Qu.:1          3rd Qu.:24.0         3rd Qu.:1             
##  Max.   :1          Max.   :24.0         Max.   :1             
##  NA's   :483559     NA's   :484293       NA's   :484332        
##  PRECIPAMOUNT3    PRECIPAMOUNT3QC  PRECIPCONDITION3 PRECIPCONDITION3QC
##  Min.   : 0.2     Min.   :1        Min.   :1.0      Min.   :1         
##  1st Qu.: 0.5     1st Qu.:1        1st Qu.:3.0      1st Qu.:1         
##  Median : 1.7     Median :1        Median :3.0      Median :1         
##  Mean   : 4.3     Mean   :1        Mean   :2.8      Mean   :1         
##  3rd Qu.: 4.5     3rd Qu.:1        3rd Qu.:3.0      3rd Qu.:1         
##  Max.   :44.5     Max.   :1        Max.   :3.0      Max.   :1         
##  NA's   :484298   NA's   :484335   NA's   :484330   NA's   :484329    
##  OBSERVATIONPERIODPP4 OBSERVATIONPERIODPP4QC PRECIPAMOUNT4  PRECIPAMOUNT4QC
##  Mode:logical         Mode:logical           Mode:logical   Mode:logical   
##  NA's:484391          NA's:484391            NA's:484391    NA's:484391    
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##                                                                            
##  PRECIPCONDITION4 PRECIPCONDITION4QC PRECIPHISTDUR  PRECIPHISTDURQC 
##  Mode:logical     Mode:logical       Mode:logical   Min.   :0       
##  NA's:484391      NA's:484391        NA's:484391    1st Qu.:0       
##                                                     Median :0       
##                                                     Mean   :0       
##                                                     3rd Qu.:0       
##                                                     Max.   :0       
##                                                     NA's   :483930  
##  PRECIPHISTCHAR PRECIPHISTCHARQC   PRECIPDISC     PRECIPDISCQC  
##  Mode:logical   Mode:logical     Min.   :0.0      Mode:logical  
##  NA's:484391    NA's:484391      1st Qu.:0.0      NA's:484391   
##                                  Median :0.0                    
##                                  Mean   :0.1                    
##                                  3rd Qu.:0.0                    
##                                  Max.   :3.0                    
##                                  NA's   :442834                 
##   PRECIPBOGUS     PRECIPBOGUSQC  PRECIPAMOUNTSD   PRECIPAMOUNTSDQC
##  Min.   :0        Mode:logical   Min.   :0.0      Mode:logical    
##  1st Qu.:0        NA's:484391    1st Qu.:0.0      NA's:484391     
##  Median :0                       Median :4.0                      
##  Mean   :0                       Mean   :3.1                      
##  3rd Qu.:0                       3rd Qu.:5.0                      
##  Max.   :0                       Max.   :9.0                      
##  NA's   :470523                  NA's   :483904                   
##  PRECIPCONDITIONSD PRECIPCONDITIONSDQC DEPTHWTREQUIV    DEPTHWTREQUIVQC
##  Mode:logical      Min.   :0           Min.   :1        Mode:logical   
##  NA's:484391       1st Qu.:0           1st Qu.:1        NA's:484391    
##                    Median :0           Median :1                       
##                    Mean   :0           Mean   :1                       
##                    3rd Qu.:0           3rd Qu.:1                       
##                    Max.   :0           Max.   :1                       
##                    NA's   :484390      NA's   :484390                  
##   DEPTHWECOND     DEPTHWECONDQC     HAILSIZE      PRECIPAMOUNTSF1
##  Min.   :1        Mode:logical   Min.   :1        Mode:logical   
##  1st Qu.:1        NA's:484391    1st Qu.:1        NA's:484391    
##  Median :1                       Median :1                       
##  Mean   :1                       Mean   :1                       
##  3rd Qu.:1                       3rd Qu.:1                       
##  Max.   :1                       Max.   :1                       
##  NA's   :484390                  NA's   :484390                  
##  PRECIPAMOUNTSF1QC PRECIPCONDITIONSF1 PRECIPCONDITIONSF1QC OBSERVATIONPERIODSF1
##  Min.   :1         Mode:logical       Min.   :1            Mode:logical        
##  1st Qu.:1         NA's:484391        1st Qu.:1            NA's:484391         
##  Median :1                            Median :1                                
##  Mean   :1                            Mean   :1                                
##  3rd Qu.:1                            3rd Qu.:1                                
##  Max.   :1                            Max.   :1                                
##  NA's   :484390                       NA's   :484390                           
##  OBSERVATIONPERIODSF1QC PRECIPAMOUNTSF2 PRECIPAMOUNTSF2QC PRECIPCONDITIONSF2
##  Min.   :1              Mode:logical    Min.   :1         Mode:logical      
##  1st Qu.:1              NA's:484391     1st Qu.:1         NA's:484391       
##  Median :1                              Median :1                           
##  Mean   :1                              Mean   :1                           
##  3rd Qu.:1                              3rd Qu.:1                           
##  Max.   :1                              Max.   :1                           
##  NA's   :484390                         NA's   :484390                      
##  PRECIPCONDITIONSF2QC OBSERVATIONPERIODSF2 OBSERVATIONPERIODSF2QC
##  Mode:logical         Mode:logical         Mode:logical          
##  NA's:484391          NA's:484391          NA's:484391           
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##  PRECIPAMOUNTSF3 PRECIPAMOUNTSF3QC PRECIPCONDITIONSF3 PRECIPCONDITIONSF3QC
##  Mode:logical    Mode:logical      Mode:logical       Mode:logical        
##  NA's:484391     NA's:484391       NA's:484391        NA's:484391         
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##                                                                           
##  OBSERVATIONPERIODSF3 OBSERVATIONPERIODSF3QC PRECIPAMOUNTSF4 PRECIPAMOUNTSF4QC
##  Mode:logical         Mode:logical           Mode:logical    Mode:logical     
##  NA's:484391          NA's:484391            NA's:484391     NA's:484391      
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##                                                                               
##  PRECIPCONDITIONSF4 PRECIPCONDITIONSF4QC OBSERVATIONPERIODSF4
##  Mode:logical       Mode:logical         Min.   :1030        
##  NA's:484391        NA's:484391          1st Qu.:1030        
##                                          Median :1030        
##                                          Mean   :1030        
##                                          3rd Qu.:1030        
##                                          Max.   :1030        
##                                          NA's   :484390      
##  OBSERVATIONPERIODSF4QC PRESENTMANUAL1   PRESENTMANUAL1QC PRESENTMANUAL2  
##  Min.   :1              Min.   : 0.0     Min.   :0        Min.   : 0      
##  1st Qu.:1              1st Qu.: 0.0     1st Qu.:1        1st Qu.: 0      
##  Median :1              Median : 0.0     Median :1        Median : 0      
##  Mean   :1              Mean   : 0.2     Mean   :1        Mean   : 0      
##  3rd Qu.:1              3rd Qu.: 0.0     3rd Qu.:1        3rd Qu.: 0      
##  Max.   :1              Max.   :73.0     Max.   :1        Max.   :51      
##  NA's   :484390         NA's   :423991   NA's   :423737   NA's   :444590  
##  PRESENTMANUAL2QC PRESENTMANUAL3   PRESENTMANUAL3QC PRESENTMANUAL4
##  Min.   :1        Min.   :0        Min.   :1        Mode:logical  
##  1st Qu.:1        1st Qu.:0        1st Qu.:1        NA's:484391   
##  Median :1        Median :0        Median :1                      
##  Mean   :1        Mean   :0        Mean   :1                      
##  3rd Qu.:1        3rd Qu.:0        3rd Qu.:1                      
##  Max.   :1        Max.   :0        Max.   :1                      
##  NA's   :426334   NA's   :444596   NA's   :426340                 
##  PRESENTMANUAL4QC PRESENTMANUAL5   PRESENTMANUAL5QC PRESENTMANUAL6
##  Min.   :   1     Min.   :1        Min.   :1        Mode:logical  
##  1st Qu.:   1     1st Qu.:1        1st Qu.:1        NA's:484391   
##  Median :   1     Median :1        Median :1                      
##  Mean   :   1     Mean   :1        Mean   :1                      
##  3rd Qu.:   1     3rd Qu.:1        3rd Qu.:1                      
##  Max.   :1025     Max.   :1        Max.   :1                      
##  NA's   :431085   NA's   :484390   NA's   :431086                 
##  PRESENTMANUAL6QC PRESENTMANUAL7 PRESENTMANUAL7QC PRESENTAUTOMATED1
##  Min.   :1        Mode:logical   Min.   :1        Min.   : 5.0     
##  1st Qu.:1        NA's:484391    1st Qu.:1        1st Qu.:12.0     
##  Median :1                       Median :1        Median :61.0     
##  Mean   :1                       Mean   :1        Mean   :47.5     
##  3rd Qu.:1                       3rd Qu.:1        3rd Qu.:62.0     
##  Max.   :1                       Max.   :1        Max.   :95.0     
##  NA's   :431086                  NA's   :431086   NA's   :479656   
##  PRESENTAUTOMATED1QC PRESENTAUTOMATED2 PRESENTAUTOMATED2QC PRESENTAUTOMATED3
##  Min.   :0.0         Min.   : 5.0      Length:484391       Min.   :10.0     
##  1st Qu.:0.0         1st Qu.:10.0      Class :character    1st Qu.:10.0     
##  Median :0.0         Median :10.0      Mode  :character    Median :10.0     
##  Mean   :0.2         Mean   :21.2                          Mean   :13.2     
##  3rd Qu.:0.0         3rd Qu.:18.0                          3rd Qu.:18.0     
##  Max.   :1.0         Max.   :63.0                          Max.   :18.0     
##  NA's   :460398      NA's   :483833                        NA's   :484386   
##  PRESENTAUTOMATED3QC PASTMANUAL1    PASTMANUAL1QC    WXPASTPERIOD1     
##  Min.   :1           Mode:logical   Min.   :0        Length:484391     
##  1st Qu.:1           NA's:484391    1st Qu.:0        Class :character  
##  Median :1                          Median :0        Mode  :character  
##  Mean   :1                          Mean   :0                          
##  3rd Qu.:1                          3rd Qu.:0                          
##  Max.   :1                          Max.   :0                          
##  NA's   :484386                     NA's   :484137                     
##  WXPASTPERIOD1QC  PASTMANUAL2    PASTMANUAL2QC  WXPASTPERIOD2     
##  Min.   :724754   Mode:logical   Mode:logical   Length:484391     
##  1st Qu.:724754   NA's:484391    NA's:484391    Class :character  
##  Median :724754                                 Mode  :character  
##  Mean   :724754                                                   
##  3rd Qu.:724754                                                   
##  Max.   :724754                                                   
##  NA's   :484390                                                   
##  WXPASTPERIOD2QC PASTAUTOMATED1 PASTAUTOMATED1QC WXPASTAUTOPERIOD1
##  Mode:logical    Mode:logical   Min.   :   0     Min.   :1        
##  NA's:484391     NA's:484391    1st Qu.:   0     1st Qu.:1        
##                                 Median :   0     Median :1        
##                                 Mean   :   4     Mean   :1        
##                                 3rd Qu.:   0     3rd Qu.:1        
##                                 Max.   :1016     Max.   :1        
##                                 NA's   :484136   NA's   :484390   
##  WXPASTAUTOPERIOD1QC PASTAUTOMATED2   PASTAUTOMATED2QC WXPASTAUTOPERIOD2
##  Length:484391       Min.   :724754   Mode:logical     Mode:logical     
##  Class :character    1st Qu.:724754   NA's:484391      NA's:484391      
##  Mode  :character    Median :724754                                     
##                      Mean   :724754                                     
##                      3rd Qu.:724754                                     
##                      Max.   :724754                                     
##                      NA's   :484390                                     
##  WXPASTAUTOPERIOD2QC RUNWAYENDBEARING RUNWAYDESIGNATOR   RUNWAYVISUALRANGE
##  Mode:logical        Mode:logical     Length:484391      Min.   :4        
##  NA's:484391         NA's:484391      Class :character   1st Qu.:4        
##                                       Mode  :character   Median :4        
##                                                          Mean   :4        
##                                                          3rd Qu.:4        
##                                                          Max.   :4        
##                                                          NA's   :484390   
##    CLOUDCOVER     CLOUDCOVERQC    CLOUDCOVERLO    CLOUDCOVERLOQC  
##  Min.   : 0.00   Min.   :0.00    Min.   :0        Min.   :0       
##  1st Qu.: 0.00   1st Qu.:1.00    1st Qu.:0        1st Qu.:0       
##  Median : 0.00   Median :1.00    Median :0        Median :0       
##  Mean   : 0.73   Mean   :1.04    Mean   :0        Mean   :0       
##  3rd Qu.: 0.00   3rd Qu.:1.00    3rd Qu.:0        3rd Qu.:0       
##  Max.   :10.00   Max.   :4.00    Max.   :0        Max.   :1       
##  NA's   :39324   NA's   :36846   NA's   :484385   NA's   :481077  
##  CLOUDBASEHEIGHT  CLOUDBASEHEIGHTQC CLOUDTYPELO    CLOUDTYPELOQC   
##  Min.   :  25     Min.   :1         Mode:logical   Min.   :0       
##  1st Qu.:1341     1st Qu.:1         NA's:484391    1st Qu.:0       
##  Median :2134     Median :1                        Median :0       
##  Mean   :2122     Mean   :1                        Mean   :0       
##  3rd Qu.:3048     3rd Qu.:1                        3rd Qu.:0       
##  Max.   :5486     Max.   :1                        Max.   :0       
##  NA's   :459412   NA's   :459412                   NA's   :481083  
##  CLOUDTYPEMID   CLOUDTYPEMIDQC     CLOUDTYPEHI    CLOUDTYPEHIQC   
##  Mode:logical   Length:484391      Mode:logical   Min.   :0       
##  NA's:484391    Class :character   NA's:484391    1st Qu.:0       
##                 Mode  :character                  Median :0       
##                                                   Mean   :0       
##                                                   3rd Qu.:0       
##                                                   Max.   :0       
##                                                   NA's   :481083  
##  SUNSHINE       SURFACECODE    SURFACECODEQC      SOILTEMPERATURE 
##  Mode:logical   Mode:logical   Length:484391      Min.   :724754  
##  NA's:484391    NA's:484391    Class :character   1st Qu.:724754  
##                                Mode  :character   Median :724754  
##                                                   Mean   :724754  
##                                                   3rd Qu.:724754  
##                                                   Max.   :724754  
##                                                   NA's   :484390  
##  SOILTEMPERATUREQC SOILDEPTH      OBSERVATIONPERIODSOILT
##  Mode:logical      Mode:logical   Mode:logical          
##  NA's:484391       NA's:484391    NA's:484391           
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##  OBSERVATIONPERIODSOILTQC ALTIMETERSETTING ALTIMETERSETTINGQC STATIONPRESSURE
##  Mode:logical             Min.   : 985.1   Min.   :0.0000     Mode:logical   
##  NA's:484391              1st Qu.:1012.2   1st Qu.:1.0000     NA's:484391    
##                           Median :1015.9   Median :1.0000                    
##                           Mean   :1016.3   Mean   :0.9986                    
##                           3rd Qu.:1020.0   3rd Qu.:1.0000                    
##                           Max.   :1049.4   Max.   :5.0000                    
##                           NA's   :2061     NA's   :1382                      
##  STATIONPRESSUREQC PRESSURETENDENCY PRESSURETENDENCYQC PRESSURE3HOURCHG
##  Min.   :0         Min.   :0.0      Min.   :0.0        Min.   :-6.2    
##  1st Qu.:0         1st Qu.:2.0      1st Qu.:0.0        1st Qu.: 0.3    
##  Median :0         Median :3.0      Median :1.0        Median : 0.9    
##  Mean   :0         Mean   :4.1      Mean   :0.6        Mean   : 0.9    
##  3rd Qu.:0         3rd Qu.:7.0      3rd Qu.:1.0        3rd Qu.: 1.7    
##  Max.   :0         Max.   :8.0      Max.   :5.0        Max.   : 9.5    
##  NA's   :446307    NA's   :442703   NA's   :403769     NA's   :441059  
##  PRESSURE3HOURCHGQC PRESSURE24HOURCHG PRESSURE24HOURCHGQC PRESSURETREND 
##  Min.   :0.0        Mode:logical      Min.   :0           Mode:logical  
##  1st Qu.:0.0        NA's:484391       1st Qu.:0           NA's:484391   
##  Median :1.0                          Median :0                         
##  Mean   :0.6                          Mean   :0                         
##  3rd Qu.:1.0                          3rd Qu.:0                         
##  Max.   :5.0                          Max.   :0                         
##  NA's   :402135                       NA's   :446307                    
##  ISOBARICSURFACE ISOBARICSURFACEQC ISOBARICSURFACEHEIGHT
##  Mode:logical    Mode:logical      Mode:logical         
##  NA's:484391     NA's:484391       NA's:484391          
##                                                         
##                                                         
##                                                         
##                                                         
##                                                         
##  ISOBARICSURFACEHEIGHTQC SEASURFACETEMP SEASURFACETEMPQC REMARKSYN     
##  Mode:logical            Mode:logical   Min.   :5        Mode:logical  
##  NA's:484391             NA's:484391    1st Qu.:5        NA's:484391   
##                                         Median :5                      
##                                         Mean   :5                      
##                                         3rd Qu.:5                      
##                                         Max.   :5                      
##                                         NA's   :484384                 
##   REMARKMET          REMARKAWY         HORIZONTALDATUM    VERTICALDATUM     
##  Length:484391      Length:484391      Length:484391      Length:484391     
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  LIGHTNINGFREQUENCY   RECEIPTDTG             INSERTIONTIME     
##  Mode:logical       Min.   :20130500000000   Length:484391     
##  NA's:484391        1st Qu.:20141100000000   Class :character  
##                     Median :20160600000000   Mode  :character  
##                     Mean   :20168681186200                     
##                     3rd Qu.:20190800000000                     
##                     Max.   :20231200000000                     
##                     NA's   :324434                             
##      BLKSTN      
##  Min.   :724754  
##  1st Qu.:724754  
##  Median :724754  
##  Mean   :724754  
##  3rd Qu.:724754  
##  Max.   :724754  
##  NA's   :159965

Domain 3

Data Preparation

Handling NULL Values:

We can see the initial NULL counts by column. We will be taking the Julian Day average for each of these values to try to find some statistical relevance for the data we are using.

This turned trickier than planned as we wanted to use 10-year, 20-year and 30-year datasets. In doing so, we separate the data as pre-2004, 2004-2013, and 2014-2023. We will filter the data to find values greater than or equal to 2014, then 2004, then the entire datasets. Each of these will be stored as separate data frames for analysis.

Robert’s Field, OR

Initial Nulls:
colSums(is.na(krdm_data))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        4                        4 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        4                        4                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   179124                        4                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        4                    71856                    58087 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   180863                      646 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                     1247                   284285                   284286 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   253698                   241106                   182802 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                    15674                    15642                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   269117                        0                   182346 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                     1238                     1234                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      849                      567                      544 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                      806                      784                    77747 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    76553                   247506                   266962 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   248172                   265110                   259758 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   265062                   279016                   282882 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   279020                   282502                   280924 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   282493                   284858                   285065 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   284863                   285055                   285021 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   285050                        0                   285230 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   285230                   285230                   285230 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                        0                   285229                   283235 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                   285230                   285228                   236496 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   285230                   271094                   285230 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   284656                   285230                   285230 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   285230                   285230                   285230 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   285230                   285230                   285230 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   285230                   285230                   285230 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   285230                   285230                        0 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   285229                   285229                   285230 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   285230                        0                   285228 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   285229                   285229                   285230 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   285230                   285230                   285230 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   285230                   285230                   285230 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   285230                   285230                   285230 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   216571                        0                   241672 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   221405                   243529                   223327 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                        0                   227140                   285230 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   227141                   285230                   227141 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   285230                   227141                   263139 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   255648                   279767                   279767 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   285212                   285212                   285230 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   283483                   285230                   285230 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   285230                   284777                   285230 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   285230                   285230                   283483 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   285230                   285230                   285230 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   284777                   285230                   285230 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   285230                   285230                   285230 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    49936                    46078                   284194 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   279696                   239857                   239857 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   284792                   280294                   284775 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   280277                   285230                   280732 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   285230                   285227                   285230 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   285230                   285230                   285230 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   285230                   285230                      390 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                      387                   285230                   271019 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   223796                   208978                   223164 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   208591                   284494                   270283 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   285230                   285230                   285230 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   285230                   285230                   285230 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   285227                   285230                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   285230                   182347                        0 
##                   BLKSTN 
##                   106113
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(krdm_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(krdm_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(krdm_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

Buffalo, NY

Initial Nulls:
colSums((is.na(kbuf_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        1                        0 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        2                        1                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   254385                        1                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        0                    29998                    25421 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   262276                     5682 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                     5896                   413081                   413081 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   346504                   328946                        0 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                    57060                        0                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   390841                        0                        0 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                     5418                     5435                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                     5625                     8876                     8870 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                     8991                     8960                    79351 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    75954                   281866                   358881 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   281029                   350564                   312472 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   351047                   391683                   405670 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   391469                   404100                   400089 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   404102                   411593                   412608 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   411558                   412336                   412202 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   412333                   413316                   413341 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   413316                   413316                   413316 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   413316                   412381                   405549 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                        0                   413352                   351951 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   413352                   394813                   413352 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   394974                   403229                   403470 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   403470                   403147                   412692 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   413352                   413352                   413345 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   409082                   409503                   409505 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   409503                   413071                   413074 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   412559                   412559                   412559 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   412559                   413347                   413344 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   413122                   413122                   413122 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   413122                   413349                   413349 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   413330                   413330                   413330 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   413329                   413347                   413348 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   256381                   251364                   315660 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   280631                   338986                   295832 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   413093                   304877                   413346 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   304929                   413350                   304930 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   413352                   304930                   375711 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   363033                   398406                   398391 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   412971                   412971                   412119 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   406196                   412120                   412120 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   412119                   409898                   412120 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   412120                   413352                   407429 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   413352                   413352                   413352 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   411131                   413352                   413352 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   401854                        0                   401855 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                   100387                    88673                   406627 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   391002                   250918                   248868 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   378424                   362799                   385880 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   370255                   390349                   374724 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   413352                   413349                   413352 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   413352                   413352                   413351 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   413351                   413351                    68695 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                    64328                   275021                   258403 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   286367                   269469                   281170 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   265382                   412488                   391547 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   413352                   413349                   413352 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   413350                   413352                   413352 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   413349                        0                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   413351                   262060                        0 
##                   BLKSTN 
##                   158969
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(kbuf_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(kbuf_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(kbuf_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

