\(F = \frac {H}{H+KD}\)
Mydata <- read.csv("data for R.R monoprotic")
pH <- Mydata$pH
volume <- Mydata$Vol
length(volume)
## [1] 27
length(pH)
## [1] 27
volume
## [1] 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
## [16] 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 23.5 23.8 24.0
pH
## [1] 3.510 3.635 3.811 3.976 4.090 4.169 4.260 4.343 4.409 4.470 4.550 4.610
## [13] 4.674 4.734 4.787 4.853 4.917 4.980 5.060 5.153 5.230 5.323 5.440 5.576
## [25] 5.630 5.685 5.721
plot(volume,pH,main = "Titration curved for Trail 1", xlab = "volume of NaOH", ylab = "pH")
# Binding Curve from Titration data
H <- 10^-(pH)
CB <- 0.01 # base
Vadd <- volume
Vini <- 25 # initial volume of acid
Vend <- 20.0 # estimated
# fraction bound = 1 - (CB * Vadd + [H+] x (Vini + Vadd) ] / (CB * Vend)
fb <- 1 - (CB* Vadd + H *(Vini + Vadd))/(CB * Vend)
plot(pH,fb,main = "Binding Curve",xlab = "pH",ylab = "Fraction Bound")
library(nls2)
## Loading required package: proto
fit <- nls(fb ~ H/(CB+H), start=c(CB=0.01))
summary(fit)
##
## Formula: fb ~ H/(CB + H)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## CB 3.536e-05 4.715e-06 7.499 5.82e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1256 on 26 degrees of freedom
##
## Number of iterations to convergence: 12
## Achieved convergence tolerance: 9.494e-06
lines(pH,predict(fit), col="red")