Set working directory
Load necessary libraries for simulation
library(tibble)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
Project Report: Testing and Validation Analysis.
This project aims to analyse test cases defined by Business Analysts (BAs) and validated products by Project Managers (PMs) to assure product quality and reliability.
Methodology:
test_cases <- tibble(
Test_Case_ID = paste0("TC", seq(1:100)),
Description = c(rep("Login functionality", 10),
rep("Search feature", 10),
rep("Performance benchmark", 10),
rep("User registration", 10),
rep("Data encryption", 10),
rep("Checkout process", 10),
rep("Compatibility test", 10),
rep("Data validation", 10),
rep("Error handling", 10),
rep("Reporting feature", 10)),
Priority = sample(c("High", "Medium", "Low"), 100, replace = TRUE),
Status = sample(c("Pending", "In-Progress", "Complete"), 100, replace = TRUE),
Assigned_BA = sample(c("BA1", "BA2", "BA3"), 100, replace = TRUE),
Requirements_Covered = sample(c("REQ001", "REQ002", "REQ003"), 100, replace = TRUE)
)
validations <- tibble(
Validation_ID = paste0("V", seq(1:50)),
Description = c(rep("User needs assessment", 5),
rep("Vision alignment check", 5),
rep("Regulatory compliance", 5),
rep("Market research validation", 5),
rep("Feature prioritization", 5),
rep("Performance evaluation", 5),
rep("Usability testing", 5),
rep("Security audit", 5),
rep("Integration validation", 5),
rep("Stakeholder review", 5)),
Validation_Date = as.Date(sample(seq(as.Date('2022-01-01'), as.Date('2022-12-31'), by="day"), 50)),
Validation_Result = sample(c("Pass", "Fail"), 50, replace = TRUE),
Associated_Feature = c(rep("Login functionality", 5),
rep("Search feature", 5),
rep("Payment processing", 5),
rep("Reporting module", 5),
rep("Data encryption", 5),
rep("Checkout process", 5),
rep("User interface", 5),
rep("Data validation", 5),
rep("Integration module", 5),
rep("Feedback mechanism", 5)),
Assigned_PM = sample(c("PM1", "PM2", "PM3"), 50, replace = TRUE),
Market_Needs_Met = sample(c("Yes", "No"), 50, replace = TRUE)
)
sample data
print("Sample Test Cases Data:")
## [1] "Sample Test Cases Data:"
print(test_cases)
## # A tibble: 100 × 6
## Test_Case_ID Description Priority Status Assigned_BA Requirements_Covered
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 TC1 Login function… Medium In-Pr… BA3 REQ003
## 2 TC2 Login function… Medium Pendi… BA2 REQ002
## 3 TC3 Login function… Medium In-Pr… BA1 REQ003
## 4 TC4 Login function… Low Compl… BA3 REQ002
## 5 TC5 Login function… High Pendi… BA2 REQ001
## 6 TC6 Login function… High In-Pr… BA2 REQ001
## 7 TC7 Login function… High Compl… BA2 REQ002
## 8 TC8 Login function… Low In-Pr… BA2 REQ003
## 9 TC9 Login function… Low Compl… BA1 REQ002
## 10 TC10 Login function… High Compl… BA2 REQ001
## # ℹ 90 more rows
print("Sample Validations Data:")
## [1] "Sample Validations Data:"
print(validations)
## # A tibble: 50 × 7
## Validation_ID Description Validation_Date Validation_Result
## <chr> <chr> <date> <chr>
## 1 V1 User needs assessment 2022-08-24 Fail
## 2 V2 User needs assessment 2022-01-03 Fail
## 3 V3 User needs assessment 2022-09-15 Fail
## 4 V4 User needs assessment 2022-03-08 Pass
## 5 V5 User needs assessment 2022-12-30 Pass
## 6 V6 Vision alignment check 2022-02-07 Fail
## 7 V7 Vision alignment check 2022-12-18 Fail
## 8 V8 Vision alignment check 2022-03-11 Pass
## 9 V9 Vision alignment check 2022-01-11 Pass
## 10 V10 Vision alignment check 2022-02-04 Pass
## # ℹ 40 more rows
## # ℹ 3 more variables: Associated_Feature <chr>, Assigned_PM <chr>,
## # Market_Needs_Met <chr>
Select, Group, and Summarise test data
test_cases_summary <- test_cases %>%
group_by(Priority, Status) %>%
summarise(Count = n())
## `summarise()` has grouped output by 'Priority'. You can override using the
## `.groups` argument.
Select, Group, and Summarise product validation data
validations_summary <- validations %>%
group_by(Validation_Result) %>%
summarise(Count = n())
Findings:
Findings:
Conclusion:
Analyzing test cases and validation results provide significant insights into the testing process. Understanding the distribution of test cases and validation findings allows stakeholders to make informed decisions about how to improve product quality and successfully meet user needs.