Topeka, KS

Initial Nulls:
colSums((is.na(kfoe_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        3                        3 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        3                        3                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   177319                        3                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        0                    33542                    29513 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   179284                     2532 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                     2709                   293760                   293772 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   246957                   234105                   181704 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                     3838                     3789                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   276797                        0                   180069 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                     1438                     1437                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      879                     1466                     1443 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                     1748                     1713                    74091 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    71413                   249614                   272994 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   250144                   270610                   264772 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   270713                   287624                   291745 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   287657                   291395                   290433 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   291370                   293523                   293897 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   293542                   293865                   293817 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   293848                   294162                   294162 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   294162                   294162                   294162 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   294162                   294162                   291575 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                   294162                   294162                   259349 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   294162                   284681                   294162 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   293645                   294162                   294162 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   294162                   294162                   294162 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   294162                   294162                   294161 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   294162                   294162                   294162 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   294162                   294162                   294162 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   294162                   294162                   294162 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   294162                   294162                   294162 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   294162                   294162                   294162 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   294162                   294162                   294162 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   294162                   294162                   294162 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   294162                   294162                   294162 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   217716                   214749                   241033 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   223903                   246001                   228002 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   294162                   232912                   294162 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   232912                   294162                   232912 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   294162                   232912                   261552 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   253583                   284284                   284282 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   293601                   293601                   294162 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   291195                   294162                   294162 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   294162                   293287                   294162 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   294162                   294162                   291195 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   294162                   294162                   294162 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   293287                   294162                   294162 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   292644                        0                   292642 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    49495                    43855                   294161 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   288431                   239481                   239481 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   294161                   288431                   294161 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   288431                   294161                   288431 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   294162                   294160                   294162 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   294162                   294162                   294162 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   294162                   294162                     1020 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                      999                   294162                   278370 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   240783                   225042                   239619 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   224260                   293348                   277556 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   294162                   294162                   294162 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   294162                   294162                   294162 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   294160                   294162                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   294162                   180069                        0 
##                   BLKSTN 
##                   116849
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(kfoe_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(kfoe_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(kfoe_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

Madison, WI

Initial Nulls:
colSums((is.na(kmsn_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        2                        2 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        2                        0                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   224898                        2                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        0                    77023                    64798 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   226659                     1244 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                     2009                   359791                   359791 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   316685                   300048                   228490 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                    25645                    23392                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   341854                        0                   227891 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                      177                      176                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      547                    10904                    10903 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                    10938                    10937                    61445 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    57767                   277798                   326553 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   277111                   321460                   300206 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   321794                   348101                   357610 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   348172                   356786                   354513 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   356789                   361525                   362158 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   361524                   361996                   361955 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   361996                   362578                   362601 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   362578                   362578                   362578 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   362578                   361687                   357402 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                        0                   362604                   305512 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   362604                   345610                   362604 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   349150                   358019                   358098 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   358097                   357941                   361967 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   362604                   362604                   362595 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   362486                   362601                   362604 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   362601                   362501                   362502 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   362604                   362604                   362604 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   362604                   362604                   362604 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   362604                   362604                   362604 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   362604                   362604                   362604 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   362604                   362604                   362604 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   362604                   362604                   362604 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   226282                   221765                   276262 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   246295                   293078                   257503 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   362309                   265345                   362601 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   265410                   362601                   265410 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   362601                   265410                   329873 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   319410                   350408                   350408 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   362093                   362093                   361279 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   356489                   361279                   361279 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   361279                   359879                   361279 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   361279                   362604                   357814 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   362604                   362604                   362604 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   361204                   362604                   362604 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   359624                        0                   359623 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    82642                    72917                   350468 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   338753                   244081                   243279 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   346933                   335218                   348805 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   337090                   349432                   337717 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   362604                   362602                   362604 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   362604                   362604                   362604 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   362604                   362604                    34300 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                    32093                   267618                   250736 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   262688                   245553                   260149 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   243352                   361794                   342773 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   362604                   362604                   362604 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   362604                   362604                   362604 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   362602                        0                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   362604                   227886                        0 
##                   BLKSTN 
##                   137710
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(kmsn_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(kmsn_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(kmsn_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

Tri-cities Airport, TN

Initial Nulls:
colSums((is.na(ktri_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        0                        0 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        0                        0                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   203807                        0                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        0                   157154                   127614 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   202804                      248 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                     1083                   317679                   317679 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   301825                   286413                   206930 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                     5621                     5514                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   300166                        0                   206795 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                      307                      337                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      172                     1862                     1857 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                     1994                     1975                    59034 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    56003                   258517                   292668 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   260034                   289320                   280603 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   289582                   307763                   314260 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   307792                   313623                   311913 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   313622                   317212                   317750 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   317214                   317680                   317612 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   317679                   318149                   318151 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   318149                   318149                   318149 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   318149                   318155                   314727 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                   318155                   318155                   266624 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   318155                   300890                   318155 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   316984                   317900                   317931 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   317931                   317897                   318131 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   318155                   318155                   318147 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   318154                   318154                   318154 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   318154                   318123                   318123 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   318155                   318155                   318155 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   318155                   318154                   318154 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   318155                   318155                   318155 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   318155                   318155                   318155 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   318155                   318155                   318155 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   318155                   318155                   318155 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   188449                   184070                   237805 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   203534                   248482                   210435 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   318150                   217076                   318155 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   217076                   318155                   217076 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   318155                   217076                   291129 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   282133                   310178                   310178 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   318125                   318125                   318155 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   313772                   318155                   318155 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   318155                   317147                   318155 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   318155                   318155                   313772 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   318155                   318155                   318155 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   317147                   318155                   318155 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   317353                        0                   317352 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    73468                    63942                   318154 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   307403                   222245                   222245 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   314260                   303509                   314935 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   304184                   315539                   304788 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   318155                   318153                   318155 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   318155                   318155                   318155 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   318155                   318155                       98 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                       93                   318155                   301938 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   252279                   236117                   249617 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   233876                   317316                   301099 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   318155                   318155                   318155 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   318155                   318155                   318155 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   318153                   318155                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   318155                   206795                        0 
##                   BLKSTN 
##                   114348
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(ktri_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(ktri_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(ktri_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

Juneau, AK

Initial Nulls:
colSums((is.na(pajn_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        3                        3 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        3                        3                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   212050                        3                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        3                   102930                    87370 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   210054                      524 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                      851                   338625                   338625 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   310591                   293547                   212127 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                    29769                    27522                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   318998                        0                   212055 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                      497                      497                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      445                     2324                     2322 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                     2456                     2452                    79571 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    76870                   200862                   274168 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   200426                   264933                   241816 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   266081                   306276                   325060 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   306346                   322935                   319397 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   322931                   335749                   337508 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   335760                   337176                   337026 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   337168                   338907                   338938 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   338907                   338907                   338907 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   338907                   338952                   329825 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                   338952                   338952                   288021 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   338952                   324454                   338952 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   325733                   334179                   333954 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   334413                   334217                   338441 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   338952                   338952                   338952 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   338952                   338952                   338952 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   338952                   338701                   338701 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   338952                   338952                   338952 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   338952                   338952                   338952 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   338952                   338952                   338952 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   338952                   338952                   338952 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   338952                   338952                   338952 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   338952                   338952                   338952 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   189418                   182264                   253836 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   218954                   271903                   233075 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   338582                   240209                   338928 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   240261                   338933                   240265 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   338947                   240267                   288353 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   277663                   321077                   321069 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   338759                   338759                   338952 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   330958                   338952                   338952 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   338952                   336525                   338952 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   338952                   338952                   330958 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   338952                   338952                   338952 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   336525                   338952                   338952 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   335642                        0                   335642 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    92291                    79582                   337425 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   324082                   205022                   204090 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   336727                   323384                   337219 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   323876                   337385                   324042 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   338952                   338950                   338952 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   338952                   338952                   338952 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   338952                   338952                    33334 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                    31151                   287933                   271974 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   248516                   232420                   244280 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   228862                   338094                   320084 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   338952                   338951                   338952 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   338951                   338952                   338952 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   338950                        0                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   338952                   212050                        0 
##                   BLKSTN 
##                   126908
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(pajn_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(pajn_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(pajn_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

El Paso, TX

Initial Nulls:
colSums((is.na(kelp_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        0                        0 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        0                        0                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   203629                        0                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        0                    55389                    47220 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   205785                     1325 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                     2156                   332776                   332777 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   287522                   271958                   206652 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                    40062                    35622                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   315743                        0                   206565 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                      209                      207                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      563                      338                      332 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                      413                      369                    12623 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                    12088                   299985                   321156 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   296543                   319520                   308095 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   319599                   329579                   332354 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   329627                   332113                   331581 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   332113                   333604                   333727 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   333604                   333711                   333693 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   333711                   333824                   333824 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   333824                   333824                   333824 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   333824                   333662                   332351 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                        0                   333824                   285242 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   333824                   319424                   333824 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   333268                   333787                   333790 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   333791                   333787                   333824 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   333824                   333824                   333824 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   333824                   333824                   333824 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   333824                   333814                   333814 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   333824                   333824                   333824 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   333824                   333824                   333824 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   333824                   333824                   333824 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   333824                   333824                   333824 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   333824                   333824                   333824 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   333824                   333824                   333824 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   252811                   252117                   274388 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   257997                   275911                   258859 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   333805                   264138                   333823 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   264140                   333824                   264140 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   333824                   264140                   328742 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   318700                   333271                   333268 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   333809                   333809                   333589 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   332774                   333589                   333589 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   333589                   333501                   333589 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   333589                   333824                   333009 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   333824                   333824                   333824 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   333736                   333824                   333824 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   333798                        0                   333798 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    42511                    37433                   319937 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   309356                   244121                   242059 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   318424                   307843                   318635 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                   308054                   318592                   308011 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   333824                   333821                   333824 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   333824                   333824                   333824 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   333824                   333824                    63805 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                    59434                   228536                   214913 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   207496                   193486                   202823 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   189536                   333175                   315196 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   333824                   333824                   333824 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   333824                   333824                   333824 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   333821                        0                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   333824                   206560                        0 
##                   BLKSTN 
##                   130195
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(kelp_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(kelp_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(kelp_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

St George, UT

Initial Nulls:
colSums((is.na(ksgu_data)))
##               PLATFORMID              NETWORKTYPE          OBSERVATIONTIME 
##                        0                        0                        0 
##           REPORTTYPECODE                 LATITUDE                LONGITUDE 
##                        0                        3                        2 
##                    MONTH               SECURITYID           DISTRIBUTIONCD 
##                        0                        2                        0 
##              STATIONMODE           PLATFORMHEIGHT               CALLLETTER 
##                   324434                        4                        0 
##                  VERSION            WINDDIRECTION          WINDDIRECTIONQC 
##                        0                   137503                   117192 
##           WINDCONDITIONS         WINDCONDITIONSQC                WINDSPEED 
##                        0                   322045                     1011 
##              WINDSPEEDQC           STARTDIRECTION             ENDDIRECTION 
##                      840                   482986                   482986 
##            WINDGUSTSPEED          WINDGUSTSPEEDQC      WINDMEASUREMENTMODE 
##                   432129                   398324                   324665 
##             CLOUDCEILING           CLOUDCEILINGQC     CEILINGDETERMINATION 
##                    18320                    18130                        0 
##   CEILINGDETERMINATIONQC               CLOUDCAVOK             CLOUDCAVOKQC 
##                   446271                        0                   324434 
##               VISIBILITY             VISIBILITYQC           VISIBILITYTYPE 
##                     1695                     1695                        0 
##         VISIBILITYTYPEQC           AIRTEMPERATURE         AIRTEMPERATUREQC 
##                      233                      811                      645 
##      DEWPOINTTEMPERATURE    DEWPOINTTEMPERATUREQC         SEALEVELPRESSURE 
##                     1665                     1489                   425357 
##       SEALEVELPRESSUREQC     OBSERVATIONPERIODPP1   OBSERVATIONPERIODPP1QC 
##                   387387                   470051                   479509 
##            PRECIPAMOUNT1          PRECIPAMOUNT1QC         PRECIPCONDITION1 
##                   470430                   479484                   479115 
##       PRECIPCONDITION1QC     OBSERVATIONPERIODPP2   OBSERVATIONPERIODPP2QC 
##                   479115                   483206                   483606 
##            PRECIPAMOUNT2          PRECIPAMOUNT2QC         PRECIPCONDITION2 
##                   483216                   483574                   483560 
##       PRECIPCONDITION2QC     OBSERVATIONPERIODPP3   OBSERVATIONPERIODPP3QC 
##                   483559                   484293                   484332 
##            PRECIPAMOUNT3          PRECIPAMOUNT3QC         PRECIPCONDITION3 
##                   484298                   484335                   484330 
##       PRECIPCONDITION3QC     OBSERVATIONPERIODPP4   OBSERVATIONPERIODPP4QC 
##                   484329                   484391                   484391 
##            PRECIPAMOUNT4          PRECIPAMOUNT4QC         PRECIPCONDITION4 
##                   484391                   484391                   484391 
##       PRECIPCONDITION4QC            PRECIPHISTDUR          PRECIPHISTDURQC 
##                   484391                   484391                   483930 
##           PRECIPHISTCHAR         PRECIPHISTCHARQC               PRECIPDISC 
##                   484391                   484391                   442834 
##             PRECIPDISCQC              PRECIPBOGUS            PRECIPBOGUSQC 
##                   484391                   470523                   484391 
##           PRECIPAMOUNTSD         PRECIPAMOUNTSDQC        PRECIPCONDITIONSD 
##                   483904                   484391                   484391 
##      PRECIPCONDITIONSDQC            DEPTHWTREQUIV          DEPTHWTREQUIVQC 
##                   484390                   484390                   484391 
##              DEPTHWECOND            DEPTHWECONDQC                 HAILSIZE 
##                   484390                   484391                   484390 
##          PRECIPAMOUNTSF1        PRECIPAMOUNTSF1QC       PRECIPCONDITIONSF1 
##                   484391                   484390                   484391 
##     PRECIPCONDITIONSF1QC     OBSERVATIONPERIODSF1   OBSERVATIONPERIODSF1QC 
##                   484390                   484391                   484390 
##          PRECIPAMOUNTSF2        PRECIPAMOUNTSF2QC       PRECIPCONDITIONSF2 
##                   484391                   484390                   484391 
##     PRECIPCONDITIONSF2QC     OBSERVATIONPERIODSF2   OBSERVATIONPERIODSF2QC 
##                   484391                   484391                   484391 
##          PRECIPAMOUNTSF3        PRECIPAMOUNTSF3QC       PRECIPCONDITIONSF3 
##                   484391                   484391                   484391 
##     PRECIPCONDITIONSF3QC     OBSERVATIONPERIODSF3   OBSERVATIONPERIODSF3QC 
##                   484391                   484391                   484391 
##          PRECIPAMOUNTSF4        PRECIPAMOUNTSF4QC       PRECIPCONDITIONSF4 
##                   484391                   484391                   484391 
##     PRECIPCONDITIONSF4QC     OBSERVATIONPERIODSF4   OBSERVATIONPERIODSF4QC 
##                   484391                   484390                   484390 
##           PRESENTMANUAL1         PRESENTMANUAL1QC           PRESENTMANUAL2 
##                   423991                   423737                   444590 
##         PRESENTMANUAL2QC           PRESENTMANUAL3         PRESENTMANUAL3QC 
##                   426334                   444596                   426340 
##           PRESENTMANUAL4         PRESENTMANUAL4QC           PRESENTMANUAL5 
##                   484391                   431085                   484390 
##         PRESENTMANUAL5QC           PRESENTMANUAL6         PRESENTMANUAL6QC 
##                   431086                   484391                   431086 
##           PRESENTMANUAL7         PRESENTMANUAL7QC        PRESENTAUTOMATED1 
##                   484391                   431086                   479656 
##      PRESENTAUTOMATED1QC        PRESENTAUTOMATED2      PRESENTAUTOMATED2QC 
##                   460398                   483833                        0 
##        PRESENTAUTOMATED3      PRESENTAUTOMATED3QC              PASTMANUAL1 
##                   484386                   484386                   484391 
##            PASTMANUAL1QC            WXPASTPERIOD1          WXPASTPERIOD1QC 
##                   484137                        0                   484390 
##              PASTMANUAL2            PASTMANUAL2QC            WXPASTPERIOD2 
##                   484391                   484391                        0 
##          WXPASTPERIOD2QC           PASTAUTOMATED1         PASTAUTOMATED1QC 
##                   484391                   484391                   484136 
##        WXPASTAUTOPERIOD1      WXPASTAUTOPERIOD1QC           PASTAUTOMATED2 
##                   484390                        0                   484390 
##         PASTAUTOMATED2QC        WXPASTAUTOPERIOD2      WXPASTAUTOPERIOD2QC 
##                   484391                   484391                   484391 
##         RUNWAYENDBEARING         RUNWAYDESIGNATOR        RUNWAYVISUALRANGE 
##                   484391                        0                   484390 
##               CLOUDCOVER             CLOUDCOVERQC             CLOUDCOVERLO 
##                    39324                    36846                   484385 
##           CLOUDCOVERLOQC          CLOUDBASEHEIGHT        CLOUDBASEHEIGHTQC 
##                   481077                   459412                   459412 
##              CLOUDTYPELO            CLOUDTYPELOQC             CLOUDTYPEMID 
##                   484391                   481083                   484391 
##           CLOUDTYPEMIDQC              CLOUDTYPEHI            CLOUDTYPEHIQC 
##                        0                   484391                   481083 
##                 SUNSHINE              SURFACECODE            SURFACECODEQC 
##                   484391                   484391                        0 
##          SOILTEMPERATURE        SOILTEMPERATUREQC                SOILDEPTH 
##                   484390                   484391                   484391 
##   OBSERVATIONPERIODSOILT OBSERVATIONPERIODSOILTQC         ALTIMETERSETTING 
##                   484391                   484391                     2061 
##       ALTIMETERSETTINGQC          STATIONPRESSURE        STATIONPRESSUREQC 
##                     1382                   484391                   446307 
##         PRESSURETENDENCY       PRESSURETENDENCYQC         PRESSURE3HOURCHG 
##                   442703                   403769                   441059 
##       PRESSURE3HOURCHGQC        PRESSURE24HOURCHG      PRESSURE24HOURCHGQC 
##                   402135                   484391                   446307 
##            PRESSURETREND          ISOBARICSURFACE        ISOBARICSURFACEQC 
##                   484391                   484391                   484391 
##    ISOBARICSURFACEHEIGHT  ISOBARICSURFACEHEIGHTQC           SEASURFACETEMP 
##                   484391                   484391                   484391 
##         SEASURFACETEMPQC                REMARKSYN                REMARKMET 
##                   484384                   484391                        0 
##                REMARKAWY          HORIZONTALDATUM            VERTICALDATUM 
##                        0                        0                        0 
##       LIGHTNINGFREQUENCY               RECEIPTDTG            INSERTIONTIME 
##                   484391                   324434                        0 
##                   BLKSTN 
##                   159965
Removed Columns and Filled-in NULLs
10-year
colSums((is.na(ksgu_toKeep10)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
20-year
colSums((is.na(ksgu_toKeep20)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0
30-year
colSums((is.na(ksgu_toKeep30)))
##          PLATFORMID         NETWORKTYPE     OBSERVATIONTIME      REPORTTYPECODE 
##                   0                   0                   0                   0 
##            LATITUDE           LONGITUDE       WINDDIRECTION           WINDSPEED 
##                   0                   0                   0                   0 
##       WINDGUSTSPEED        CLOUDCEILING          VISIBILITY      AIRTEMPERATURE 
##                   0                   0                   0                   0 
## DEWPOINTTEMPERATURE       PRECIPAMOUNT1          CLOUDCOVER    ALTIMETERSETTING 
##                   0                   0                   0                   0 
##                date                  JD 
##                   0                   0

Data Interrogation and Modeling

We can interrogate the data in many ways. The following are ways we will do this:

  • Plot desired variable averages for each timespan and visualize the ANOVA results,
  • Use “spline” and get good estimations of the variables by timespan and then run and visualize ANOVA results,
  • Run “spline” on the entire dataset by timespan to see if there a reasonable approximation could be determined for the data

Composite Splines

For each of the below plots, the following applies:

  • Blue solid line - 10-year dataset spline
  • Red dashed lines - 10-year dataset 95% confidence intervals
  • Orange solid line - 20-year dataset spline
  • Brown dashed lines - 20-year dataset 95% confidence intervals
  • Green solid line - 30-year dataset spline
  • Purple dashed lines - 30-year dataset 95% confidence intervals
Robert’s Field, OR
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
Buffalo, NY
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
Topeka, KS
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
Madison, WI
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
Tri-cities Airport, TN
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
Juneau, AK
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
El Paso, TX
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event
St George
Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Dewpoint Temperature
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Direction
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Wind Gust Speed
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Ceiling Height
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Visibility
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Cloud Cover
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Altimeter Setting
10, 20, 30-year 10-day avg spline composite
10, 20, 30-year 10-day avg spline composite
Average Precipitation
10, 20, 30-year Precipitation Comparison by Rain event
10, 20, 30-year Precipitation Comparison by Rain event

Domain 4

Data Visualization

ANOVA Tests

Summary - the most common, overall significance is the comparison between the Monthly and the 10-day splines. There were a couple outliers, but generally, this shows the highest, consistent level of significance and we can focus on comparing these two outputs.

KRDM

Temperature
anova(krdm_t10_spline_d,krdm_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.06                             
## 2    330 471.69 -329   -471.63 23.324 0.1639
anova(krdm_t10_spline_d,krdm_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.06                             
## 2    354 662.39 -353   -662.33 30.528 0.1435
anova(krdm_t10_spline_m,krdm_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F              Pr(>F)    
## 1    354 662.39                                            
## 2    330 471.69 24     190.7 5.5591 0.00000000000005727 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_t20_spline_d,krdm_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1   0.004                               
## 2    330 231.527 -329   -231.52 199.7 0.05637 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_t20_spline_d,krdm_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 363.44 -353   -363.44 292.17 0.04662 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_t20_spline_m,krdm_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 363.44                                              
## 2    330 231.53 24    131.91 7.8342 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_t30_spline_d,krdm_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)  
## 1      1   0.003                               
## 2    330 150.829 -329   -150.83 145.16 0.0661 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_t30_spline_d,krdm_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.003                                
## 2    354 225.399 -353    -225.4 202.18 0.05603 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_t30_spline_m,krdm_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F                Pr(>F)    
## 1    354 225.40                                             
## 2    330 150.83 24     74.57 6.798 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(krdm_dp10_spline_d,krdm_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.37                             
## 2    330 382.72 -329   -382.35 3.1279 0.4278
anova(krdm_dp10_spline_d,krdm_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.37                             
## 2    354 580.62 -353   -580.25 4.4241 0.3652
anova(krdm_dp10_spline_m,krdm_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq    F                Pr(>F)    
## 1    354 580.62                                            
## 2    330 382.72 24     197.9 7.11 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_dp20_spline_d,krdm_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.201                             
## 2    330 210.819 -329   -210.62 3.1788 0.4247
anova(krdm_dp20_spline_d,krdm_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.201                             
## 2    354 308.267 -353   -308.07 4.3334 0.3687
anova(krdm_dp20_spline_m,krdm_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 308.27                                              
## 2    330 210.82 24    97.448 6.3558 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_dp30_spline_d,krdm_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.09                            
## 2    330 129.03 -329   -128.94 4.344 0.3683
anova(krdm_dp30_spline_d,krdm_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.09                             
## 2    354 184.45 -353   -184.36 5.7888 0.3221
anova(krdm_dp30_spline_m,krdm_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F               Pr(>F)    
## 1    354 184.45                                             
## 2    330 129.03 24    55.422 5.9059 0.000000000000004804 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(krdm_wd10_spline_d,krdm_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     4                             
## 2    330 68876 -329    -68871 47.613 0.1151
anova(krdm_wd10_spline_d,krdm_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     4                             
## 2    354 84084 -353    -84079 54.175  0.108
anova(krdm_wd10_spline_m,krdm_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq     F      Pr(>F)    
## 1    354 84084                                   
## 2    330 68876 24     15208 3.036 0.000004402 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_wd20_spline_d,krdm_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     7                             
## 2    330 35590 -329    -35582 14.938  0.204
anova(krdm_wd20_spline_d,krdm_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     7                             
## 2    354 42925 -353    -42918 16.792 0.1927
anova(krdm_wd20_spline_m,krdm_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 42925                                   
## 2    330 35590 24    7335.5 2.8341 0.00001787 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_wd30_spline_d,krdm_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    20                             
## 2    330 25775 -329    -25755 3.9222 0.3861
anova(krdm_wd30_spline_d,krdm_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    20                             
## 2    354 30727 -353    -30707 4.3584 0.3678
anova(krdm_wd30_spline_m,krdm_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 30727                                   
## 2    330 25775 24    4951.7 2.6415 0.00006638 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(krdm_ws10_spline_d,krdm_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.045                             
## 2    330 43.692 -329   -43.647 2.9279 0.4407
anova(krdm_ws10_spline_d,krdm_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.045                             
## 2    354 49.681 -353   -49.636 3.1033 0.4294
anova(krdm_ws10_spline_m,krdm_ws10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 49.681                                
## 2    330 43.692 24    5.9891 1.8848 0.008091 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_ws20_spline_d,krdm_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.029                             
## 2    330 19.966 -329   -19.937 2.0926 0.5101
anova(krdm_ws20_spline_d,krdm_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.029                             
## 2    354 23.380 -353   -23.351 2.2843 0.4914
anova(krdm_ws20_spline_m,krdm_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 23.380                                  
## 2    330 19.966 24    3.4137 2.3509 0.0004548 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_ws30_spline_d,krdm_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.030                             
## 2    330 13.602 -329   -13.572 1.3728  0.606
anova(krdm_ws30_spline_d,krdm_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.030                             
## 2    354 15.919 -353   -15.889 1.4979 0.5856
anova(krdm_ws30_spline_m,krdm_ws30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F    Pr(>F)    
## 1    354 15.919                                 
## 2    330 13.602 24    2.3168 2.342 0.0004818 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Gust Speed
anova(krdm_wg10_spline_d,krdm_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.004                             
## 2    330 59.500 -329   -59.497 49.172 0.1133
anova(krdm_wg10_spline_d,krdm_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.004                             
## 2    354 80.760 -353   -80.756 62.205 0.1008
anova(krdm_wg10_spline_m,krdm_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F            Pr(>F)    
## 1    354 80.76                                          
## 2    330 59.50 24     21.26 4.9129 0.000000000006028 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_wg20_spline_d,krdm_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0058                             
## 2    330 30.8709 -329   -30.865 16.046  0.197
anova(krdm_wg20_spline_d,krdm_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.006                             
## 2    354 40.038 -353   -40.032 19.397 0.1795
anova(krdm_wg20_spline_m,krdm_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 40.038                                       
## 2    330 30.871 24    9.1671 4.0831 0.000000002469 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_wg30_spline_d,krdm_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0027                             
## 2    330 18.1484 -329   -18.146 20.675 0.1739
anova(krdm_wg30_spline_d,krdm_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0027                             
## 2    354 24.2375 -353   -24.235 25.735 0.1562
anova(krdm_wg30_spline_m,krdm_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 24.238                                         
## 2    330 18.148 24    6.0891 4.6133 0.00000000005282 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(krdm_cig10_spline_d,krdm_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1     900670                               
## 2    330 1266548193 -329 -1265647522 4.2712 0.3712
anova(krdm_cig10_spline_d,krdm_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1     900670                               
## 2    354 1521251912 -353 -1520351242 4.7819 0.3523
anova(krdm_cig10_spline_m,krdm_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 1521251912                                   
## 2    330 1266548193 24 254703719 2.7651 0.00002866 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cig20_spline_d,krdm_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     46080                              
## 2    330 600952613 -329 -600906533 39.636 0.1261
anova(krdm_cig20_spline_d,krdm_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     46080                              
## 2    354 727065483 -353 -727019402 44.695 0.1188
anova(krdm_cig20_spline_m,krdm_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 727065483                                   
## 2    330 600952613 24 126112869 2.8855 0.00001253 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cig30_spline_d,krdm_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     28561                              
## 2    330 394151265 -329 -394122704 41.943 0.1226
anova(krdm_cig30_spline_d,krdm_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     28561                              
## 2    354 464290231 -353 -464261670 46.048 0.1171
anova(krdm_cig30_spline_m,krdm_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 464290231                                  
## 2    330 394151265 24  70138966 2.4468 0.0002431 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(krdm_vis10_spline_d,krdm_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     20411                              
## 2    330 303916385 -329 -303895974 45.255 0.1181
anova(krdm_vis10_spline_d,krdm_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     20411                              
## 2    354 354463682 -353 -354443271 49.193 0.1133
anova(krdm_vis10_spline_m,krdm_vis10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 354463682                                  
## 2    330 303916385 24  50547296 2.2869 0.0006871 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_vis20_spline_d,krdm_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     43141                              
## 2    330 129053052 -329 -129009911 9.0895 0.2597
anova(krdm_vis20_spline_d,krdm_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     43141                              
## 2    354 142772597 -353 -142729456 9.3724 0.2559
anova(krdm_vis20_spline_m,krdm_vis20_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 142772597                              
## 2    330 129053052 24  13719545 1.4618 0.07724 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_vis30_spline_d,krdm_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1    76578                             
## 2    330 81425004 -329 -81348426 3.2289 0.4218
anova(krdm_vis30_spline_d,krdm_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1    76578                             
## 2    354 91447309 -353 -91370732 3.3801 0.4132
anova(krdm_vis30_spline_m,krdm_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 91447309                              
## 2    330 81425004 24  10022305 1.6924 0.02381 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(krdm_cc10_spline_d,krdm_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F   Pr(>F)   
## 1      1   0.00                                  
## 2    330 115.35 -329   -115.35 6469.4 0.009912 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cc10_spline_d,krdm_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq    F   Pr(>F)   
## 1      1   0.00                                
## 2    354 135.83 -353   -135.83 7100 0.009462 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cc10_spline_m,krdm_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 135.83                                  
## 2    330 115.35 24     20.48 2.4412 0.0002522 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cc20_spline_d,krdm_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    330 67.241 -329   -67.239 114.45 0.07442 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cc20_spline_d,krdm_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    354 88.607 -353   -88.605 140.56 0.06717 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cc20_spline_m,krdm_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 88.607                                        
## 2    330 67.241 24    21.366 4.3691 0.0000000003105 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_cc30_spline_d,krdm_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.015                             
## 2    330 42.380 -329   -42.365 8.6902 0.2653
anova(krdm_cc30_spline_d,krdm_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.015                             
## 2    354 56.438 -353   -56.424 10.787 0.2391
anova(krdm_cc30_spline_m,krdm_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 56.438                                         
## 2    330 42.380 24    14.059 4.5612 0.00000000007706 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(krdm_alt10_spline_d,krdm_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.13                             
## 2    330 929.17 -329   -929.03 21.131 0.1721
anova(krdm_alt10_spline_d,krdm_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1    0.13                             
## 2    354 1225.35 -353   -1225.2 25.973 0.1554
anova(krdm_alt10_spline_m,krdm_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 1225.35                                        
## 2    330  929.17 24    296.18 4.3829 0.0000000002809 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_alt20_spline_d,krdm_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 480.86 -329   -480.86 496.63 0.03576 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_alt20_spline_d,krdm_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 598.62 -353   -598.62 576.22 0.03321 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_alt20_spline_m,krdm_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 598.62                                     
## 2    330 480.86 24    117.76 3.3674 0.0000004245 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_alt30_spline_d,krdm_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.01                                
## 2    330 332.05 -329   -332.04 129.49 0.06997 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_alt30_spline_d,krdm_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: krdm_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.01                                
## 2    354 400.83 -353   -400.82 145.69 0.06598 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(krdm_alt30_spline_m,krdm_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: krdm_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: krdm_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 400.83                                   
## 2    330 332.05 24    68.773 2.8478 0.00001625 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KBUF

Temperature
anova(kbuf_t10_spline_d,kbuf_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.23                            
## 2    330 457.92 -329   -457.69 5.946  0.318
anova(kbuf_t10_spline_d,kbuf_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.23                             
## 2    354 593.79 -353   -593.55 7.1868 0.2906
anova(kbuf_t10_spline_m,kbuf_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 593.79                                       
## 2    330 457.92 24    135.86 4.0795 0.000000002534 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_t20_spline_d,kbuf_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.078                             
## 2    330 204.694 -329   -204.62 7.9786 0.2765
anova(kbuf_t20_spline_d,kbuf_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.078                             
## 2    354 271.886 -353   -271.81 9.8781 0.2495
anova(kbuf_t20_spline_m,kbuf_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 271.89                                        
## 2    330 204.69 24    67.193 4.5136 0.0000000001089 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_t30_spline_d,kbuf_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.075                             
## 2    330 149.280 -329   -149.21 6.0701 0.3149
anova(kbuf_t30_spline_d,kbuf_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.075                             
## 2    354 199.541 -353   -199.47 7.5631 0.2836
anova(kbuf_t30_spline_m,kbuf_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 199.54                                         
## 2    330 149.28 24    50.261 4.6295 0.00000000004699 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(kbuf_dp10_spline_d,kbuf_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.09                             
## 2    330 565.13 -329   -565.05 19.944  0.177
anova(kbuf_dp10_spline_d,kbuf_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.09                             
## 2    354 730.42 -353   -730.33 24.026 0.1615
anova(kbuf_dp10_spline_m,kbuf_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 730.42                                       
## 2    330 565.13 24    165.29 4.0215 0.000000003854 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_dp20_spline_d,kbuf_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)  
## 1      1   0.003                               
## 2    330 263.665 -329   -263.66 274.36 0.0481 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_dp20_spline_d,kbuf_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 339.33 -353   -339.33 329.09 0.04393 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_dp20_spline_m,kbuf_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F         Pr(>F)    
## 1    354 339.33                                      
## 2    330 263.67 24    75.667 3.946 0.000000006656 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_dp30_spline_d,kbuf_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 179.72 -329   -179.72 1592.4 0.01998 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_dp30_spline_d,kbuf_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 225.79 -353   -225.79 1864.6 0.01846 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_dp30_spline_m,kbuf_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F       Pr(>F)    
## 1    354 225.79                                    
## 2    330 179.72 24    46.074 3.525 0.0000001378 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(kbuf_wd10_spline_d,kbuf_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1    329                             
## 2    330 120757 -329   -120428 1.1135  0.656
anova(kbuf_wd10_spline_d,kbuf_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1    329                             
## 2    354 136012 -353   -135683 1.1693 0.6443
anova(kbuf_wd10_spline_m,kbuf_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F  Pr(>F)  
## 1    354 136012                             
## 2    330 120757 24     15255 1.737 0.01867 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wd20_spline_d,kbuf_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   168                             
## 2    330 63466 -329    -63298 1.1479 0.6487
anova(kbuf_wd20_spline_d,kbuf_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   168                             
## 2    354 68984 -353    -68816 1.1631 0.6456
anova(kbuf_wd20_spline_m,kbuf_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    354 68984                           
## 2    330 63466 24    5518.5 1.1956 0.2427
anova(kbuf_wd30_spline_d,kbuf_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    75                             
## 2    330 41211 -329    -41136 1.6598 0.5618
anova(kbuf_wd30_spline_d,kbuf_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    75                             
## 2    354 45615 -353    -45540 1.7126 0.5547
anova(kbuf_wd30_spline_m,kbuf_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 45615                              
## 2    330 41211 24    4404.3 1.4695 0.07442 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(kbuf_ws10_spline_d,kbuf_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.204                             
## 2    330 96.743 -329   -96.539 1.4377 0.5951
anova(kbuf_ws10_spline_d,kbuf_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.204                             
## 2    354 113.296 -353   -113.09 1.5697 0.5747
anova(kbuf_ws10_spline_m,kbuf_ws10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 113.296                                  
## 2    330  96.743 24    16.552 2.3526 0.0004499 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_ws20_spline_d,kbuf_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.010                             
## 2    330 57.544 -329   -57.534 16.913  0.192
anova(kbuf_ws20_spline_d,kbuf_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.010                            
## 2    354 64.868 -353   -64.858 17.77 0.1874
anova(kbuf_ws20_spline_m,kbuf_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 64.868                              
## 2    330 57.544 24    7.3242 1.7501 0.01737 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_ws30_spline_d,kbuf_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.003                             
## 2    330 41.011 -329   -41.008 40.126 0.1253
anova(kbuf_ws30_spline_d,kbuf_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.003                             
## 2    354 44.466 -353   -44.463 40.549 0.1247
anova(kbuf_ws30_spline_m,kbuf_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 44.466                           
## 2    330 41.011 24    3.4547 1.1583 0.2787
Wind Gust Speed
anova(kbuf_wg10_spline_d,kbuf_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)  
## 1      1  0.002                               
## 2    330 72.616 -329   -72.614 112.67  0.075 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wg10_spline_d,kbuf_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    354 99.098 -353   -99.096 143.31 0.06652 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wg10_spline_m,kbuf_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F            Pr(>F)    
## 1    354 99.098                                          
## 2    330 72.616 24    26.482 5.0145 0.000000000002892 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wg20_spline_d,kbuf_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.004                             
## 2    330 47.238 -329   -47.233 32.615 0.1389
anova(kbuf_wg20_spline_d,kbuf_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.004                             
## 2    354 58.717 -353   -58.712 37.785 0.1291
anova(kbuf_wg20_spline_m,kbuf_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 58.717                                     
## 2    330 47.238 24    11.479 3.3413 0.0000005111 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wg30_spline_d,kbuf_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.001                                
## 2    330 170.760 -329   -170.76 683.61 0.03049 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wg30_spline_d,kbuf_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq   F  Pr(>F)  
## 1      1   0.001                             
## 2    354 187.877 -353   -187.88 701 0.03011 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_wg30_spline_m,kbuf_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 187.88                           
## 2    330 170.76 24    17.117 1.3783 0.1137
Average Cloud Ceiling Height
anova(kbuf_cig10_spline_d,kbuf_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1    1436079                               
## 2    330 1187782003 -329 -1186345924 2.5109 0.4716
anova(kbuf_cig10_spline_d,kbuf_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1    1436079                               
## 2    354 1432129474 -353 -1430693395 2.8222 0.4479
anova(kbuf_cig10_spline_m,kbuf_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 1432129474                                   
## 2    330 1187782003 24 244347471 2.8286 0.00001855 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_cig20_spline_d,kbuf_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq    F Pr(>F)
## 1      1   1877528                            
## 2    330 638104040 -329 -636226512 1.03 0.6748
anova(kbuf_cig20_spline_d,kbuf_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1   1877528                              
## 2    354 832619904 -353 -830742376 1.2534 0.6276
anova(kbuf_cig20_spline_m,kbuf_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 832619904                                       
## 2    330 638104040 24 194515864 4.1915 0.000000001126 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_cig30_spline_d,kbuf_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1   1106937                              
## 2    330 402829795 -329 -401722859 1.1031 0.6583
anova(kbuf_cig30_spline_d,kbuf_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq     F Pr(>F)
## 1      1   1106937                             
## 2    354 522369222 -353 -521262285 1.334 0.6128
anova(kbuf_cig30_spline_m,kbuf_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 522369222                                       
## 2    330 402829795 24 119539427 4.0803 0.000000002519 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(kbuf_vis10_spline_d,kbuf_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1     16338                                 
## 2    330 346007157 -329 -345990818 64.367 0.09912 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_vis10_spline_d,kbuf_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1     16338                                 
## 2    354 365048167 -353 -365031829 63.292 0.09996 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_vis10_spline_m,kbuf_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F Pr(>F)
## 1    354 365048167                           
## 2    330 346007157 24  19041011 0.7567 0.7902
anova(kbuf_vis20_spline_d,kbuf_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     98898                              
## 2    330 156421675 -329 -156322777 4.8044 0.3515
anova(kbuf_vis20_spline_d,kbuf_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     98898                              
## 2    354 174084804 -353 -173985907 4.9837 0.3455
anova(kbuf_vis20_spline_m,kbuf_vis20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 174084804                              
## 2    330 156421675 24  17663129 1.5526 0.04944 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_vis30_spline_d,kbuf_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq       F    Pr(>F)    
## 1      1         0                                      
## 2    330 157074200 -329 -157074200 3371568 0.0004342 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_vis30_spline_d,kbuf_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq       F    Pr(>F)    
## 1      1         0                                      
## 2    354 179538354 -353 -179538354 3591745 0.0004207 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_vis30_spline_m,kbuf_vis30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 179538354                                
## 2    330 157074200 24  22464153 1.9665 0.005004 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(kbuf_cc10_spline_d,kbuf_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.014                             
## 2    330 106.591 -329   -106.58 22.917 0.1653
anova(kbuf_cc10_spline_d,kbuf_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.014                            
## 2    354 125.208 -353   -125.19 25.09 0.1581
anova(kbuf_cc10_spline_m,kbuf_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 125.21                                  
## 2    330 106.59 24    18.617 2.4015 0.0003272 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_cc20_spline_d,kbuf_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.105                             
## 2    330 55.741 -329   -55.636 1.6087  0.569
anova(kbuf_cc20_spline_d,kbuf_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.105                            
## 2    354 72.722 -353   -72.617 1.957 0.5248
anova(kbuf_cc20_spline_m,kbuf_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 72.722                                       
## 2    330 55.741 24    16.981 4.1888 0.000000001147 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_cc30_spline_d,kbuf_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.055                             
## 2    330 35.057 -329   -35.002 1.9453 0.5261
anova(kbuf_cc30_spline_d,kbuf_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.055                             
## 2    354 45.948 -353   -45.893 2.3771  0.483
anova(kbuf_cc30_spline_m,kbuf_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 45.948                                        
## 2    330 35.057 24    10.891 4.2715 0.0000000006299 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(kbuf_alt10_spline_d,kbuf_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.02                                
## 2    330 1413.79 -329   -1413.8 273.61 0.04817 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_alt10_spline_d,kbuf_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.02                                
## 2    354 1859.35 -353   -1859.3 335.38 0.04352 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_alt10_spline_m,kbuf_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 1859.3                                        
## 2    330 1413.8 24    445.57 4.3334 0.0000000004021 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_alt20_spline_d,kbuf_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.24                             
## 2    330 713.60 -329   -713.36 9.1848 0.2584
anova(kbuf_alt20_spline_d,kbuf_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1    0.24                             
## 2    354 1121.58 -353   -1121.3 13.456 0.2147
anova(kbuf_alt20_spline_m,kbuf_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1121.6                                              
## 2    330  713.6 24    407.99 7.8613 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kbuf_alt30_spline_d,kbuf_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.12                             
## 2    330 469.34 -329   -469.21 11.531 0.2314
anova(kbuf_alt30_spline_d,kbuf_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kbuf_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.12                             
## 2    354 658.41 -353   -658.28 15.078 0.2031
anova(kbuf_alt30_spline_m,kbuf_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kbuf_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: kbuf_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F              Pr(>F)    
## 1    354 658.41                                            
## 2    330 469.34 24    189.07 5.5391 0.00000000000006614 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KFOE

Temperature
anova(kfoe_t10_spline_d,kfoe_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.01                                
## 2    330 748.80 -329   -748.79 221.63 0.05351 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_t10_spline_d,kfoe_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.01                                
## 2    354 1328.99 -353     -1329 366.62 0.04162 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_t10_spline_m,kfoe_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1329.0                                              
## 2    330  748.8 24    580.18 10.654 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_t20_spline_d,kfoe_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.09                             
## 2    330 329.04 -329   -328.95 11.331 0.2334
anova(kfoe_t20_spline_d,kfoe_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.09                             
## 2    354 602.53 -353   -602.45 19.341 0.1797
anova(kfoe_t20_spline_m,kfoe_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 602.53                                              
## 2    330 329.04 24     273.5 11.429 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_t30_spline_d,kfoe_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.024                             
## 2    330 227.966 -329   -227.94 28.857 0.1476
anova(kfoe_t30_spline_d,kfoe_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.02                            
## 2    354 395.47 -353   -395.45 46.66 0.1163
anova(kfoe_t30_spline_m,kfoe_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 395.47                                              
## 2    330 227.97 24    167.51 10.104 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(kfoe_dp10_spline_d,kfoe_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.04                                
## 2    330 827.05 -329   -827.01 67.733 0.09664 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp10_spline_d,kfoe_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.04                                
## 2    354 1374.65 -353   -1374.6 104.93 0.07771 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp10_spline_m,kfoe_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1374.65                                              
## 2    330  827.05 24     547.6 9.1041 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp20_spline_d,kfoe_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F   Pr(>F)   
## 1      1   0.00                                 
## 2    330 367.11 -329   -367.11 98077 0.002546 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp20_spline_d,kfoe_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F   Pr(>F)   
## 1      1   0.00                                  
## 2    354 633.05 -353   -633.05 157624 0.002008 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp20_spline_m,kfoe_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 633.05                                              
## 2    330 367.11 24    265.93 9.9602 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp30_spline_d,kfoe_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 240.25 -329   -240.25 2470.2 0.01604 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp30_spline_d,kfoe_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 406.93 -353   -406.93 3899.4 0.01277 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_dp30_spline_m,kfoe_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 406.93                                              
## 2    330 240.25 24    166.68 9.5392 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(kfoe_wd10_spline_d,kfoe_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1      9                            
## 2    330 156056 -329   -156047 54.87 0.1073
anova(kfoe_wd10_spline_d,kfoe_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1      9                             
## 2    354 174586 -353   -174577 57.212 0.1051
anova(kfoe_wd10_spline_m,kfoe_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 174586                              
## 2    330 156056 24     18530 1.6326 0.03275 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_wd20_spline_d,kfoe_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1     0                                
## 2    330 74493 -329    -74493 796.45 0.02824 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_wd20_spline_d,kfoe_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)  
## 1      1     0                               
## 2    354 83109 -353    -83109 828.16 0.0277 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_wd20_spline_m,kfoe_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)  
## 1    354 83109                             
## 2    330 74493 24    8616.2 1.5904 0.0408 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_wd30_spline_d,kfoe_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    24                             
## 2    330 49388 -329    -49363 6.1673 0.3126
anova(kfoe_wd30_spline_d,kfoe_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    24                             
## 2    354 55798 -353    -55773 6.4943  0.305
anova(kfoe_wd30_spline_m,kfoe_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 55798                              
## 2    330 49388 24    6409.7 1.7845 0.01434 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(kfoe_ws10_spline_d,kfoe_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.073                             
## 2    330 116.057 -329   -115.98 4.8232 0.3508
anova(kfoe_ws10_spline_d,kfoe_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.073                             
## 2    354 131.911 -353   -131.84 5.1097 0.3415
anova(kfoe_ws10_spline_m,kfoe_ws10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)   
## 1    354 131.91                              
## 2    330 116.06 24    15.854 1.8783 0.0084 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_ws20_spline_d,kfoe_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.029                             
## 2    330 61.467 -329   -61.437 6.3304 0.3087
anova(kfoe_ws20_spline_d,kfoe_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.029                             
## 2    354 67.050 -353    -67.02 6.4362 0.3063
anova(kfoe_ws20_spline_m,kfoe_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 67.050                           
## 2    330 61.467 24    5.5829 1.2489 0.1972
anova(kfoe_ws30_spline_d,kfoe_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.018                             
## 2    330 39.056 -329   -39.038 6.6776  0.301
anova(kfoe_ws30_spline_d,kfoe_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.018                             
## 2    354 45.361 -353   -45.343 7.2288 0.2898
anova(kfoe_ws30_spline_m,kfoe_ws30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 45.361                                
## 2    330 39.056 24    6.3052 2.2198 0.001053 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Gust Speed
anova(kfoe_wg10_spline_d,kfoe_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.071                             
## 2    330 107.026 -329   -106.95 4.5954 0.3588
anova(kfoe_wg10_spline_d,kfoe_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.071                             
## 2    354 135.051 -353   -134.98 5.4052 0.3326
anova(kfoe_wg10_spline_m,kfoe_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F        Pr(>F)    
## 1    354 135.05                                      
## 2    330 107.03 24    28.025 3.6005 0.00000008023 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_wg20_spline_d,kfoe_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.033                             
## 2    330 51.512 -329   -51.479 4.7852 0.3521
anova(kfoe_wg20_spline_d,kfoe_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.033                             
## 2    354 71.312 -353   -71.279 6.1753 0.3124
anova(kfoe_wg20_spline_m,kfoe_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 71.312                                           
## 2    330 51.512 24    19.801 5.2854 0.0000000000004096 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_wg30_spline_d,kfoe_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.012                             
## 2    330 33.305 -329   -33.293 8.5226 0.2678
anova(kfoe_wg30_spline_d,kfoe_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.012                             
## 2    354 45.964 -353   -45.952 10.963 0.2372
anova(kfoe_wg30_spline_m,kfoe_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 45.964                                           
## 2    330 33.305 24    12.659 5.2264 0.0000000000006265 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(kfoe_cig10_spline_d,kfoe_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS   Df   Sum of Sq      F  Pr(>F)  
## 1      1      46048                                  
## 2    330 1877304540 -329 -1877258492 123.91 0.07153 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cig10_spline_d,kfoe_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F  Pr(>F)  
## 1      1      46048                                  
## 2    354 2497910307 -353 -2497864260 153.67 0.06425 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cig10_spline_m,kfoe_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 2497910307                                         
## 2    330 1877304540 24 620605768 4.5455 0.00000000008637 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cig20_spline_d,kfoe_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    153091                              
## 2    330 973370958 -329 -973217867 19.323 0.1798
anova(kfoe_cig20_spline_d,kfoe_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1     153091                               
## 2    354 1355119367 -353 -1354966276 25.073 0.1582
anova(kfoe_cig20_spline_m,kfoe_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 1355119367                                           
## 2    330  973370958 24 381748409 5.3926 0.0000000000001893 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cig30_spline_d,kfoe_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      5936                                 
## 2    330 590994953 -329 -590989016 302.59 0.04581 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cig30_spline_d,kfoe_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      5936                                 
## 2    354 792827834 -353 -792821898 378.34 0.04097 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cig30_spline_m,kfoe_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 792827834                                         
## 2    330 590994953 24 201832881 4.6958 0.00000000002905 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(kfoe_vis10_spline_d,kfoe_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq     F Pr(>F)
## 1      1    532362                             
## 2    330 336462902 -329 -335930539 1.918 0.5292
anova(kfoe_vis10_spline_d,kfoe_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    532362                              
## 2    354 392904155 -353 -392371793 2.0879 0.5106
anova(kfoe_vis10_spline_m,kfoe_vis10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 392904155                                  
## 2    330 336462902 24  56441253 2.3065 0.0006057 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_vis20_spline_d,kfoe_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     36141                              
## 2    330 182816631 -329 -182780490 15.372 0.2012
anova(kfoe_vis20_spline_d,kfoe_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     36141                              
## 2    354 221040435 -353 -221004294 17.323 0.1897
anova(kfoe_vis20_spline_m,kfoe_vis20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 221040435                                   
## 2    330 182816631 24  38223804 2.8749 0.00001348 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_vis30_spline_d,kfoe_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     48630                              
## 2    330 114690107 -329 -114641477 7.1655  0.291
anova(kfoe_vis30_spline_d,kfoe_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     48630                              
## 2    354 147552633 -353 -147504003 8.5927 0.2668
anova(kfoe_vis30_spline_m,kfoe_vis30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 147552633                                       
## 2    330 114690107 24  32862526 3.9398 0.000000006959 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(kfoe_cc10_spline_d,kfoe_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.346                             
## 2    330 111.891 -329   -111.55 0.9808 0.6866
anova(kfoe_cc10_spline_d,kfoe_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.346                             
## 2    354 139.748 -353    -139.4 1.1424 0.6499
anova(kfoe_cc10_spline_m,kfoe_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 139.75                                     
## 2    330 111.89 24    27.856 3.4232 0.0000002853 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cc20_spline_d,kfoe_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)  
## 1      1   0.002                              
## 2    330 102.396 -329   -102.39 162.4 0.0625 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cc20_spline_d,kfoe_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.002                                
## 2    354 127.662 -353   -127.66 188.71 0.05799 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cc20_spline_m,kfoe_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 127.66                                     
## 2    330 102.40 24    25.266 3.3928 0.0000003543 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_cc30_spline_d,kfoe_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.028                            
## 2    330 65.743 -329   -65.715 7.066  0.293
anova(kfoe_cc30_spline_d,kfoe_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.028                             
## 2    354 79.090 -353   -79.062 7.9231 0.2774
anova(kfoe_cc30_spline_m,kfoe_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 79.090                                   
## 2    330 65.743 24    13.347 2.7914 0.00002394 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(kfoe_alt10_spline_d,kfoe_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1    0.08                             
## 2    330 1575.90 -329   -1575.8 57.958 0.1044
anova(kfoe_alt10_spline_d,kfoe_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1    0.08                               
## 2    354 1971.85 -353   -1971.8 67.59 0.09674 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt10_spline_m,kfoe_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 1971.8                                     
## 2    330 1575.9 24    395.95 3.4547 0.0000002278 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt20_spline_d,kfoe_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.01                                
## 2    330 662.86 -329   -662.85 178.57 0.05961 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt20_spline_d,kfoe_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.01                                
## 2    354 936.01 -353      -936 235.02 0.05197 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt20_spline_m,kfoe_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 936.01                                           
## 2    330 662.86 24    273.16 5.6662 0.0000000000000266 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt30_spline_d,kfoe_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    330 419.23 -329   -419.21 72.992 0.09311 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt30_spline_d,kfoe_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kfoe_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    354 582.89 -353   -582.87 94.588 0.08184 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kfoe_alt30_spline_m,kfoe_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kfoe_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: kfoe_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 582.89                                           
## 2    330 419.23 24    163.66 5.3678 0.0000000000002264 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KMSN

Temperature
anova(kmsn_t10_spline_d,kmsn_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.03                             
## 2    330 557.98 -329   -557.95 60.123 0.1025
anova(kmsn_t10_spline_d,kmsn_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.03                                
## 2    354 969.15 -353   -969.12 97.331 0.08068 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t10_spline_m,kmsn_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 969.15                                              
## 2    330 557.98 24    411.17 10.132 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t20_spline_d,kmsn_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.006                                
## 2    330 222.215 -329   -222.21 111.24 0.07548 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t20_spline_d,kmsn_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1   0.01                               
## 2    354 384.06 -353   -384.06 179.2 0.05951 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t20_spline_m,kmsn_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 384.06                                              
## 2    330 222.22 24    161.85 10.015 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t30_spline_d,kmsn_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F   Pr(>F)   
## 1      1   0.00                                 
## 2    330 150.84 -329   -150.84 10276 0.007865 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t30_spline_d,kmsn_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F   Pr(>F)   
## 1      1   0.00                                 
## 2    354 251.84 -353   -251.84 15989 0.006305 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_t30_spline_m,kmsn_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 251.84                                              
## 2    330 150.84 24       101 9.2063 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(kmsn_dp10_spline_d,kmsn_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    330 741.80 -329   -741.78 114.21 0.07449 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp10_spline_d,kmsn_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.02                                
## 2    354 1259.35 -353   -1259.3 180.71 0.05926 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp10_spline_m,kmsn_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1259.3                                              
## 2    330  741.8 24    517.55 9.5933 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp20_spline_d,kmsn_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 330.37 -329   -330.37 485.96 0.03615 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp20_spline_d,kmsn_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 516.99 -353   -516.98 708.77 0.02994 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp20_spline_m,kmsn_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 516.99                                              
## 2    330 330.37 24    186.62 7.7671 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp30_spline_d,kmsn_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1   0.002                               
## 2    330 220.190 -329   -220.19 273.6 0.04817 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp30_spline_d,kmsn_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.0                                
## 2    354 346.7 -353    -346.7 401.51 0.03977 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_dp30_spline_m,kmsn_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 346.70                                              
## 2    330 220.19 24    126.51 7.9001 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(kmsn_wd10_spline_d,kmsn_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1    786                             
## 2    330 156965 -329   -156179 0.6041 0.8009
anova(kmsn_wd10_spline_d,kmsn_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1    786                             
## 2    354 187044 -353   -186258 0.6714 0.7769
anova(kmsn_wd10_spline_m,kmsn_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 187044                                  
## 2    330 156965 24     30079 2.6349 0.0000694 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_wd20_spline_d,kmsn_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   182                             
## 2    330 89063 -329    -88882 1.4885  0.587
anova(kmsn_wd20_spline_d,kmsn_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1    182                             
## 2    354 104032 -353   -103851 1.6209 0.5673
anova(kmsn_wd20_spline_m,kmsn_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F    Pr(>F)    
## 1    354 104032                                 
## 2    330  89063 24     14969 2.311 0.0005885 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_wd30_spline_d,kmsn_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    48                             
## 2    330 61434 -329    -61387 3.9211 0.3861
anova(kmsn_wd30_spline_d,kmsn_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    48                             
## 2    354 73502 -353    -73454 4.3729 0.3672
anova(kmsn_wd30_spline_m,kmsn_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 73502                                   
## 2    330 61434 24     12068 2.7009 0.00004441 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(kmsn_ws10_spline_d,kmsn_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.005                             
## 2    330 73.419 -329   -73.413 43.468 0.1205
anova(kmsn_ws10_spline_d,kmsn_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.005                             
## 2    354 80.428 -353   -80.423 44.381 0.1192
anova(kmsn_ws10_spline_m,kmsn_ws10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 80.428                           
## 2    330 73.419 24    7.0095 1.3128 0.1515
anova(kmsn_ws20_spline_d,kmsn_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    330 39.579 -329   -39.577 68.053 0.09641 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_ws20_spline_d,kmsn_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    354 43.521 -353   -43.519 69.743 0.09525 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_ws20_spline_m,kmsn_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 43.521                           
## 2    330 39.579 24    3.9416 1.3693 0.1184
anova(kmsn_ws30_spline_d,kmsn_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.0073                            
## 2    330 26.1282 -329   -26.121 10.94 0.2374
anova(kmsn_ws30_spline_d,kmsn_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0073                             
## 2    354 28.5698 -353   -28.562 11.149 0.2353
anova(kmsn_ws30_spline_m,kmsn_ws30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 28.570                           
## 2    330 26.128 24    2.4415 1.2849 0.1703
Wind Gust Speed
anova(kmsn_wg10_spline_d,kmsn_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.017                             
## 2    330 66.855 -329   -66.838 12.253 0.2247
anova(kmsn_wg10_spline_d,kmsn_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.017                             
## 2    354 78.878 -353   -78.861 13.474 0.2145
anova(kmsn_wg10_spline_m,kmsn_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 78.878                                  
## 2    330 66.855 24    12.023 2.4728 0.0002049 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_wg20_spline_d,kmsn_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.024                             
## 2    330 44.530 -329   -44.505 5.5582 0.3283
anova(kmsn_wg20_spline_d,kmsn_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.024                             
## 2    354 52.304 -353    -52.28 6.0853 0.3146
anova(kmsn_wg20_spline_m,kmsn_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 52.304                                  
## 2    330 44.530 24    7.7744 2.4006 0.0003291 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_wg30_spline_d,kmsn_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.066                            
## 2    330 35.200 -329   -35.134 1.613 0.5684
anova(kmsn_wg30_spline_d,kmsn_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.066                             
## 2    354 41.886 -353   -41.819 1.7893 0.5448
anova(kmsn_wg30_spline_m,kmsn_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 41.886                                   
## 2    330 35.200 24    6.6853 2.6114 0.00008131 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(kmsn_cig10_spline_d,kmsn_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS   Df   Sum of Sq      F  Pr(>F)  
## 1      1      51027                                  
## 2    330 1540322389 -329 -1540271361 91.749 0.08308 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_cig10_spline_d,kmsn_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)  
## 1      1      51027                                 
## 2    354 1765358595 -353 -1765307568 98.004 0.0804 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_cig10_spline_m,kmsn_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 1765358595                                
## 2    330 1540322389 24 225036206 2.0088 0.003882 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_cig20_spline_d,kmsn_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    391460                              
## 2    330 907817411 -329 -907425951 7.0458 0.2934
anova(kmsn_cig20_spline_d,kmsn_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1     391460                               
## 2    354 1017370504 -353 -1016979044 7.3595 0.2874
anova(kmsn_cig20_spline_m,kmsn_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 1017370504                              
## 2    330  907817411 24 109553093 1.6593 0.02844 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_cig30_spline_d,kmsn_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1   1128832                              
## 2    330 600991249 -329 -599862417 1.6152 0.5681
anova(kmsn_cig30_spline_d,kmsn_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1   1128832                              
## 2    354 681588263 -353 -680459432 1.7076 0.5554
anova(kmsn_cig30_spline_m,kmsn_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq     F  Pr(>F)  
## 1    354 681588263                             
## 2    330 600991249 24  80597014 1.844 0.01024 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(kmsn_vis10_spline_d,kmsn_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    333462                              
## 2    330 355851782 -329 -355518321 3.2406 0.4211
anova(kmsn_vis10_spline_d,kmsn_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    333462                              
## 2    354 403330486 -353 -402997025 3.4236 0.4108
anova(kmsn_vis10_spline_m,kmsn_vis10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F Pr(>F)  
## 1    354 403330486                             
## 2    330 355851782 24  47478704 1.8346 0.0108 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_vis20_spline_d,kmsn_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F   Pr(>F)   
## 1      1         1                                   
## 2    330 230565582 -329 -230565581 602108 0.001027 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_vis20_spline_d,kmsn_vis20_spline_m)  # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F   Pr(>F)   
## 1      1         1                                   
## 2    354 255648860 -353 -255648858 622221 0.001011 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_vis20_spline_m,kmsn_vis20_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 255648860                              
## 2    330 230565582 24  25083278 1.4959 0.06552 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_vis30_spline_d,kmsn_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      3331                                 
## 2    330 167332782 -329 -167329450 152.67 0.06445 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_vis30_spline_d,kmsn_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      3331                                 
## 2    354 186119394 -353 -186116063 158.27 0.06331 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_vis30_spline_m,kmsn_vis30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 186119394                              
## 2    330 167332782 24  18786612 1.5437 0.05171 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(kmsn_cc10_spline_d,kmsn_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.234                             
## 2    330 173.487 -329   -173.25 2.2501 0.4945
anova(kmsn_cc10_spline_d,kmsn_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.234                             
## 2    354 196.913 -353   -196.68 2.3807 0.4827
anova(kmsn_cc10_spline_m,kmsn_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 196.91                                
## 2    330 173.49 24    23.426 1.8567 0.009518 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_cc20_spline_d,kmsn_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.241                             
## 2    330 108.634 -329   -108.39 1.3676 0.6069
anova(kmsn_cc20_spline_d,kmsn_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.241                            
## 2    354 121.422 -353   -121.18 1.425 0.5972
anova(kmsn_cc20_spline_m,kmsn_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 121.42                              
## 2    330 108.63 24    12.788 1.6186 0.03524 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_cc30_spline_d,kmsn_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.318                             
## 2    330 73.262 -329   -72.944 0.6969 0.7682
anova(kmsn_cc30_spline_d,kmsn_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.318                             
## 2    354 83.664 -353   -83.346 0.7422 0.7535
anova(kmsn_cc30_spline_m,kmsn_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 83.664                                
## 2    330 73.262 24    10.402 1.9522 0.005445 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(kmsn_alt10_spline_d,kmsn_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.0                                
## 2    330 1598.1 -329   -1598.1 1460.1 0.02086 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_alt10_spline_d,kmsn_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.0                                
## 2    354 2102.4 -353   -2102.4 1790.2 0.01884 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_alt10_spline_m,kmsn_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 2102.4                                        
## 2    330 1598.1 24    504.28 4.3388 0.0000000003869 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_alt20_spline_d,kmsn_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    330 744.68 -329   -744.66 143.52 0.06647 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_alt20_spline_d,kmsn_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1    0.02                               
## 2    354 1113.96 -353     -1114 200.1 0.05632 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_alt20_spline_m,kmsn_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1113.96                                              
## 2    330  744.68 24    369.29 6.8186 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kmsn_alt30_spline_d,kmsn_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.08                             
## 2    330 447.60 -329   -447.52 16.413 0.1948
anova(kmsn_alt30_spline_d,kmsn_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kmsn_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.08                             
## 2    354 659.07 -353   -658.99 22.525 0.1668
anova(kmsn_alt30_spline_m,kmsn_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kmsn_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: kmsn_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 659.07                                              
## 2    330 447.60 24    211.47 6.4962 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KTRI

Temperature
anova(ktri_t10_spline_d,ktri_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.14                             
## 2    330 502.09 -329   -501.95 10.561 0.2415
anova(ktri_t10_spline_d,ktri_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.14                             
## 2    354 604.69 -353   -604.54 11.855 0.2284
anova(ktri_t10_spline_m,ktri_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 604.69                                   
## 2    330 502.09 24     102.6 2.8097 0.00002113 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_t20_spline_d,ktri_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.002                                
## 2    330 188.420 -329   -188.42 267.96 0.04868 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_t20_spline_d,ktri_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1   0.002                               
## 2    354 218.421 -353   -218.42 289.5 0.04683 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_t20_spline_m,ktri_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 218.42                                
## 2    330 188.42 24        30 2.1893 0.001277 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_t30_spline_d,ktri_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.003                                
## 2    330 111.714 -329   -111.71 120.77 0.07245 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_t30_spline_d,ktri_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F  Pr(>F)  
## 1      1   0.003                               
## 2    354 148.377 -353   -148.37 149.5 0.06514 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_t30_spline_m,ktri_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 148.38                                        
## 2    330 111.71 24    36.662 4.5124 0.0000000001098 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(ktri_dp10_spline_d,ktri_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.04                                
## 2    330 817.44 -329    -817.4 65.141 0.09853 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp10_spline_d,ktri_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.04                                
## 2    354 1070.99 -353     -1071 79.545 0.08921 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp10_spline_m,ktri_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 1070.99                                        
## 2    330  817.44 24    253.55 4.2649 0.0000000006609 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp20_spline_d,ktri_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.02                             
## 2    330 332.12 -329   -332.11 58.038 0.1044
anova(ktri_dp20_spline_d,ktri_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    354 396.14 -353   -396.12 64.518 0.09901 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp20_spline_m,ktri_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 396.14                                   
## 2    330 332.12 24    64.013 2.6502 0.00006262 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp30_spline_d,ktri_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F   Pr(>F)   
## 1      1   0.00                                 
## 2    330 200.05 -329   -200.05 54909 0.003402 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp30_spline_d,ktri_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F   Pr(>F)   
## 1      1   0.00                                 
## 2    354 264.17 -353   -264.17 67579 0.003067 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_dp30_spline_m,ktri_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 264.17                                        
## 2    330 200.05 24    64.121 4.4073 0.0000000002354 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(ktri_wd10_spline_d,ktri_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq    F Pr(>F)
## 1      1    947                           
## 2    330 141096 -329   -140150 0.45  0.863
anova(ktri_wd10_spline_d,ktri_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1    947                             
## 2    354 172016 -353   -171070 0.5119 0.8369
anova(ktri_wd10_spline_m,ktri_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F      Pr(>F)    
## 1    354 172016                                    
## 2    330 141096 24     30920 3.0132 0.000005163 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_wd20_spline_d,ktri_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq    F Pr(>F)
## 1      1   269                           
## 2    330 71919 -329    -71650 0.81 0.7327
anova(ktri_wd20_spline_d,ktri_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   269                             
## 2    354 88768 -353    -88499 0.9324 0.6989
anova(ktri_wd20_spline_m,ktri_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F      Pr(>F)    
## 1    354 88768                                    
## 2    330 71919 24     16850 3.2215 0.000001195 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_wd30_spline_d,ktri_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   201                             
## 2    330 44341 -329    -44140 0.6684 0.7778
anova(ktri_wd30_spline_d,ktri_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   201                             
## 2    354 55388 -353    -55188 0.7789  0.742
anova(ktri_wd30_spline_m,ktri_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 55388                                     
## 2    330 44341 24     11047 3.4258 0.0000002801 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(ktri_ws10_spline_d,ktri_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.018                             
## 2    330 61.370 -329   -61.351 10.082  0.247
anova(ktri_ws10_spline_d,ktri_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.018                             
## 2    354 66.202 -353   -66.183 10.136 0.2464
anova(ktri_ws10_spline_m,ktri_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 66.202                           
## 2    330 61.370 24     4.832 1.0826 0.3617
anova(ktri_ws20_spline_d,ktri_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.000                                
## 2    330 28.781 -329   -28.781 2056.7 0.01758 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_ws20_spline_d,ktri_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.000                                
## 2    354 32.547 -353   -32.547 2167.7 0.01712 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_ws20_spline_m,ktri_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 32.547                              
## 2    330 28.781 24     3.766 1.7992 0.01321 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_ws30_spline_d,ktri_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0043                             
## 2    330 20.1525 -329   -20.148 14.234 0.2089
anova(ktri_ws30_spline_d,ktri_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0043                             
## 2    354 22.4841 -353    -22.48 14.801 0.2049
anova(ktri_ws30_spline_m,ktri_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)  
## 1    354 22.484                             
## 2    330 20.152 24    2.3316 1.5909 0.0407 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Gust Speed
anova(ktri_wg10_spline_d,ktri_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.077                             
## 2    330 59.823 -329   -59.747 2.3705 0.4835
anova(ktri_wg10_spline_d,ktri_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.077                             
## 2    354 82.898 -353   -82.821 3.0626 0.4319
anova(ktri_wg10_spline_m,ktri_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 82.898                                           
## 2    330 59.823 24    23.075 5.3036 0.0000000000003594 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_wg20_spline_d,ktri_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.007                             
## 2    330 32.605 -329   -32.598 13.486 0.2144
anova(ktri_wg20_spline_d,ktri_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.007                             
## 2    354 41.849 -353   -41.842 16.133 0.1965
anova(ktri_wg20_spline_m,ktri_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 41.849                                       
## 2    330 32.605 24    9.2441 3.8983 0.000000009392 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_wg30_spline_d,ktri_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0018                             
## 2    330 21.2684 -329   -21.267 35.802 0.1326
anova(ktri_wg30_spline_d,ktri_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.002                            
## 2    354 32.353 -353   -32.351 50.76 0.1115
anova(ktri_wg30_spline_m,ktri_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 32.353                                              
## 2    330 21.268 24    11.085 7.1662 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(ktri_cig10_spline_d,ktri_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1      92359                               
## 2    330 1528182149 -329 -1528089789 50.289 0.1121
anova(ktri_cig10_spline_d,ktri_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq     F Pr(>F)
## 1      1      92359                              
## 2    354 1793911493 -353 -1793819134 55.02 0.1072
anova(ktri_cig10_spline_m,ktri_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 1793911493                                  
## 2    330 1528182149 24 265729344 2.3909 0.0003506 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cig20_spline_d,ktri_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    131362                              
## 2    330 813732310 -329 -813600948 18.826 0.1821
anova(ktri_cig20_spline_d,ktri_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    131362                              
## 2    354 918817332 -353 -918685970 19.812 0.1776
anova(ktri_cig20_spline_m,ktri_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 918817332                              
## 2    330 813732310 24 105085023 1.7757 0.01507 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cig30_spline_d,ktri_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      3201                                 
## 2    330 500191283 -329 -500188082 474.96 0.03657 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cig30_spline_d,ktri_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      3201                                 
## 2    354 571690352 -353 -571687151 505.94 0.03544 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cig30_spline_m,ktri_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 571690352                                
## 2    330 500191283 24  71499070 1.9655 0.005033 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(ktri_vis10_spline_d,ktri_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     14060                              
## 2    330 288618215 -329 -288604155 62.392 0.1007
anova(ktri_vis10_spline_d,ktri_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq     F  Pr(>F)  
## 1      1     14060                                
## 2    354 345542368 -353 -345528308 69.62 0.09533 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_vis10_spline_m,ktri_vis10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 345542368                                  
## 2    330 288618215 24  56924153 2.7119 0.0000412 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_vis20_spline_d,ktri_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     41764                              
## 2    330 169423885 -329 -169382121 12.327  0.224
anova(ktri_vis20_spline_d,ktri_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     41764                              
## 2    354 194132304 -353 -194090540 13.165  0.217
anova(ktri_vis20_spline_m,ktri_vis20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 194132304                                
## 2    330 169423885 24  24708419 2.0053 0.003966 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_vis30_spline_d,ktri_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F  Pr(>F)  
## 1      1      7196                                 
## 2    330 157067406 -329 -157060209 66.337 0.09764 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_vis30_spline_d,ktri_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq     F Pr(>F)  
## 1      1      7196                               
## 2    354 172213800 -353 -172206604 67.79 0.0966 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_vis30_spline_m,ktri_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F Pr(>F)
## 1    354 172213800                           
## 2    330 157067406 24  15146394 1.3259 0.1432
Average Cloud Cover
anova(ktri_cc10_spline_d,ktri_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)  
## 1      1  0.001                               
## 2    330 75.508 -329   -75.507 354.93 0.0423 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cc10_spline_d,ktri_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.001                                
## 2    354 99.700 -353   -99.699 436.79 0.03814 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cc10_spline_m,ktri_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 99.700                                        
## 2    330 75.508 24    24.192 4.4054 0.0000000002386 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cc20_spline_d,ktri_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.005                             
## 2    330 56.512 -329   -56.507 37.424 0.1297
anova(ktri_cc20_spline_d,ktri_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.005                             
## 2    354 66.406 -353   -66.401 40.987  0.124
anova(ktri_cc20_spline_m,ktri_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 66.406                                  
## 2    330 56.512 24    9.8937 2.4073 0.0003151 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_cc30_spline_d,ktri_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.006                             
## 2    330 45.599 -329   -45.594 24.877 0.1588
anova(ktri_cc30_spline_d,ktri_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.006                             
## 2    354 51.990 -353   -51.984 26.436 0.1541
anova(ktri_cc30_spline_m,ktri_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 51.990                                
## 2    330 45.599 24    6.3909 1.9271 0.006316 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(ktri_alt10_spline_d,ktri_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 870.53 -329   -870.53 534.88 0.03446 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_alt10_spline_d,ktri_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.0                                
## 2    354 1137.8 -353   -1137.8 651.57 0.03123 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_alt10_spline_m,ktri_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 1137.80                                        
## 2    330  870.53 24    267.26 4.2214 0.0000000009061 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_alt20_spline_d,ktri_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.04                             
## 2    330 402.95 -329   -402.91 33.223 0.1376
anova(ktri_alt20_spline_d,ktri_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.04                             
## 2    354 574.74 -353    -574.7 44.166 0.1195
anova(ktri_alt20_spline_m,ktri_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F               Pr(>F)    
## 1    354 574.74                                            
## 2    330 402.95 24    171.79 5.862 0.000000000000006569 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ktri_alt30_spline_d,ktri_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.017                             
## 2    330 276.841 -329   -276.82 48.358 0.1143
anova(ktri_alt30_spline_d,ktri_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: ktri_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.02                             
## 2    354 358.42 -353   -358.41 58.353 0.1041
anova(ktri_alt30_spline_m,ktri_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ktri_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: ktri_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F        Pr(>F)    
## 1    354 358.42                                      
## 2    330 276.84 24    81.584 4.0521 0.00000000309 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

PAJN

Temperature
anova(pajn_t10_spline_d,pajn_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.096                             
## 2    330 169.059 -329   -168.96 5.3472 0.3343
anova(pajn_t10_spline_d,pajn_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.10                             
## 2    354 359.35 -353   -359.25 10.596 0.2411
anova(pajn_t10_spline_m,pajn_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 359.35                                              
## 2    330 169.06 24    190.29 15.476 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_t20_spline_d,pajn_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.044                             
## 2    330 85.655 -329   -85.611 5.9325 0.3183
anova(pajn_t20_spline_d,pajn_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.044                             
## 2    354 153.648 -353    -153.6 9.9205 0.2489
anova(pajn_t20_spline_m,pajn_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 153.648                                              
## 2    330  85.655 24    67.994 10.915 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_t30_spline_d,pajn_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.026                             
## 2    330 59.563 -329   -59.538 7.0425 0.2935
anova(pajn_t30_spline_d,pajn_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.026                             
## 2    354 93.609 -353   -93.583 10.317 0.2443
anova(pajn_t30_spline_m,pajn_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 93.609                                              
## 2    330 59.563 24    34.046 7.8594 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(pajn_dp10_spline_d,pajn_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.059                             
## 2    330 292.324 -329   -292.26 14.936  0.204
anova(pajn_dp10_spline_d,pajn_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.06                             
## 2    354 618.20 -353   -618.14 29.442 0.1461
anova(pajn_dp10_spline_m,pajn_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 618.20                                              
## 2    330 292.32 24    325.88 15.328 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_dp20_spline_d,pajn_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.098                             
## 2    330 132.774 -329   -132.68 4.1295  0.377
anova(pajn_dp20_spline_d,pajn_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.098                             
## 2    354 226.976 -353   -226.88 6.5813 0.3031
anova(pajn_dp20_spline_m,pajn_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 226.98                                              
## 2    330 132.77 24    94.202 9.7555 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_dp30_spline_d,pajn_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.057                             
## 2    330 108.761 -329    -108.7 5.7473 0.3231
anova(pajn_dp30_spline_d,pajn_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.057                             
## 2    354 155.839 -353   -155.78 7.6764 0.2816
anova(pajn_dp30_spline_m,pajn_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F               Pr(>F)    
## 1    354 155.84                                             
## 2    330 108.76 24    47.078 5.9518 0.000000000000003465 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(pajn_wd10_spline_d,pajn_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1     3                                
## 2    330 70149 -329    -70146 72.454 0.09345 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wd10_spline_d,pajn_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1     3                                
## 2    354 86804 -353    -86801 83.562 0.08705 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wd10_spline_m,pajn_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 86804                                     
## 2    330 70149 24     16656 3.2647 0.0000008803 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wd20_spline_d,pajn_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   520                             
## 2    330 40444 -329    -39924 0.2332 0.9608
anova(pajn_wd20_spline_d,pajn_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   520                             
## 2    354 49238 -353    -48718 0.2653  0.947
anova(pajn_wd20_spline_m,pajn_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F      Pr(>F)    
## 1    354 49238                                    
## 2    330 40444 24    8793.6 2.9896 0.000006085 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wd30_spline_d,pajn_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   383.8                             
## 2    330 25046.8 -329    -24663 0.1953 0.9757
anova(pajn_wd30_spline_d,pajn_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1   384                             
## 2    354 32563 -353    -32180 0.2375 0.9591
anova(pajn_wd30_spline_m,pajn_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F         Pr(>F)    
## 1    354 32563                                       
## 2    330 25047 24    7516.6 4.1264 0.000000001803 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(pajn_ws10_spline_d,pajn_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.015                             
## 2    330 151.703 -329   -151.69 30.126 0.1445
anova(pajn_ws10_spline_d,pajn_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.015                             
## 2    354 182.689 -353   -182.67 33.814 0.1364
anova(pajn_ws10_spline_m,pajn_ws10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 182.69                                   
## 2    330 151.70 24    30.986 2.8085 0.00002129 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_ws20_spline_d,pajn_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq    F Pr(>F)
## 1      1  0.042                           
## 2    330 82.108 -329   -82.066 5.92 0.3187
anova(pajn_ws20_spline_d,pajn_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.042                             
## 2    354 97.254 -353   -97.212 6.5358 0.3041
anova(pajn_ws20_spline_m,pajn_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 97.254                                  
## 2    330 82.108 24    15.146 2.5364 0.0001343 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_ws30_spline_d,pajn_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.019                             
## 2    330 49.711 -329   -49.692 7.7883 0.2797
anova(pajn_ws30_spline_d,pajn_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.019                             
## 2    354 60.582 -353   -60.563 8.8468 0.2631
anova(pajn_ws30_spline_m,pajn_ws30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F      Pr(>F)    
## 1    354 60.582                                    
## 2    330 49.711 24    10.871 3.0069 0.000005392 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Gust Speed
anova(pajn_wg10_spline_d,pajn_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.000                                
## 2    330 81.011 -329   -81.011 814.96 0.02792 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wg10_spline_d,pajn_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0                                
## 2    354 119 -353      -119 1115.8 0.02387 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wg10_spline_m,pajn_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 119.002                                              
## 2    330  81.011 24    37.991 6.4482 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wg20_spline_d,pajn_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.022                             
## 2    330 57.854 -329   -57.831 7.8578 0.2785
anova(pajn_wg20_spline_d,pajn_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.022                             
## 2    354 70.517 -353   -70.495 8.9272 0.2619
anova(pajn_wg20_spline_m,pajn_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 70.517                                   
## 2    330 57.854 24    12.663 3.0097 0.00000529 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_wg30_spline_d,pajn_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.051                             
## 2    330 43.706 -329   -43.654 2.5795  0.466
anova(pajn_wg30_spline_d,pajn_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.051                             
## 2    354 53.877 -353   -53.826 2.9643 0.4383
anova(pajn_wg30_spline_m,pajn_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq   F      Pr(>F)    
## 1    354 53.877                                 
## 2    330 43.706 24    10.171 3.2 0.000001391 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(pajn_cig10_spline_d,pajn_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    893308                              
## 2    330 936619487 -329 -935726179 3.1838 0.4244
anova(pajn_cig10_spline_d,pajn_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1     893308                               
## 2    354 1423790124 -353 -1422896816 4.5123 0.3619
anova(pajn_cig10_spline_m,pajn_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1423790124                                              
## 2    330  936619487 24 487170637 7.1519 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_cig20_spline_d,pajn_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1   1376853                              
## 2    330 458657170 -329 -457280317 1.0095 0.6797
anova(pajn_cig20_spline_d,pajn_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1   1376853                              
## 2    354 636766571 -353 -635389719 1.3073 0.6176
anova(pajn_cig20_spline_m,pajn_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 636766571                                           
## 2    330 458657170 24 178109402 5.3395 0.0000000000002774 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_cig30_spline_d,pajn_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    869455                              
## 2    330 353692093 -329 -352822638 1.2334 0.6314
anova(pajn_cig30_spline_d,pajn_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    869455                              
## 2    354 485879498 -353 -485010043 1.5803 0.5731
anova(pajn_cig30_spline_m,pajn_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F            Pr(>F)    
## 1    354 485879498                                          
## 2    330 353692093 24 132187405 5.1389 0.000000000001178 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(pajn_vis10_spline_d,pajn_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    185417                              
## 2    330 271678090 -329 -271492673 4.4505 0.3642
anova(pajn_vis10_spline_d,pajn_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    185417                              
## 2    354 327678948 -353 -327493531 5.0036 0.3449
anova(pajn_vis10_spline_m,pajn_vis10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 327678948                                   
## 2    330 271678090 24  56000858 2.8343 0.00001784 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_vis20_spline_d,pajn_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     91889                              
## 2    330 130582155 -329 -130490266 4.3164 0.3694
anova(pajn_vis20_spline_d,pajn_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq     F Pr(>F)
## 1      1     91889                             
## 2    354 164353033 -353 -164261145 5.064  0.343
anova(pajn_vis20_spline_m,pajn_vis20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq     F       Pr(>F)    
## 1    354 164353033                                    
## 2    330 130582155 24  33770878 3.556 0.0000001104 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_vis30_spline_d,pajn_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     85589                              
## 2    330 175536646 -329 -175451057 6.2308  0.311
anova(pajn_vis30_spline_d,pajn_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     85589                              
## 2    354 218436110 -353 -218350521 7.2271 0.2899
anova(pajn_vis30_spline_m,pajn_vis30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 218436110                                     
## 2    330 175536646 24  42899464 3.3604 0.0000004463 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(pajn_cc10_spline_d,pajn_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.07                             
## 2    330 100.80 -329   -100.73 4.3456 0.3682
anova(pajn_cc10_spline_d,pajn_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.07                             
## 2    354 154.96 -353   -154.89 6.2275 0.3111
anova(pajn_cc10_spline_m,pajn_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 154.96                                              
## 2    330 100.80 24    54.155 7.3869 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_cc20_spline_d,pajn_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.120                             
## 2    330 44.304 -329   -44.185 1.1229  0.654
anova(pajn_cc20_spline_d,pajn_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.120                             
## 2    354 62.593 -353   -62.474 1.4798 0.5884
anova(pajn_cc20_spline_m,pajn_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F              Pr(>F)    
## 1    354 62.593                                            
## 2    330 44.304 24    18.289 5.6761 0.00000000000002479 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_cc30_spline_d,pajn_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.090                             
## 2    330 34.319 -329   -34.229 1.1558  0.647
anova(pajn_cc30_spline_d,pajn_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.090                             
## 2    354 47.734 -353   -47.644 1.4993 0.5853
anova(pajn_cc30_spline_m,pajn_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F             Pr(>F)    
## 1    354 47.734                                           
## 2    330 34.319 24    13.414 5.3744 0.0000000000002159 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(pajn_alt10_spline_d,pajn_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.02                                
## 2    330 2345.36 -329   -2345.3 418.27 0.03897 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt10_spline_d,pajn_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.0                                
## 2    354 3451.3 -353   -3451.3 573.66 0.03328 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt10_spline_m,pajn_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 3451.3                                              
## 2    330 2345.4 24    1105.9 6.4837 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt20_spline_d,pajn_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.0                                
## 2    330 1149.7 -329   -1149.7 1241.6 0.02262 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt20_spline_d,pajn_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)  
## 1      1    0.0                               
## 2    354 1713.3 -353   -1713.3 1724.4 0.0192 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt20_spline_m,pajn_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 1713.3                                              
## 2    330 1149.7 24    563.59 6.7402 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt30_spline_d,pajn_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 863.11 -329    -863.1 966.12 0.02565 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt30_spline_d,pajn_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: pajn_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.0                                
## 2    354 1177.8 -353   -1177.8 1228.7 0.02274 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(pajn_alt30_spline_m,pajn_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: pajn_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: pajn_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F            Pr(>F)    
## 1    354 1177.75                                          
## 2    330  863.11 24    314.64 5.0125 0.000000000002934 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KELP

Temperature
anova(kelp_t10_spline_d,kelp_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.67                             
## 2    330 382.62 -329   -381.95 1.7338 0.5519
anova(kelp_t10_spline_d,kelp_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.67                             
## 2    354 480.19 -353   -479.52 2.0288 0.5169
anova(kelp_t10_spline_m,kelp_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 480.19                                     
## 2    330 382.62 24    97.574 3.5065 0.0000001574 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_t20_spline_d,kelp_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.187                             
## 2    330 186.345 -329   -186.16 3.0326 0.4338
anova(kelp_t20_spline_d,kelp_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.187                             
## 2    354 236.988 -353    -236.8 3.5954 0.4017
anova(kelp_t20_spline_m,kelp_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 236.99                                     
## 2    330 186.34 24    50.643 3.7368 0.0000000301 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_t30_spline_d,kelp_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.101                             
## 2    330 129.230 -329   -129.13 3.8873 0.3876
anova(kelp_t30_spline_d,kelp_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.101                             
## 2    354 153.863 -353   -153.76 4.3141 0.3695
anova(kelp_t30_spline_m,kelp_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F     Pr(>F)    
## 1    354 153.86                                  
## 2    330 129.23 24    24.634 2.621 0.00007621 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(kelp_dp10_spline_d,kelp_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.37                             
## 2    330 638.92 -329   -638.55 5.2322 0.3377
anova(kelp_dp10_spline_d,kelp_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.37                             
## 2    354 908.15 -353   -907.78 6.9326 0.2957
anova(kelp_dp10_spline_m,kelp_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F              Pr(>F)    
## 1    354 908.15                                            
## 2    330 638.92 24    269.24 5.7942 0.00000000000001065 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_dp20_spline_d,kelp_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.085                             
## 2    330 260.981 -329    -260.9 9.3755 0.2558
anova(kelp_dp20_spline_d,kelp_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.08                             
## 2    354 420.01 -353   -419.93 14.064 0.2101
anova(kelp_dp20_spline_m,kelp_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 420.01                                              
## 2    330 260.98 24    159.03 8.3787 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_dp30_spline_d,kelp_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.045                            
## 2    330 152.201 -329   -152.16 10.23 0.2453
anova(kelp_dp30_spline_d,kelp_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.045                             
## 2    354 288.642 -353    -288.6 18.085 0.1858
anova(kelp_dp30_spline_m,kelp_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 288.64                                              
## 2    330 152.20 24    136.44 12.326 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(kelp_wd10_spline_d,kelp_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    48                             
## 2    330 88537 -329    -88490 5.6172 0.3266
anova(kelp_wd10_spline_d,kelp_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1    48                             
## 2    354 97708 -353    -97660 5.7779 0.3224
anova(kelp_wd10_spline_m,kelp_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 97708                              
## 2    330 88537 24    9170.6 1.4242 0.09218 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_wd20_spline_d,kelp_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     8                             
## 2    330 39211 -329    -39203 15.287 0.2017
anova(kelp_wd20_spline_d,kelp_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     8                             
## 2    354 51586 -353    -51579 18.745 0.1825
anova(kelp_wd20_spline_m,kelp_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 51586                                        
## 2    330 39211 24     12375 4.3396 0.0000000003844 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_wd30_spline_d,kelp_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     7                             
## 2    330 25404 -329    -25397 11.037 0.2364
anova(kelp_wd30_spline_d,kelp_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     7                             
## 2    354 34048 -353    -34041 13.787 0.2122
anova(kelp_wd30_spline_m,kelp_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 34048                                         
## 2    330 25404 24    8643.9 4.6786 0.00000000003292 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Speed
anova(kelp_ws10_spline_d,kelp_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.152                             
## 2    330 91.887 -329   -91.734 1.8331 0.5393
anova(kelp_ws10_spline_d,kelp_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.152                             
## 2    354 100.075 -353   -99.923 1.8609  0.536
anova(kelp_ws10_spline_m,kelp_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F Pr(>F)
## 1    354 100.075                           
## 2    330  91.887 24    8.1887 1.2254 0.2165
anova(kelp_ws20_spline_d,kelp_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.069                             
## 2    330 43.214 -329   -43.145 1.9118   0.53
anova(kelp_ws20_spline_d,kelp_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.069                             
## 2    354 47.366 -353   -47.297 1.9533 0.5252
anova(kelp_ws20_spline_m,kelp_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 47.366                           
## 2    330 43.214 24     4.152 1.3211 0.1462
anova(kelp_ws30_spline_d,kelp_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.0146                            
## 2    330 25.4612 -329   -25.447 5.307 0.3355
anova(kelp_ws30_spline_d,kelp_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.0146                            
## 2    354 29.4625 -353   -29.448 5.724 0.3238
anova(kelp_ws30_spline_m,kelp_ws30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 29.462                                
## 2    330 25.461 24    4.0013 2.1609 0.001526 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Gust Speed
anova(kelp_wg10_spline_d,kelp_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.202                             
## 2    330 104.802 -329    -104.6 1.5712 0.5744
anova(kelp_wg10_spline_d,kelp_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.202                             
## 2    354 132.781 -353   -132.58 1.8561 0.5366
anova(kelp_wg10_spline_m,kelp_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F        Pr(>F)    
## 1    354 132.78                                      
## 2    330 104.80 24     27.98 3.6709 0.00000004837 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_wg20_spline_d,kelp_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.014                             
## 2    330 68.666 -329   -68.652 15.151 0.2026
anova(kelp_wg20_spline_d,kelp_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.014                             
## 2    354 90.895 -353   -90.881 18.693 0.1828
anova(kelp_wg20_spline_m,kelp_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 90.895                                        
## 2    330 68.666 24    22.228 4.4511 0.0000000001713 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_wg30_spline_d,kelp_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    330 54.891 -329   -54.888 69.147 0.09565 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_wg30_spline_d,kelp_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1  0.002                                
## 2    354 72.434 -353   -72.431 85.043 0.08629 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_wg30_spline_m,kelp_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F          Pr(>F)    
## 1    354 72.434                                        
## 2    330 54.891 24    17.543 4.3944 0.0000000002584 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(kelp_cig10_spline_d,kelp_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     52947                              
## 2    330 993254651 -329 -993201704 57.017 0.1053
anova(kelp_cig10_spline_d,kelp_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df        RSS   Df   Sum of Sq      F Pr(>F)
## 1      1      52947                               
## 2    354 1166528545 -353 -1166475599 62.411 0.1007
anova(kelp_cig10_spline_m,kelp_cig10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df        RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 1166528545                                  
## 2    330  993254651 24 173273894 2.3987 0.0003333 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_cig20_spline_d,kelp_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    456701                              
## 2    330 492674927 -329 -492218226 3.2759  0.419
anova(kelp_cig20_spline_d,kelp_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    456701                              
## 2    354 629790278 -353 -629333578 3.9037 0.3869
anova(kelp_cig20_spline_m,kelp_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F        Pr(>F)    
## 1    354 629790278                                      
## 2    330 492674927 24 137115351 3.8267 0.00000001575 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_cig30_spline_d,kelp_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    196258                              
## 2    330 338413804 -329 -338217546 5.2381 0.3376
anova(kelp_cig30_spline_d,kelp_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    196258                              
## 2    354 436466691 -353 -436270433 6.2973 0.3095
anova(kelp_cig30_spline_m,kelp_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq     F         Pr(>F)    
## 1    354 436466691                                      
## 2    330 338413804 24  98052887 3.984 0.000000005058 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(kelp_vis10_spline_d,kelp_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1    36377                             
## 2    330 21030104 -329 -20993727 1.7542 0.5492
anova(kelp_vis10_spline_d,kelp_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1    36377                             
## 2    354 21969704 -353 -21933328 1.7081 0.5553
anova(kelp_vis10_spline_m,kelp_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS Df Sum of Sq      F Pr(>F)
## 1    354 21969704                           
## 2    330 21030104 24    939600 0.6143 0.9236
anova(kelp_vis20_spline_d,kelp_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1     1860                             
## 2    330 13488659 -329 -13486799 22.035 0.1686
anova(kelp_vis20_spline_d,kelp_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1     1860                             
## 2    354 15338551 -353 -15336690 23.354 0.1638
anova(kelp_vis20_spline_m,kelp_vis20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 15338551                                
## 2    330 13488659 24   1849891 1.8857 0.008046 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_vis30_spline_d,kelp_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1      397                                
## 2    330 37303493 -329 -37303096 285.66 0.04714 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_vis30_spline_d,kelp_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df      RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1      397                                
## 2    354 47783988 -353 -47783591 341.04 0.04315 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_vis30_spline_m,kelp_vis30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS Df Sum of Sq      F        Pr(>F)    
## 1    354 47783988                                      
## 2    330 37303493 24  10480495 3.8631 0.00000001211 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(kelp_cc10_spline_d,kelp_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.004                                
## 2    330 103.505 -329    -103.5 76.912 0.09071 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_cc10_spline_d,kelp_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.004                                
## 2    354 123.197 -353   -123.19 85.321 0.08615 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_cc10_spline_m,kelp_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq     F     Pr(>F)    
## 1    354 123.2                                  
## 2    330 103.5 24    19.692 2.616 0.00007884 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_cc20_spline_d,kelp_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.016                             
## 2    330 59.205 -329   -59.189 11.375  0.233
anova(kelp_cc20_spline_d,kelp_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.016                            
## 2    354 73.487 -353   -73.471 13.16  0.217
anova(kelp_cc20_spline_m,kelp_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 73.487                                     
## 2    330 59.205 24    14.283 3.3171 0.0000006071 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_cc30_spline_d,kelp_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.019                             
## 2    330 43.652 -329   -43.633 6.8121 0.2981
anova(kelp_cc30_spline_d,kelp_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.019                             
## 2    354 54.354 -353   -54.334 7.9062 0.2777
anova(kelp_cc30_spline_m,kelp_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F       Pr(>F)    
## 1    354 54.354                                    
## 2    330 43.652 24    10.702 3.371 0.0000004139 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(kelp_alt10_spline_d,kelp_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.04                             
## 2    330 509.95 -329   -509.91 38.825 0.1274
anova(kelp_alt10_spline_d,kelp_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.04                             
## 2    354 623.95 -353   -623.91 44.276 0.1194
anova(kelp_alt10_spline_m,kelp_alt10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F      Pr(>F)    
## 1    354 623.95                                   
## 2    330 509.95 24       114 3.074 0.000003374 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_alt20_spline_d,kelp_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.005                                
## 2    330 228.371 -329   -228.37 142.36 0.06674 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_alt20_spline_d,kelp_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.005                                
## 2    354 295.664 -353   -295.66 171.78 0.06077 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_alt20_spline_m,kelp_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 295.66                                     
## 2    330 228.37 24    67.292 4.0516 0.0000000031 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_alt30_spline_d,kelp_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.002                                
## 2    330 134.118 -329   -134.12 164.66 0.06207 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_alt30_spline_d,kelp_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: kelp_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.002                                
## 2    354 170.043 -353   -170.04 194.57 0.05711 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(kelp_alt30_spline_m,kelp_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: kelp_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: kelp_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F        Pr(>F)    
## 1    354 170.04                                      
## 2    330 134.12 24    35.925 3.6831 0.00000004432 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KSGU

Temperature
anova(ksgu_t10_spline_d,ksgu_t10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.016                             
## 2    330 290.570 -329   -290.56 55.973 0.1062
anova(ksgu_t10_spline_d,ksgu_t10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    354 431.71 -353    -431.7 77.509 0.09037 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t10_spline_m,ksgu_t10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 431.71                                              
## 2    330 290.57 24    141.14 6.6789 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t20_spline_d,ksgu_t20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.001                                
## 2    330 155.854 -329   -155.85 460.16 0.03715 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t20_spline_d,ksgu_t20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.001                                
## 2    354 256.876 -353   -256.88 706.86 0.02998 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t20_spline_m,ksgu_t20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 256.88                                              
## 2    330 155.85 24    101.02 8.9125 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t30_spline_d,ksgu_t30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 115.35 -329   -115.35 935.58 0.02606 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t30_spline_d,ksgu_t30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 186.42 -353   -186.42 1409.2 0.02124 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_t30_spline_m,ksgu_t30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgTemp30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 186.42                                              
## 2    330 115.35 24    71.067 8.4711 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Dewpoint Temperature
anova(ksgu_dp10_spline_d,ksgu_dp10_spline_10d) 
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.47                             
## 2    330 662.18 -329   -661.71 4.3051 0.3698
anova(ksgu_dp10_spline_d,ksgu_dp10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgDPTemp10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.47                             
## 2    354 881.04 -353   -880.57 5.3395 0.3345
anova(ksgu_dp10_spline_m,ksgu_dp10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgDPTemp10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F           Pr(>F)    
## 1    354 881.04                                         
## 2    330 662.18 24    218.87 4.5447 0.00000000008689 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_dp20_spline_d,ksgu_dp20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.082                             
## 2    330 226.117 -329   -226.03 8.3884 0.2699
anova(ksgu_dp20_spline_d,ksgu_dp20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgDPTemp20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.08                            
## 2    354 347.89 -353   -347.81 12.03 0.2267
anova(ksgu_dp20_spline_m,ksgu_dp20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgDPTemp20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 347.89                                              
## 2    330 226.12 24    121.77 7.4049 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_dp30_spline_d,ksgu_dp30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1   0.072                            
## 2    330 156.240 -329   -156.17 6.623 0.3022
anova(ksgu_dp30_spline_d,ksgu_dp30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgDPTemp30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.072                             
## 2    354 280.250 -353   -280.18 11.074  0.236
anova(ksgu_dp30_spline_m,ksgu_dp30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgDPTemp30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgDPTemp30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F                Pr(>F)    
## 1    354 280.25                                              
## 2    330 156.24 24    124.01 10.914 < 0.00000000000000022 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Wind Direction
anova(ksgu_wd10_spline_d,ksgu_wd10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS   Df Sum of Sq      F Pr(>F)
## 1      1     3                             
## 2    330 36405 -329    -36401 32.699 0.1387
anova(ksgu_wd10_spline_d,ksgu_wd10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWDIR10 ~ ns(c(1:366), df = 11)
##   Res.Df   RSS   Df Sum of Sq     F Pr(>F)
## 1      1     3                            
## 2    354 39647 -353    -39643 33.19 0.1377
anova(ksgu_wd10_spline_m,ksgu_wd10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWDIR10 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    354 39647                           
## 2    330 36405 24    3242.1 1.2245 0.2172
anova(ksgu_wd20_spline_d,ksgu_wd20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1    16.5                             
## 2    330 20820.1 -329    -20804 3.8288 0.3903
anova(ksgu_wd20_spline_d,ksgu_wd20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWDIR20 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1    16.5                             
## 2    354 23471.8 -353    -23455 4.0233 0.3816
anova(ksgu_wd20_spline_m,ksgu_wd20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWDIR20 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 23472                              
## 2    330 20820 24    2651.7 1.7513 0.01726 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_wd30_spline_d,ksgu_wd30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1    11.8                             
## 2    330 14440.4 -329    -14429 3.7151 0.3958
anova(ksgu_wd30_spline_d,ksgu_wd30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWDIR30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq     F Pr(>F)
## 1      1    11.8                            
## 2    354 15796.6 -353    -15785 3.788 0.3923
anova(ksgu_wd30_spline_m,ksgu_wd30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWDIR30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWDIR30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F Pr(>F)
## 1    354 15797                           
## 2    330 14440 24    1356.1 1.2913 0.1658
Wind Speed
anova(ksgu_ws10_spline_d,ksgu_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.026                            
## 2    330 78.440 -329   -78.414 9.038 0.2604
anova(ksgu_ws10_spline_d,ksgu_ws10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWSPD10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.026                            
## 2    354 85.957 -353   -85.931 9.231 0.2578
anova(ksgu_ws10_spline_m,ksgu_ws10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWSPD10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 85.957                           
## 2    330 78.440 24    7.5168 1.3176 0.1483
anova(ksgu_ws20_spline_d,ksgu_ws20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq     F Pr(>F)
## 1      1  0.014                            
## 2    330 41.716 -329   -41.702 9.132 0.2591
anova(ksgu_ws20_spline_d,ksgu_ws20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWSPD20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.014                             
## 2    354 45.465 -353   -45.451 9.2764 0.2571
anova(ksgu_ws20_spline_m,ksgu_ws20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWSPD20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F Pr(>F)
## 1    354 45.465                          
## 2    330 41.716 24    3.7497 1.236 0.2076
anova(ksgu_ws30_spline_d,ksgu_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0137                             
## 2    330 27.4675 -329   -27.454 6.0689 0.3149
anova(ksgu_ws30_spline_d,ksgu_ws30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWSPD30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0137                             
## 2    354 30.0419 -353   -30.028 6.1867 0.3121
anova(ksgu_ws30_spline_m,ksgu_ws30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWSPD30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWSPD30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    354 30.042                           
## 2    330 27.468 24    2.5745 1.2888 0.1676
Wind Gust Speed
anova(ksgu_wg10_spline_d,ksgu_wg10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.602                             
## 2    330 104.342 -329   -103.74 0.5235 0.8321
anova(ksgu_wg10_spline_d,ksgu_wg10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWGSP10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1   0.602                             
## 2    354 131.313 -353   -130.71 0.6147  0.797
anova(ksgu_wg10_spline_m,ksgu_wg10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWGSP10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 131.31                                     
## 2    330 104.34 24     26.97 3.5541 0.0000001119 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_wg20_spline_d,ksgu_wg20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.020                             
## 2    330 64.104 -329   -64.084 9.6373 0.2524
anova(ksgu_wg20_spline_d,ksgu_wg20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWGSP20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.020                             
## 2    354 80.707 -353   -80.687 11.309 0.2336
anova(ksgu_wg20_spline_m,ksgu_wg20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWGSP20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 80.707                                     
## 2    330 64.104 24    16.603 3.5612 0.0000001064 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_wg30_spline_d,ksgu_wg30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.007                             
## 2    330 45.416 -329   -45.409 19.541 0.1788
anova(ksgu_wg30_spline_d,ksgu_wg30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgWGSP30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.007                             
## 2    354 58.565 -353   -58.558 23.486 0.1634
anova(ksgu_wg30_spline_m,ksgu_wg30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgWGSP30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgWGSP30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq     F         Pr(>F)    
## 1    354 58.565                                      
## 2    330 45.416 24    13.149 3.981 0.000000005167 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Ceiling Height
anova(ksgu_cig10_spline_d,ksgu_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    180108                              
## 2    330 789765324 -329 -789585216 13.325 0.2157
anova(ksgu_cig10_spline_d,ksgu_cig10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCIG10 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1    180108                              
## 2    354 846938793 -353 -846758685 13.318 0.2158
anova(ksgu_cig10_spline_m,ksgu_cig10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgCCIG10 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F Pr(>F)
## 1    354 846938793                           
## 2    330 789765324 24  57173469 0.9954 0.4717
anova(ksgu_cig20_spline_d,ksgu_cig20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     38696                              
## 2    330 355326592 -329 -355287896 27.907   0.15
anova(ksgu_cig20_spline_d,ksgu_cig20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCIG20 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     38696                              
## 2    354 419269079 -353 -419230383 30.691 0.1431
anova(ksgu_cig20_spline_m,ksgu_cig20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgCCIG20 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 419269079                                  
## 2    330 355326592 24  63942486 2.4744 0.0002027 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_cig30_spline_d,ksgu_cig30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     24205                              
## 2    330 238893584 -329 -238869379 29.996 0.1448
anova(ksgu_cig30_spline_d,ksgu_cig30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCIG30 ~ ns(c(1:366), df = 11)
##   Res.Df       RSS   Df  Sum of Sq      F Pr(>F)
## 1      1     24205                              
## 2    354 293487902 -353 -293463697 34.346 0.1354
anova(ksgu_cig30_spline_m,ksgu_cig30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCIG30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgCCIG30 ~ ns(c(1:366), df = 35)
##   Res.Df       RSS Df Sum of Sq      F      Pr(>F)    
## 1    354 293487902                                    
## 2    330 238893584 24  54594319 3.1423 0.000002089 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Visibility
anova(ksgu_vis10_spline_d,ksgu_vis10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1     4249                             
## 2    330 23208038 -329 -23203789 16.599 0.1937
anova(ksgu_vis10_spline_d,ksgu_vis10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgVIS10 ~ ns(c(1:366), df = 11)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1     4249                             
## 2    354 27597477 -353 -27593228 18.396 0.1842
anova(ksgu_vis10_spline_m,ksgu_vis10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgVIS10 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS Df Sum of Sq      F     Pr(>F)    
## 1    354 27597477                                   
## 2    330 23208038 24   4389439 2.6006 0.00008743 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_vis20_spline_d,ksgu_vis20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1     855                             
## 2    330 8799757 -329  -8798902 31.268 0.1418
anova(ksgu_vis20_spline_d,ksgu_vis20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgVIS20 ~ ns(c(1:366), df = 11)
##   Res.Df      RSS   Df Sum of Sq      F Pr(>F)
## 1      1      855                             
## 2    354 10038808 -353 -10037953 33.246 0.1376
anova(ksgu_vis20_spline_m,ksgu_vis20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgVIS20 ~ ns(c(1:366), df = 35)
##   Res.Df      RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 10038808                                
## 2    330  8799757 24   1239051 1.9361 0.005992 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_vis30_spline_d,ksgu_vis30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1     175                                
## 2    330 6010099 -329  -6009925 104.59 0.07783 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_vis30_spline_d,ksgu_vis30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgVIS30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1     175                                
## 2    354 6796005 -353  -6795830 110.23 0.07583 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_vis30_spline_m,ksgu_vis30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgVIS30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgVIS30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq     F Pr(>F)  
## 1    354 6796005                            
## 2    330 6010099 24    785906 1.798 0.0133 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Cloud Cover
anova(ksgu_cc10_spline_d,ksgu_cc10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0089                             
## 2    330 26.9284 -329   -26.919 9.2308 0.2577
anova(ksgu_cc10_spline_d,ksgu_cc10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCOV10 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.009                             
## 2    354 31.797 -353   -31.788 10.159 0.2461
anova(ksgu_cc10_spline_m,ksgu_cc10_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgCCOV10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    354 31.797                                  
## 2    330 26.928 24    4.8684 2.4858 0.0001879 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_cc20_spline_d,ksgu_cc20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.007                             
## 2    330 42.063 -329   -42.055 17.849  0.187
anova(ksgu_cc20_spline_d,ksgu_cc20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCOV20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.007                             
## 2    354 52.070 -353   -52.062 20.594 0.1743
anova(ksgu_cc20_spline_m,ksgu_cc20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgCCOV20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 52.070                                     
## 2    330 42.063 24    10.007 3.2712 0.0000008404 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_cc30_spline_d,ksgu_cc30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.0041                             
## 2    330 28.9134 -329   -28.909 21.561 0.1704
anova(ksgu_cc30_spline_d,ksgu_cc30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgCCOV30 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F Pr(>F)
## 1      1  0.004                             
## 2    354 36.409 -353   -36.405 25.306 0.1575
anova(ksgu_cc30_spline_m,ksgu_cc30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgCCOV30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgCCOV30 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F       Pr(>F)    
## 1    354 36.409                                     
## 2    330 28.913 24     7.496 3.5648 0.0000001036 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Average Altimeter Setting
anova(ksgu_alt10_spline_d,ksgu_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.02                                
## 2    330 913.61 -329   -913.58 118.82 0.07304 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt10_spline_d,ksgu_alt10_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS10 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgALTS10 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1    0.02                                
## 2    354 1011.05 -353     -1011 122.55 0.07193 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt10_spline_m,ksgu_alt10_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS10 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgALTS10 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS Df Sum of Sq      F  Pr(>F)  
## 1    354 1011.05                              
## 2    330  913.61 24    97.439 1.4665 0.07551 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt20_spline_d,ksgu_alt20_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    330 415.76 -329   -415.76 3519.6 0.01344 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt20_spline_d,ksgu_alt20_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS20 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgALTS20 ~ ns(c(1:366), df = 11)
##   Res.Df    RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.00                                
## 2    354 480.06 -353   -480.06 3787.6 0.01295 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt20_spline_m,ksgu_alt20_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS20 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgALTS20 ~ ns(c(1:366), df = 35)
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 480.06                                
## 2    330 415.76 24    64.298 2.1265 0.001891 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt30_spline_d,ksgu_alt30_spline_10d)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.001                                
## 2    330 262.496 -329    -262.5 994.71 0.02527 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt30_spline_d,ksgu_alt30_spline_m)
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS30 ~ ns(c(1:366), df = 364)
## Model 2: ksgu_avgALTS30 ~ ns(c(1:366), df = 11)
##   Res.Df     RSS   Df Sum of Sq      F  Pr(>F)  
## 1      1   0.001                                
## 2    354 303.595 -353   -303.59 1072.2 0.02435 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(ksgu_alt30_spline_m,ksgu_alt30_spline_10d) # this one
## Analysis of Variance Table
## 
## Model 1: ksgu_avgALTS30 ~ ns(c(1:366), df = 11)
## Model 2: ksgu_avgALTS30 ~ ns(c(1:366), df = 35)
##   Res.Df   RSS Df Sum of Sq      F   Pr(>F)   
## 1    354 303.6                                
## 2    330 262.5 24    41.098 2.1528 0.001605 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANOVA Comparison Table

Note:

  • GREEN - Shows high statistical significance.

  • ORANGE - Shows marginal statistical significance. Approaching P(>F) ~ 5%

  • RED - Shows low/no statistical significance

VARIABLE KRDM KBUF KFOE KMSN KTRI PAJN KELP KSGU
Temp (10-day/Monthly) Y Y Y Y Y Y Y Y
Temp (10-day/Daily) N N N N M N N M
Temp (Daily/Monthly) N N N N M N N M
DP Temp (10-day/Monthly) Y Y Y Y Y Y Y Y
DP Temp (10-day/Daily) N M M M M N N N
DP Temp (Daily/Monthly) N M M M M N N N
WD (10-day/Monthly) Y M Y Y Y Y Y M
WD (10-day/Daily) N N N N N N N N
WD (Daily/Monthly) N N N N N N N N
WS (10-day/Monthly) Y M M N M Y N N
WS (10-day/Daily) N N N N M N N N
WS (Daily/Monthly) N N N N N N N N
CIG (10-day/Monthly) Y Y Y M Y Y Y Y
CIG (10-day/Daily) N N N N N N N N
CIG (Daily/Monthly) N N N N N N N N
VIS (10-day/Monthly) Y M Y M Y Y M Y
VIS (10-day/Daily) N M N M N N N N
VIS (Daily/Monthly) N M N M N N N N
CC (10-day/Monthly) Y Y Y Y Y Y Y Y
CC (10-day/Daily) M N N N N N N N
CC (Daily/Monthly) M N N N N N N N
ALT (10-day/Monthly) Y Y Y Y Y Y Y M
ALT (10-day/Daily) M M N M N M N M
ALT (Daily/Monthly) M M N M N M N M

Significant Spline Comparisons

KRDM

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
10 year Monthly vs. 10-day Wind Speed Spline
10 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
10 year Monthly vs. 10-day Visibility Spline
10 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline

KBUF

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
10 year Monthly vs. 10-day Wind Speed Spline
10 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

KFOE

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
10 year Monthly vs. 10-day Wind Speed Spline
10 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
10 year Monthly vs. 10-day Visibility Spline
10 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

KMSN

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
10 year Monthly vs. 10-day Wind Speed Spline
10 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
10 year Monthly vs. 10-day Visibility Spline
10 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. Daily Visibility Spline
20 year Monthly vs. Daily Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

KTRI

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
20 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
10 year Monthly vs. 10-day Visibility Spline
10 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

PAJN

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
10 year Monthly vs. 10-day Wind Speed Spline
10 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
10 year Monthly vs. 10-day Visibility Spline
10 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

KELP

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
30 year Monthly vs. 10-day Wind Speed Spline
30 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
10 year Monthly vs. 10-day Cloud Ceiling Spline
10 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
10 year Monthly vs. 10-day Altimeter Spline
10 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

KSGU

Temperature
10 year Monthly vs. 10-day Temperature Spline
10 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
20 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
30 year Monthly vs. 10-day Temperature Spline
Dewpoint Temperature
10 year Monthly vs. 10-day Dewpoint Temperature Spline
10 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
20 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
30 year Monthly vs. 10-day Dewpoint Temperature Spline
Wind Direction
10 year Monthly vs. 10-day Wind Direction Spline
10 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
20 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
30 year Monthly vs. 10-day Wind Direction Spline
Wind Speed
20 year Monthly vs. 10-day Wind Speed Spline
20 year Monthly vs. 10-day Wind Speed Spline
Wind Gust Speed
10 year Monthly vs. 10-day Wind Gust Spline
10 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
20 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
30 year Monthly vs. 10-day Wind Gust Spline
Average Cloud Ceiling Height
20 year Monthly vs. 10-day Cloud Ceiling Spline
20 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
30 year Monthly vs. 10-day Cloud Ceiling Spline
Average Visibility
10 year Monthly vs. 10-day Visibility Spline
10 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
20 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
30 year Monthly vs. 10-day Visibility Spline
Average Cloud Cover
10 year Monthly vs. 10-day Cloud Cover Spline
10 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
20 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
30 year Monthly vs. 10-day Cloud Cover Spline
Average Altimeter Setting
20 year Monthly vs. 10-day Altimeter Spline
20 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline
30 year Monthly vs. 10-day Altimeter Spline

Domain 5

Modeling

Adjusted R-squared Comparison

Due to the amount of datapoints, the adjusted R-squared value is utilized in comparing the fit of the splines. We find that the Daily spline over-fit the data, and statistically, this is not as useful. Therefore, when comparing the 10-day vs. Monthly splines, we can see that the 10-day spline, typically outperforms the monthly in every metric.

It appears that 30-years of data is most accurate. However, this does not allow for rapid changes in data. 10-years of data may be the optimal selection. Additionally, it is seen that there are variables and locations that perform much better with 20 years of data than 10. Rather than saying 20 or 30 years should be used for all variables, for the under-performing variables, 20-years of data should be considered for additional data for better fitting.

for(i in 1:length(r_squared.df$station)) {
  # 10 year 10-day and monthly comparison
  if(r_squared.df$ten_yr_monthly[i]>r_squared.df$ten_yr_10day[i]){
    print(paste0(r_squared.df$station[i]," 10-year ",r_squared.df$vars[i]," monthly adjusted r-squared value better than 10-day: ", round(r_squared.df$ten_yr_monthly[i],4)))
  } else {
    print(paste0(r_squared.df$station[i]," 10-year ",r_squared.df$vars[i]," 10-day adjusted r-squared value better than monthly: ", round(r_squared.df$ten_yr_10day[i],4)))
  }
  # 20 year 10-day and monthly comparison
  if(r_squared.df$twenty_yr_monthly[i]>r_squared.df$twenty_yr_10day[i]){
    print(paste0(r_squared.df$station[i]," 20-year ",r_squared.df$vars[i]," monthly adjusted r-squared value better than 10-day: ", round(r_squared.df$twenty_yr_monthly[i],4)))
  } else {
    print(paste0(r_squared.df$station[i]," 20-year ",r_squared.df$vars[i]," 10-day adjusted r-squared value better than monthly: ", round(r_squared.df$twenty_yr_10day[i],4)))
  }
  # 30 year 10-day and monthly comparison
  if(r_squared.df$thirty_yr_monthly[i]>r_squared.df$thirty_yr_10day[i]){
    print(paste0(r_squared.df$station[i]," 30-year ",r_squared.df$vars[i]," monthly adjusted r-squared value better than 10-day: ", round(r_squared.df$thirty_yr_monthly[i],4)))
  } else {
    print(paste0(r_squared.df$station[i]," 30-year ",r_squared.df$vars[i]," 10-day adjusted r-squared value better than monthly: ", round(r_squared.df$thirty_yr_10day[i],4)))
  }
}
## [1] "KRDM 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9774"
## [1] "KRDM 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.988"
## [1] "KRDM 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9916"
## [1] "KRDM 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9158"
## [1] "KRDM 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9513"
## [1] "KRDM 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9682"
## [1] "KRDM 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.5491"
## [1] "KRDM 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.6959"
## [1] "KRDM 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.7417"
## [1] "KRDM 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.3405"
## [1] "KRDM 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.5418"
## [1] "KRDM 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.5973"
## [1] "KRDM 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5292"
## [1] "KRDM 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5181"
## [1] "KRDM 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5755"
## [1] "KRDM 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.7501"
## [1] "KRDM 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.8619"
## [1] "KRDM 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.9065"
## [1] "KRDM 10-year Visibility 10-day adjusted r-squared value better than monthly: 0.5538"
## [1] "KRDM 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.7137"
## [1] "KRDM 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.7852"
## [1] "KRDM 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.6812"
## [1] "KRDM 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.8517"
## [1] "KRDM 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.9098"
## [1] "KRDM 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.3371"
## [1] "KRDM 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.4607"
## [1] "KRDM 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.4812"
## [1] "KBUF 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9845"
## [1] "KBUF 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.993"
## [1] "KBUF 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9948"
## [1] "KBUF 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9778"
## [1] "KBUF 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9892"
## [1] "KBUF 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9926"
## [1] "KBUF 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.2192"
## [1] "KBUF 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.3164"
## [1] "KBUF 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.3796"
## [1] "KBUF 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.536"
## [1] "KBUF 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.6701"
## [1] "KBUF 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.7399"
## [1] "KBUF 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.482"
## [1] "KBUF 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5719"
## [1] "KBUF 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.2779"
## [1] "KBUF 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.6745"
## [1] "KBUF 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.7919"
## [1] "KBUF 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.8529"
## [1] "KBUF 10-year Visibility monthly adjusted r-squared value better than 10-day: 0.6091"
## [1] "KBUF 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.7963"
## [1] "KBUF 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.8166"
## [1] "KBUF 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.6871"
## [1] "KBUF 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.7839"
## [1] "KBUF 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.8427"
## [1] "KBUF 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.3421"
## [1] "KBUF 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.4727"
## [1] "KBUF 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.4619"
## [1] "KFOE 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9769"
## [1] "KFOE 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.9895"
## [1] "KFOE 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9927"
## [1] "KFOE 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9745"
## [1] "KFOE 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9877"
## [1] "KFOE 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9919"
## [1] "KFOE 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.4019"
## [1] "KFOE 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.5716"
## [1] "KFOE 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.6602"
## [1] "KFOE 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.5213"
## [1] "KFOE 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.6549"
## [1] "KFOE 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.7486"
## [1] "KFOE 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.4024"
## [1] "KFOE 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5537"
## [1] "KFOE 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.6183"
## [1] "KFOE 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.4505"
## [1] "KFOE 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.5906"
## [1] "KFOE 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.6789"
## [1] "KFOE 10-year Visibility 10-day adjusted r-squared value better than monthly: 0.2871"
## [1] "KFOE 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.4619"
## [1] "KFOE 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.5475"
## [1] "KFOE 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.254"
## [1] "KFOE 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.4247"
## [1] "KFOE 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.5275"
## [1] "KFOE 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.5007"
## [1] "KFOE 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.6962"
## [1] "KFOE 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.7777"
## [1] "KMSN 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9846"
## [1] "KMSN 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.9937"
## [1] "KMSN 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9954"
## [1] "KMSN 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9775"
## [1] "KMSN 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9893"
## [1] "KMSN 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9925"
## [1] "KMSN 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.3296"
## [1] "KMSN 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.4307"
## [1] "KMSN 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.5024"
## [1] "KMSN 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.4616"
## [1] "KMSN 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.6521"
## [1] "KMSN 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.7511"
## [1] "KMSN 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.2561"
## [1] "KMSN 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.2957"
## [1] "KMSN 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.3657"
## [1] "KMSN 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.3871"
## [1] "KMSN 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.5812"
## [1] "KMSN 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.6893"
## [1] "KMSN 10-year Visibility 10-day adjusted r-squared value better than monthly: 0.355"
## [1] "KMSN 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.579"
## [1] "KMSN 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.619"
## [1] "KMSN 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.4217"
## [1] "KMSN 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.5584"
## [1] "KMSN 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.6523"
## [1] "KMSN 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.381"
## [1] "KMSN 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.5136"
## [1] "KMSN 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.5828"
## [1] "KTRI 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9731"
## [1] "KTRI 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.9898"
## [1] "KTRI 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9938"
## [1] "KTRI 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9577"
## [1] "KTRI 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9824"
## [1] "KTRI 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9893"
## [1] "KTRI 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.1942"
## [1] "KTRI 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.2403"
## [1] "KTRI 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.3067"
## [1] "KTRI 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.5055"
## [1] "KTRI 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.7122"
## [1] "KTRI 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.7902"
## [1] "KTRI 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5407"
## [1] "KTRI 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.586"
## [1] "KTRI 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.7151"
## [1] "KTRI 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.3503"
## [1] "KTRI 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.473"
## [1] "KTRI 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.6294"
## [1] "KTRI 10-year Visibility 10-day adjusted r-squared value better than monthly: 0.2572"
## [1] "KTRI 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.3982"
## [1] "KTRI 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.6566"
## [1] "KTRI 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.3774"
## [1] "KTRI 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.355"
## [1] "KTRI 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.481"
## [1] "KTRI 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.4022"
## [1] "KTRI 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.5552"
## [1] "KTRI 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.6082"
## [1] "PAJN 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.985"
## [1] "PAJN 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.9924"
## [1] "PAJN 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9946"
## [1] "PAJN 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9719"
## [1] "PAJN 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9868"
## [1] "PAJN 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9892"
## [1] "PAJN 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.3943"
## [1] "PAJN 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.5582"
## [1] "PAJN 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.6696"
## [1] "PAJN 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.1329"
## [1] "PAJN 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.1992"
## [1] "PAJN 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.266"
## [1] "PAJN 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5592"
## [1] "PAJN 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5253"
## [1] "PAJN 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5486"
## [1] "PAJN 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.4191"
## [1] "PAJN 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.4649"
## [1] "PAJN 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.5382"
## [1] "PAJN 10-year Visibility 10-day adjusted r-squared value better than monthly: 0.629"
## [1] "PAJN 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.7956"
## [1] "PAJN 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.8598"
## [1] "PAJN 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.4313"
## [1] "PAJN 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.4607"
## [1] "PAJN 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.5319"
## [1] "PAJN 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.589"
## [1] "PAJN 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.7329"
## [1] "PAJN 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.7849"
## [1] "KELP 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9818"
## [1] "KELP 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.991"
## [1] "KELP 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9937"
## [1] "KELP 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9621"
## [1] "KELP 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9849"
## [1] "KELP 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9908"
## [1] "KELP 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.4459"
## [1] "KELP 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.6711"
## [1] "KELP 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.7466"
## [1] "KELP 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.573"
## [1] "KELP 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.748"
## [1] "KELP 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.8319"
## [1] "KELP 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.4083"
## [1] "KELP 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5064"
## [1] "KELP 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.5262"
## [1] "KELP 10-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.3646"
## [1] "KELP 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.5856"
## [1] "KELP 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.6163"
## [1] "KELP 10-year Visibility monthly adjusted r-squared value better than 10-day: 0.0552"
## [1] "KELP 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.1779"
## [1] "KELP 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.7587"
## [1] "KELP 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.4521"
## [1] "KELP 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.6775"
## [1] "KELP 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.6916"
## [1] "KELP 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.6931"
## [1] "KELP 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.8355"
## [1] "KELP 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.8928"
## [1] "KSGU 10-year Temperature 10-day adjusted r-squared value better than monthly: 0.9901"
## [1] "KSGU 20-year Temperature 10-day adjusted r-squared value better than monthly: 0.9949"
## [1] "KSGU 30-year Temperature 10-day adjusted r-squared value better than monthly: 0.9962"
## [1] "KSGU 10-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9133"
## [1] "KSGU 20-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9668"
## [1] "KSGU 30-year Dewpoint Temperature 10-day adjusted r-squared value better than monthly: 0.9752"
## [1] "KSGU 10-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.123"
## [1] "KSGU 20-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.4246"
## [1] "KSGU 30-year Wind Direction 10-day adjusted r-squared value better than monthly: 0.6096"
## [1] "KSGU 10-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.7286"
## [1] "KSGU 20-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.8454"
## [1] "KSGU 30-year Wind Speed 10-day adjusted r-squared value better than monthly: 0.8949"
## [1] "KSGU 10-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.2727"
## [1] "KSGU 20-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.41"
## [1] "KSGU 30-year Wind Gust Speed 10-day adjusted r-squared value better than monthly: 0.4607"
## [1] "KSGU 10-year Cloud Ceiling monthly adjusted r-squared value better than 10-day: 0.4792"
## [1] "KSGU 20-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.6413"
## [1] "KSGU 30-year Cloud Ceiling 10-day adjusted r-squared value better than monthly: 0.7356"
## [1] "KSGU 10-year Visibility 10-day adjusted r-squared value better than monthly: 0.1417"
## [1] "KSGU 20-year Visibility 10-day adjusted r-squared value better than monthly: 0.2776"
## [1] "KSGU 30-year Visibility 10-day adjusted r-squared value better than monthly: 0.3198"
## [1] "KSGU 10-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.4079"
## [1] "KSGU 20-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.5783"
## [1] "KSGU 30-year Cloud Cover 10-day adjusted r-squared value better than monthly: 0.6944"
## [1] "KSGU 10-year Altimeter 10-day adjusted r-squared value better than monthly: 0.7538"
## [1] "KSGU 20-year Altimeter 10-day adjusted r-squared value better than monthly: 0.8763"
## [1] "KSGU 30-year Altimeter 10-day adjusted r-squared value better than monthly: 0.9181"

To visualize this in chart form, the following is a tabulated representation that provides an optimal chart of which time-frame to use (10-, 20-, or 30-year) for which respective variable. Notice that for most variables, the 20-year average is an optimal amount of data to use. This is assessed by looking at the adjusted r2 values for the data and looking at how much of an improvement exists by adding more data. If the improvement is minimal, then a lower r2 value is used. If there is a greater improvement in the r2 by adding more data, then we highlight the larger dataset.

Location/Variable 10-year 20-year 30-year
KRDM/Temperature 0.9774 0.988 0.9916
KRDM/Dewpoint Temperature 0.9158 0.9513 0.9682
KRDM/Wind Direction 0.5491 0.6959 0.7417
KRDM/Wind Speed 0.3405 0.5418 0.5973
KRDM/Wind Gust Speed 0.5292 0.5181 0.5755
KRDM/Cloud Ceiling 0.7501 0.8619 0.9065
KRDM/Visibility 0.5538 0.7137 0.7852
KRDM/Cloud Cover 0.6812 0.8517 0.9098
KRDM/Altimeter 0.3371 0.4607 0.4812
KBUF/Temperature 0.9845 0.993 0.9948
KBUF/Dewpoint Temperature 0.9778 0.9892 0.9926
KBUF/Wind Direction 0.2192 0.3164 0.3796
KBUF/Wind Speed 0.536 0.6701 0.7399
KBUF/Wind Gust Speed 0.482 0.5719 0.2779
KBUF/Cloud Ceiling 0.6745 0.7919 0.8529
KBUF/Visibility 0.6025 0.7963 0.8166
KBUF/Cloud Cover 0.6871 0.7839 0.8427
KBUF/Altimeter 0.3421 0.4727 0.4619
KFOE/Temperature 0.9769 0.9895 0.9927
KFOE/Dewpoint Temperature 0.9745 0.9877 0.9919
KFOE/Wind Direction 0.4019 0.5716 0.6602
KFOE/Wind Speed 0.5213 0.6549 0.7486
KFOE/Wind Gust Speed 0.4024 0.5537 0.6183
KFOE/Cloud Ceiling 0.4505 0.5906 0.6789
KFOE/Visibility 0.2871 0.4619 0.5475
KFOE/Cloud Cover 0.254 0.4247 0.5275
KFOE/Altimeter 0.5007 0.6962 0.7777
KMSN/Temperature 0.9846 0.9937 0.9954
KMSN/Dewpoint Temperature 0.9775 0.9893 0.9925
KMSN/Wind Direction 0.3296 0.4307 0.5024
KMSN/Wind Speed 0.4616 0.6521 0.7511
KMSN/Wind Gust Speed 0.2561 0.2957 0.3657
KMSN/Cloud Ceiling 0.3871 0.5812 0.6893
KMSN/Visibility 0.355 0.579 0.619
KMSN/Cloud Cover 0.4217 0.5584 0.6523
KMSN/Altimeter 0.381 0.5136 0.5828
KTRI/Temperature 0.9731 0.9898 0.9938
KTRI/Dewpoint Temperature 0.9577 0.9824 0.9893
KTRI/Wind Direction 0.1942 0.2403 0.3067
KTRI/Wind Speed 0.5055 0.7122 0.7902
KTRI/Wind Gust Speed 0.5407 0.586 0.7151
KTRI/Cloud Ceiling 0.3503 0.473 0.6294
KTRI/Visibility 0.2572 0.3982 0.6566
KTRI/Cloud Cover 0.3774 0.355 0.481
KTRI/Altimeter 0.4022 0.5552 0.6082
PAJN/Temperature 0.985 0.9924 0.9946
PAJN/Dewpoint Temperature 0.9719 0.9868 0.9892
PAJN/Wind Direction 0.3943 0.5582 0.6696
PAJN/Wind Speed 0.1329 0.1992 0.266
PAJN/Wind Gust Speed 0.5592 0.5253 0.5486
PAJN/Cloud Ceiling 0.4191 0.4649 0.5382
PAJN/Visibility 0.629 0.7956 0.8598
PAJN/Cloud Cover 0.4313 0.4607 0.5319
PAJN/Altimeter 0.589 0.7329 0.7849
KELP/Temperature 0.9818 0.991 0.9937
KELP/Dewpoint Temperature 0.9621 0.9849 0.9908
KELP/Wind Direction 0.4459 0.6711 0.7466
KELP/Wind Speed 0.573 0.748 0.8319
KELP/Wind Gust Speed 0.4083 0.5064 0.5262
KELP/Cloud Ceiling 0.3646 0.5856 0.6163
KELP/Visibility 0.0298 0.1779 0.7587
KELP/Cloud Cover 0.4521 0.6775 0.6916
KELP/Altimeter 0.6931 0.8355 0.8928
KSGU/Temperature 0.9901 0.9949 0.9962
KSGU/Dewpoint Temperature 0.9133 0.9668 0.9752
KSGU/Wind Direction 0.123 0.4246 0.6096
KSGU/Wind Speed 0.7286 0.8454 0.8949
KSGU/Wind Gust Speed 0.2727 0.41 0.4607
KSGU/Cloud Ceiling 0.479 0.6413 0.7356
KSGU/Visibility 0.1417 0.2776 0.3198
KSGU/Cloud Cover 0.4079 0.5783 0.6944
KSGU/Altimeter 0.7538 0.8763 0.9181

Note that the data suggests that 20-years of data provides an overall, better fit to the data.

Spline Comparison

We will compare the spline models generated by doing the following:

  • Create subsets of the data: 1994-2003, 2004-2013, and 2014-2023

  • Generate linear regressions for each Julian Day for each of the date ranges. This will calculate the trend for each 10 year span.

Of note, a positive number is the slope, or a positive trend in the data. For temperature, this would indicate a warming trend for that portion of the year. A negative number would indicate a cooling trend for that portion of the year.

Heavy Snow Winter

Comparison of KRDM and KBUF 10-day Temperature Splines Comparison of KRDM and KBUF 10-day Dewpoint Temperature Splines Comparison of KRDM and KBUF 10-day Wind Direction Splines Comparison of KRDM and KBUF 10-day Wind Speed Splines Comparison of KRDM and KBUF 10-day Wind Gust Speed Splines Comparison of KRDM and KBUF 10-day Cloud Ceiling Splines Comparison of KRDM and KBUF 10-day Visibility Splines Comparison of KRDM and KBUF 10-day Cloud Cover Splines Comparison of KRDM and KBUF 10-day Altimeter Splines Comparison of KRDM and KBUF Precipitation

Warm Summer, Cold Winter

Comparison of KFOE, KMSN, KTRI, PAJN 10-day Temperature Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Dewpoint Temperature Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Wind Direction Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Wind Speed Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Wind Gust Speed Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Cloud Ceiling Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Visibility Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Cloud Cover Splines Comparison of KFOE, KMSN, KTRI, PAJN 10-day Altimeter Splines Comparison of KFOE, KMSN, KTRI, PAJN Precipitation

Arid

Comparison of KELP and KSGU 10-day Temperature Splines Comparison of 10-day Dewpoint Temperature Splines Comparison of 10-day Wind Direction Splines Comparison of 10-day Wind Speed Splines Comparison of 10-day Wind Gust Speed Splines Comparison of 10-day Cloud Ceiling Splines Comparison of 10-day Visibility Splines Comparison of 10-day Cloud Cover Splines Comparison of 10-day Altimeter Splines Comparison of Precipitation

Adjusted R-squared with adjusted 10-year intervals

Notice below that previous decades of splines outperformed the latest 10 years of data. This implies that using 10 years of data is changing in a couple of ways:

  1. The sensors could be reporting better observations than they previously reported.

  2. The conditions are changing more quickly than previously observed.

  3. With time, as the human element has been removed from observation transmission, the quality of observations has decreased which has introduced more errors into the observations.

ten = 0
twenty = 0
thirty = 0
for(i in 1:length(r_squared_revised.df$station)) {
  vals = c(r_squared_revised.df$ten_yr_10day[i],r_squared_revised.df$twenty_yr_rvsd_10day[i],r_squared_revised.df$thirty_yr_rvsd_10day[i])
  maximum = max(vals)
  if(r_squared_revised.df$ten_yr_10day[i]==maximum) {
    print(paste0(r_squared_revised.df$station[i]," 10-year ",r_squared_revised.df$vars[i]," adjusted r-squared outperforms others: ",round(r_squared_revised.df$ten_yr_10day[i],4)))
    ten = ten + 1
  }
  if(r_squared_revised.df$twenty_yr_rvsd_10day[i]==maximum) {
    print(paste0(r_squared_revised.df$station[i]," 20-year ",r_squared_revised.df$vars[i]," adjusted r-squared outperforms others: ",round(r_squared_revised.df$twenty_yr_rvsd_10day[i],4)))
    twenty = twenty + 1
  } 
  if(r_squared_revised.df$thirty_yr_rvsd_10day[i]==maximum) {
    print(paste0(r_squared_revised.df$station[i]," 30-year ",r_squared_revised.df$vars[i]," adjusted r-squared outperforms others: ",round(r_squared_revised.df$thirty_yr_rvsd_10day[i],4)))
    thirty = thirty + 1
  }
}
## [1] "KRDM 20-year Temperature adjusted r-squared outperforms others: 0.9791"
## [1] "KRDM 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9682"
## [1] "KRDM 30-year Wind Direction adjusted r-squared outperforms others: 0.7417"
## [1] "KRDM 30-year Wind Speed adjusted r-squared outperforms others: 0.5973"
## [1] "KRDM 30-year Wind Gust Speed adjusted r-squared outperforms others: 0.5755"
## [1] "KRDM 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.9065"
## [1] "KRDM 30-year Visibility adjusted r-squared outperforms others: 0.7852"
## [1] "KRDM 30-year Cloud Cover adjusted r-squared outperforms others: 0.9098"
## [1] "KRDM 30-year Altimeter adjusted r-squared outperforms others: 0.4812"
## [1] "KBUF 20-year Temperature adjusted r-squared outperforms others: 0.9869"
## [1] "KBUF 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9926"
## [1] "KBUF 30-year Wind Direction adjusted r-squared outperforms others: 0.3796"
## [1] "KBUF 30-year Wind Speed adjusted r-squared outperforms others: 0.7399"
## [1] "KBUF 20-year Wind Gust Speed adjusted r-squared outperforms others: 0.5719"
## [1] "KBUF 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.8529"
## [1] "KBUF 30-year Visibility adjusted r-squared outperforms others: 0.8166"
## [1] "KBUF 30-year Cloud Cover adjusted r-squared outperforms others: 0.8427"
## [1] "KBUF 20-year Altimeter adjusted r-squared outperforms others: 0.4727"
## [1] "KFOE 20-year Temperature adjusted r-squared outperforms others: 0.9844"
## [1] "KFOE 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9919"
## [1] "KFOE 30-year Wind Direction adjusted r-squared outperforms others: 0.6602"
## [1] "KFOE 30-year Wind Speed adjusted r-squared outperforms others: 0.7486"
## [1] "KFOE 30-year Wind Gust Speed adjusted r-squared outperforms others: 0.6183"
## [1] "KFOE 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.6789"
## [1] "KFOE 30-year Visibility adjusted r-squared outperforms others: 0.5475"
## [1] "KFOE 30-year Cloud Cover adjusted r-squared outperforms others: 0.5275"
## [1] "KFOE 30-year Altimeter adjusted r-squared outperforms others: 0.7777"
## [1] "KMSN 20-year Temperature adjusted r-squared outperforms others: 0.9876"
## [1] "KMSN 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9925"
## [1] "KMSN 30-year Wind Direction adjusted r-squared outperforms others: 0.5024"
## [1] "KMSN 30-year Wind Speed adjusted r-squared outperforms others: 0.7511"
## [1] "KMSN 30-year Wind Gust Speed adjusted r-squared outperforms others: 0.3657"
## [1] "KMSN 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.6893"
## [1] "KMSN 30-year Visibility adjusted r-squared outperforms others: 0.619"
## [1] "KMSN 30-year Cloud Cover adjusted r-squared outperforms others: 0.6523"
## [1] "KMSN 30-year Altimeter adjusted r-squared outperforms others: 0.5828"
## [1] "KTRI 20-year Temperature adjusted r-squared outperforms others: 0.9865"
## [1] "KTRI 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9893"
## [1] "KTRI 30-year Wind Direction adjusted r-squared outperforms others: 0.3067"
## [1] "KTRI 30-year Wind Speed adjusted r-squared outperforms others: 0.7902"
## [1] "KTRI 30-year Wind Gust Speed adjusted r-squared outperforms others: 0.7151"
## [1] "KTRI 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.6294"
## [1] "KTRI 30-year Visibility adjusted r-squared outperforms others: 0.6566"
## [1] "KTRI 30-year Cloud Cover adjusted r-squared outperforms others: 0.481"
## [1] "KTRI 30-year Altimeter adjusted r-squared outperforms others: 0.6082"
## [1] "PAJN 10-year Temperature adjusted r-squared outperforms others: 0.985"
## [1] "PAJN 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9892"
## [1] "PAJN 30-year Wind Direction adjusted r-squared outperforms others: 0.6696"
## [1] "PAJN 30-year Wind Speed adjusted r-squared outperforms others: 0.266"
## [1] "PAJN 10-year Wind Gust Speed adjusted r-squared outperforms others: 0.5592"
## [1] "PAJN 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.5382"
## [1] "PAJN 30-year Visibility adjusted r-squared outperforms others: 0.8598"
## [1] "PAJN 30-year Cloud Cover adjusted r-squared outperforms others: 0.5319"
## [1] "PAJN 30-year Altimeter adjusted r-squared outperforms others: 0.7849"
## [1] "KELP 20-year Temperature adjusted r-squared outperforms others: 0.9856"
## [1] "KELP 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9908"
## [1] "KELP 30-year Wind Direction adjusted r-squared outperforms others: 0.7466"
## [1] "KELP 30-year Wind Speed adjusted r-squared outperforms others: 0.8319"
## [1] "KELP 30-year Wind Gust Speed adjusted r-squared outperforms others: 0.5262"
## [1] "KELP 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.6163"
## [1] "KELP 30-year Visibility adjusted r-squared outperforms others: 0.7587"
## [1] "KELP 30-year Cloud Cover adjusted r-squared outperforms others: 0.6916"
## [1] "KELP 30-year Altimeter adjusted r-squared outperforms others: 0.8928"
## [1] "KSGU 20-year Temperature adjusted r-squared outperforms others: 0.9922"
## [1] "KSGU 30-year Dewpoint Temperature adjusted r-squared outperforms others: 0.9752"
## [1] "KSGU 30-year Wind Direction adjusted r-squared outperforms others: 0.6096"
## [1] "KSGU 30-year Wind Speed adjusted r-squared outperforms others: 0.8949"
## [1] "KSGU 30-year Wind Gust Speed adjusted r-squared outperforms others: 0.4607"
## [1] "KSGU 30-year Cloud Ceiling adjusted r-squared outperforms others: 0.7356"
## [1] "KSGU 30-year Visibility adjusted r-squared outperforms others: 0.3198"
## [1] "KSGU 30-year Cloud Cover adjusted r-squared outperforms others: 0.6944"
## [1] "KSGU 30-year Altimeter adjusted r-squared outperforms others: 0.9181"
print(paste0("Number of times 10-year was the best adjusted r-squared: ",ten))
## [1] "Number of times 10-year was the best adjusted r-squared: 2"
print(paste0("Number of times 10-year was the best adjusted r-squared: ",twenty))
## [1] "Number of times 10-year was the best adjusted r-squared: 9"
print(paste0("Number of times 10-year was the best adjusted r-squared: ",thirty))
## [1] "Number of times 10-year was the best adjusted r-squared: 61"

Trend Analysis

Here we perform an analysis of the previous spline trends. As mentioned - the positive numbers mean a positive slope, the negative numbers are a negative slope. We will sum the numbers - if the result is positive, there is a positive trend over the years and, if the sum is negative, there is a negative trend over the years.

KRDM

print(paste0("krdm temperature slope trend: ",round(sum(krdm_t_fv),1),if(sum(krdm_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "krdm temperature slope trend: 145.5 --> WARMING"
print(paste0("krdm dewpoint temperature slope trend: ",round(sum(krdm_dp_fv),1),if(sum(krdm_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "krdm dewpoint temperature slope trend: 4.8 --> MOISTENING"
print(paste0("krdm wind direction slope trend: ",round(sum(krdm_wd_fv),1),if(sum(krdm_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "krdm wind direction slope trend: -62.7 --> BECOMING MORE SOUTHERLY/EASTERLY"
print(paste0("krdm wind speed slope trend: ",round(sum(krdm_ws_fv),1),if(sum(krdm_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "krdm wind speed slope trend: 21.2 --> SPEED INCREASING"
print(paste0("krdm wind gust slope trend: ",round(sum(krdm_wg_fv),1),if(sum(krdm_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "krdm wind gust slope trend: 86.4 --> SPEED INCREASING"
print(paste0("krdm cloud ceilings slope trend: ",round(sum(krdm_cig_fv),1),if(sum(krdm_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "krdm cloud ceilings slope trend: -6561.8 --> CLOUD DECKS DROPPING"
print(paste0("krdm visibility slope trend: ",round(sum(krdm_vis_fv),1),if(sum(krdm_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "krdm visibility slope trend: -49441.9 --> VISIBILITY DECREASING"
print(paste0("krdm cloud cover slope trend: ",round(sum(krdm_cc_fv),1),if(sum(krdm_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "krdm cloud cover slope trend: -184.1 --> LESS CLOUDY"
print(paste0("krdm altimeter slope trend: ",round(sum(krdm_alt_fv),1),if(sum(krdm_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "krdm altimeter slope trend: 27.2 --> PRESSURE RISING"
print(paste0("krdm precipitation slope trend: ",round(sum(krdm_p_fv),1),if(sum(krdm_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "krdm precipitation slope trend: 135.2 --> INCREASING PRECIPITATION"

KBUF

print(paste0("kbuf temperature slope trend: ",round(sum(kbuf_t_fv),1),if(sum(kbuf_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "kbuf temperature slope trend: 137.9 --> WARMING"
print(paste0("kbuf dewpoint temperature slope trend: ",round(sum(kbuf_dp_fv),1),if(sum(kbuf_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "kbuf dewpoint temperature slope trend: -9.6 --> DRYING"
print(paste0("kbuf wind direction slope trend: ",round(sum(kbuf_wd_fv),1),if(sum(kbuf_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "kbuf wind direction slope trend: -149.5 --> BECOMING MORE SOUTHERLY/EASTERLY"
print(paste0("kbuf wind speed slope trend: ",round(sum(kbuf_ws_fv),1),if(sum(kbuf_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kbuf wind speed slope trend: 0.4 --> SPEED INCREASING"
print(paste0("kbuf wind gust slope trend: ",round(sum(kbuf_wg_fv),1),if(sum(kbuf_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kbuf wind gust slope trend: 60.1 --> SPEED INCREASING"
print(paste0("kbuf cloud ceilings slope trend: ",round(sum(kbuf_cig_fv),1),if(sum(kbuf_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "kbuf cloud ceilings slope trend: -28329.8 --> CLOUD DECKS DROPPING"
print(paste0("kbuf visibility slope trend: ",round(sum(kbuf_vis_fv),1),if(sum(kbuf_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "kbuf visibility slope trend: 35858.6 --> VISIBILITY INCREASING"
print(paste0("kbuf cloud cover slope trend: ",round(sum(kbuf_cc_fv),1),if(sum(kbuf_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "kbuf cloud cover slope trend: -54.5 --> LESS CLOUDY"
print(paste0("kbuf altimeter slope trend: ",round(sum(kbuf_alt_fv),1),if(sum(kbuf_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "kbuf altimeter slope trend: 77 --> PRESSURE RISING"
print(paste0("kbuf precipitation slope trend: ",round(sum(kbuf_p_fv),1),if(sum(kbuf_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "kbuf precipitation slope trend: 1471.2 --> INCREASING PRECIPITATION"

KFOE

print(paste0("kfoe temperature slope trend: ",round(sum(kfoe_t_fv),1),if(sum(kfoe_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "kfoe temperature slope trend: 67.7 --> WARMING"
print(paste0("kfoe dewpoint temperature slope trend: ",round(sum(kfoe_dp_fv),1),if(sum(kfoe_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "kfoe dewpoint temperature slope trend: 42.2 --> MOISTENING"
print(paste0("kfoe wind direction slope trend: ",round(sum(kfoe_wd_fv),1),if(sum(kfoe_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "kfoe wind direction slope trend: 95.7 --> BECOMING MORE WESTERLY/NORTHERLY"
print(paste0("kfoe wind speed slope trend: ",round(sum(kfoe_ws_fv),1),if(sum(kfoe_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kfoe wind speed slope trend: -16.4 --> SPEED DECREASING"
print(paste0("kfoe wind gust slope trend: ",round(sum(kfoe_wg_fv),1),if(sum(kfoe_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kfoe wind gust slope trend: 12.4 --> SPEED INCREASING"
print(paste0("kfoe cloud ceilings slope trend: ",round(sum(kfoe_cig_fv),1),if(sum(kfoe_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "kfoe cloud ceilings slope trend: -41229.8 --> CLOUD DECKS DROPPING"
print(paste0("kfoe visibility slope trend: ",round(sum(kfoe_vis_fv),1),if(sum(kfoe_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "kfoe visibility slope trend: -22757.6 --> VISIBILITY DECREASING"
print(paste0("kfoe cloud cover slope trend: ",round(sum(kfoe_cc_fv),1),if(sum(kfoe_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "kfoe cloud cover slope trend: -220.3 --> LESS CLOUDY"
print(paste0("kfoe altimeter slope trend: ",round(sum(kfoe_alt_fv),1),if(sum(kfoe_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "kfoe altimeter slope trend: 1.9 --> PRESSURE RISING"
print(paste0("kfoe precipitation slope trend: ",round(sum(kfoe_p_fv),1),if(sum(kfoe_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "kfoe precipitation slope trend: 1349.1 --> INCREASING PRECIPITATION"

KMSN

print(paste0("kmsn temperature slope trend: ",round(sum(kmsn_t_fv),1),if(sum(kmsn_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "kmsn temperature slope trend: -37.5 --> COOLING"
print(paste0("kmsn dewpoint temperature slope trend: ",round(sum(kmsn_dp_fv),1),if(sum(kmsn_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "kmsn dewpoint temperature slope trend: -22.5 --> DRYING"
print(paste0("kmsn wind direction slope trend: ",round(sum(kmsn_wd_fv),1),if(sum(kmsn_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "kmsn wind direction slope trend: 684.1 --> BECOMING MORE WESTERLY/NORTHERLY"
print(paste0("kmsn wind speed slope trend: ",round(sum(kmsn_ws_fv),1),if(sum(kmsn_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kmsn wind speed slope trend: -20.5 --> SPEED DECREASING"
print(paste0("kmsn wind gust slope trend: ",round(sum(kmsn_wg_fv),1),if(sum(kmsn_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kmsn wind gust slope trend: 30 --> SPEED INCREASING"
print(paste0("kmsn cloud ceilings slope trend: ",round(sum(kmsn_cig_fv),1),if(sum(kmsn_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "kmsn cloud ceilings slope trend: -282231.5 --> CLOUD DECKS DROPPING"
print(paste0("kmsn visibility slope trend: ",round(sum(kmsn_vis_fv),1),if(sum(kmsn_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "kmsn visibility slope trend: 144219.5 --> VISIBILITY INCREASING"
print(paste0("kmsn cloud cover slope trend: ",round(sum(kmsn_cc_fv),1),if(sum(kmsn_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "kmsn cloud cover slope trend: 45.7 --> MORE CLOUDY"
print(paste0("kmsn altimeter slope trend: ",round(sum(kmsn_alt_fv),1),if(sum(kmsn_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "kmsn altimeter slope trend: 26.7 --> PRESSURE RISING"
print(paste0("kmsn precipitation slope trend: ",round(sum(kmsn_p_fv),1),if(sum(kmsn_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "kmsn precipitation slope trend: 1108.8 --> INCREASING PRECIPITATION"

KTRI

print(paste0("ktri temperature slope trend: ",round(sum(ktri_t_fv),1),if(sum(ktri_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "ktri temperature slope trend: 218.6 --> WARMING"
print(paste0("ktri dewpoint temperature slope trend: ",round(sum(ktri_dp_fv),1),if(sum(ktri_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "ktri dewpoint temperature slope trend: 71.6 --> MOISTENING"
print(paste0("ktri wind direction slope trend: ",round(sum(ktri_wd_fv),1),if(sum(ktri_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "ktri wind direction slope trend: 1009.8 --> BECOMING MORE WESTERLY/NORTHERLY"
print(paste0("ktri wind speed slope trend: ",round(sum(ktri_ws_fv),1),if(sum(ktri_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "ktri wind speed slope trend: -11.9 --> SPEED DECREASING"
print(paste0("ktri wind gust slope trend: ",round(sum(ktri_wg_fv),1),if(sum(ktri_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "ktri wind gust slope trend: -1.4 --> SPEED DECREASING"
print(paste0("ktri cloud ceilings slope trend: ",round(sum(ktri_cig_fv),1),if(sum(ktri_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "ktri cloud ceilings slope trend: -113176.8 --> CLOUD DECKS DROPPING"
print(paste0("ktri visibility slope trend: ",round(sum(ktri_vis_fv),1),if(sum(ktri_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "ktri visibility slope trend: 130862.1 --> VISIBILITY INCREASING"
print(paste0("ktri cloud cover slope trend: ",round(sum(ktri_cc_fv),1),if(sum(ktri_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "ktri cloud cover slope trend: -181.7 --> LESS CLOUDY"
print(paste0("ktri altimeter slope trend: ",round(sum(ktri_alt_fv),1),if(sum(ktri_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "ktri altimeter slope trend: 73.2 --> PRESSURE RISING"
print(paste0("ktri precipitation slope trend: ",round(sum(ktri_p_fv),1),if(sum(ktri_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "ktri precipitation slope trend: 605.6 --> INCREASING PRECIPITATION"

PAJN

print(paste0("pajn temperature slope trend: ",round(sum(pajn_t_fv),1),if(sum(pajn_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "pajn temperature slope trend: 124.8 --> WARMING"
print(paste0("pajn dewpoint temperature slope trend: ",round(sum(pajn_dp_fv),1),if(sum(pajn_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "pajn dewpoint temperature slope trend: 58.5 --> MOISTENING"
print(paste0("pajn wind direction slope trend: ",round(sum(pajn_wd_fv),1),if(sum(pajn_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "pajn wind direction slope trend: -327.5 --> BECOMING MORE SOUTHERLY/EASTERLY"
print(paste0("pajn wind speed slope trend: ",round(sum(pajn_ws_fv),1),if(sum(pajn_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "pajn wind speed slope trend: 14.3 --> SPEED INCREASING"
print(paste0("pajn wind gust slope trend: ",round(sum(pajn_wg_fv),1),if(sum(pajn_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "pajn wind gust slope trend: 88.8 --> SPEED INCREASING"
print(paste0("pajn cloud ceilings slope trend: ",round(sum(pajn_cig_fv),1),if(sum(pajn_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "pajn cloud ceilings slope trend: 6640.3 --> CLOUD DECKS RAISING"
print(paste0("pajn visibility slope trend: ",round(sum(pajn_vis_fv),1),if(sum(pajn_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "pajn visibility slope trend: -250493.3 --> VISIBILITY DECREASING"
print(paste0("pajn cloud cover slope trend: ",round(sum(pajn_cc_fv),1),if(sum(pajn_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "pajn cloud cover slope trend: -40.3 --> LESS CLOUDY"
print(paste0("pajn altimeter slope trend: ",round(sum(pajn_alt_fv),1),if(sum(pajn_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "pajn altimeter slope trend: 105.8 --> PRESSURE RISING"
print(paste0("pajn precipitation slope trend: ",round(sum(pajn_p_fv),1),if(sum(pajn_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "pajn precipitation slope trend: 1310.7 --> INCREASING PRECIPITATION"

KELP

print(paste0("kelp temperature slope trend: ",round(sum(kelp_t_fv),1),if(sum(kelp_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "kelp temperature slope trend: 197.2 --> WARMING"
print(paste0("kelp dewpoint temperature slope trend: ",round(sum(kelp_dp_fv),1),if(sum(kelp_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "kelp dewpoint temperature slope trend: -53.5 --> DRYING"
print(paste0("kelp wind direction slope trend: ",round(sum(kelp_wd_fv),1),if(sum(kelp_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "kelp wind direction slope trend: 55.5 --> BECOMING MORE WESTERLY/NORTHERLY"
print(paste0("kelp wind speed slope trend: ",round(sum(kelp_ws_fv),1),if(sum(kelp_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kelp wind speed slope trend: -7.1 --> SPEED DECREASING"
print(paste0("kelp wind gust slope trend: ",round(sum(kelp_wg_fv),1),if(sum(kelp_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "kelp wind gust slope trend: 37.3 --> SPEED INCREASING"
print(paste0("kelp cloud ceilings slope trend: ",round(sum(kelp_cig_fv),1),if(sum(kelp_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "kelp cloud ceilings slope trend: -49254.3 --> CLOUD DECKS DROPPING"
print(paste0("kelp visibility slope trend: ",round(sum(kelp_vis_fv),1),if(sum(kelp_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "kelp visibility slope trend: -258348.8 --> VISIBILITY DECREASING"
print(paste0("kelp cloud cover slope trend: ",round(sum(kelp_cc_fv),1),if(sum(kelp_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "kelp cloud cover slope trend: -0.3 --> LESS CLOUDY"
print(paste0("kelp altimeter slope trend: ",round(sum(kelp_alt_fv),1),if(sum(kelp_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "kelp altimeter slope trend: -1.5 --> PRESSURE DROPPING"
print(paste0("kelp precipitation slope trend: ",round(sum(kelp_p_fv),1),if(sum(kelp_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "kelp precipitation slope trend: 140.1 --> INCREASING PRECIPITATION"

KSGU

print(paste0("ksgu temperature slope trend: ",round(sum(ksgu_t_fv),1),if(sum(ksgu_t_fv)>0){" --> WARMING"} else {" --> COOLING"}))
## [1] "ksgu temperature slope trend: -38.7 --> COOLING"
print(paste0("ksgu dewpoint temperature slope trend: ",round(sum(ksgu_dp_fv),1),if(sum(ksgu_dp_fv)>0){" --> MOISTENING"} else {" --> DRYING"}))
## [1] "ksgu dewpoint temperature slope trend: 65.9 --> MOISTENING"
print(paste0("ksgu wind direction slope trend: ",round(sum(ksgu_wd_fv),1),if(sum(ksgu_wd_fv)>0){" --> BECOMING MORE WESTERLY/NORTHERLY"} else {" --> BECOMING MORE SOUTHERLY/EASTERLY"}))
## [1] "ksgu wind direction slope trend: 3075.8 --> BECOMING MORE WESTERLY/NORTHERLY"
print(paste0("ksgu wind speed slope trend: ",round(sum(ksgu_ws_fv),1),if(sum(ksgu_ws_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "ksgu wind speed slope trend: 10.8 --> SPEED INCREASING"
print(paste0("ksgu wind gust slope trend: ",round(sum(ksgu_wg_fv),1),if(sum(ksgu_wg_fv)>0){" --> SPEED INCREASING"} else {" --> SPEED DECREASING"}))
## [1] "ksgu wind gust slope trend: 1.3 --> SPEED INCREASING"
print(paste0("ksgu cloud ceilings slope trend: ",round(sum(ksgu_cig_fv),1),if(sum(ksgu_cig_fv)>0){" --> CLOUD DECKS RAISING"} else {" --> CLOUD DECKS DROPPING"}))
## [1] "ksgu cloud ceilings slope trend: -13107.7 --> CLOUD DECKS DROPPING"
print(paste0("ksgu visibility slope trend: ",round(sum(ksgu_vis_fv),1),if(sum(ksgu_vis_fv)>0){" --> VISIBILITY INCREASING"} else {" --> VISIBILITY DECREASING"}))
## [1] "ksgu visibility slope trend: -2087.2 --> VISIBILITY DECREASING"
print(paste0("ksgu cloud cover slope trend: ",round(sum(ksgu_cc_fv),1),if(sum(ksgu_cc_fv)>0){" --> MORE CLOUDY"} else {" --> LESS CLOUDY"}))
## [1] "ksgu cloud cover slope trend: -78.9 --> LESS CLOUDY"
print(paste0("ksgu altimeter slope trend: ",round(sum(ksgu_alt_fv),1),if(sum(ksgu_alt_fv)>0){" --> PRESSURE RISING"} else {" --> PRESSURE DROPPING"}))
## [1] "ksgu altimeter slope trend: 48.9 --> PRESSURE RISING"
print(paste0("ksgu precipitation slope trend: ",round(sum(ksgu_p_fv),1),if(sum(ksgu_p_fv)>0){" --> INCREASING PRECIPITATION"} else {" --> DECREASING PRECIPITATION"}))
## [1] "ksgu precipitation slope trend: -212.9 --> DECREASING PRECIPITATION"

Trend Recap

In the following table, red-orange represents an increasing number (like increasing temperature) with time. This could also mean a wind direction coming from a more westerly or northwesterly direction instead of a southerly direction. The blue color represents a decreasing number with time (like decreasing temperature). This could also mean a wind direction coming from a more southerly, or southeasterly direction instead of a westerly direction.

VARIABLE KRDM KBUF KFOE KMSN KTRI PAJN KELP KSGU
Temperature Slope Trend 145.5 137.9 67.7 -37.5 218.6 124.8 197.2 -38.7
Dewpoint Temperature Slope Trend 4.8 -9.6 42.2 -22.5 71.6 58.5 -53.5 65.9
Wind Direction Slope Trend -62.7 -149.5 95.7 684.1 1009.8 -327.5 55.5 3075.8
Wind Speed Slope Trend 21.2 0.4 -16.4 -20.5 -11.9 14.3 -7.1 10.8
Wind Gust Speed Slope Trend 86.4 60.1 12.4 30 -1.4 88.8 37.3 1.3
Cloud Ceiling Slope Trend -6561.8 -28329.8 -41229.8 -282231.5 -113176.8 6640.3 -49254.3 -13107.7
Visibility Slope Trend -49441.9 35858.6 -22757.6 144219.5 130862.1 -250493.3 -258348.8 -2087.2
Cloud Cover Slope Trend -184.1 -54.5 -220.3 45.7 -181.7 -40.3 -0.3 -78.9
Altimeter Slope Trend 27.2 77 1.9 26.7 73.2 105.8 -1.5 48.9
Precipitation Slope Trend 135.2 1471.2 1349.1 1108.8 605.6 1310.7 140.1 -212.9

Domain 6

Summary and Deployment

Summary

Observations

  • Temperatures are warming throughout all eight areas for most of the periods of time. This is anticipated as we use a shorter dataset we can expect to see fluctuations more rapidly.

  • Dewpoint Temperatures stayed similar over time for all locations.

  • Wind Direction varies DRASTICALLY by location and time of year.

  • Aside from KRDM and PAJN, Wind Speeds are fairly similar by each location in magnitude and with peaks and troughs.

  • Wind Gust Speed varies DRASTICALLY by location and time of year.

  • Cloud Ceilings vary DRASTICALLY by location and time of year, however, it appears that as we use less data (generally) we see a slight lowering of the ceilings.

  • Visibility seems to be decreasing (generally) with time as well. However, visibility seems to be worse overall in the wintertime, as you might expect.

  • Cloud Cover is decreasing with time for all locations.This makes sense as the warming atmosphere will decrease the amount of cloud cover.

  • Altimeter Setting was difficult to tell the trend with time, however, all locations except PAJN showed a strong drop in the spring-time

Results from Analysis

  • 10-day analysis is statistically significant for all locations and almost all variables.

  • Wind Speed is the variable that has the worst correlation

Comparing trends of the 10-year periods through time:
  • There appears to be a consistent warming trend in the summer and a cooling trend in February, meaning, February is getting colder and the summer months are getting warmer than normal.

  • The transition months of Spring and Fall tend to be more moist (higher dewpoint temperatures), while summer and winter tend to have decreasing dewpoint temperatures (drier)

  • Wind direction seems to be shifting more to the west (increasing) throughout the year for most locations

  • Wind speed is not changing much - the slope is nearly zero for all locations

  • Wind gusts seem to be increasing, although this is a slow rate of change

  • Cloud ceilings change frequently, however, many locations are showing a general decrease in the cloud ceilings with time

  • Visibility is not consistent across locations, but there seems to be a trend of slightly worsening (decreasing) visibility over time

  • Aside from KMSN, all locations are showing a decrease in cloud cover with time

  • We are seeing frequent oscillations in Altimeter setting for all locations. This means that the low-pressure systems are either getting stronger (lower pressure) or certain days/weeks of the year tend to get more storms, which cause the average pressure to drop more. It doesn’t take a large pressure change to make a storm stronger.

  • Due to the radically changing conditions, it’s impossible to say for how long these 10-day OCDSs would be valid. However, as the current process is to produce them as data changes, they would be produced until the need no longer exists.

  • Daily average precipitation seems to be increasing with time.

Deployment

Recommendations

  • 10-years of data is “good enough” - it allows us to visualize the data we want in trend-time we want to have it effective for. Statistically, more years of data weighs the data towards a false normal and doesn’t allow it to change as rapidly. However, 20-years of data may be preferential for calculating average wind speed, cloud cover, visibility and altimeter setting.

  • 10-day intervals for data analysis could prove useful for many reasons - perhaps, the most important being it would assist customers in planning efforts long into the future.

  • There are not enough similarities to simplify model running by season for each location. If there is an operational need for sub-monthly time periods for an OCDS, then an entire product should be created as the trends vary widely by variable. However, it appears, generally, there is little change during the middle of summer between the various datasets.

  • There doesn’t appear to be a consistent enough “rate of change” that could forecast out the lifespan of the 10-day OCDS. Thus, the recommendation is to produce them ad hoc for customers on a case by case basis. Ad hoc production allows the product to be created without much additional strain of resources - that is, it doesn’t over-task computing or personnel resources in product creation.

  • Recommend modifying the Python code within the Data Quality section that produces the OCDS to allow for the 10-day interval as necessary. These could be produced for “high-quality” sites that already have a history of good quality OCDSs being produced.