#Starwars Analysis
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.5.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(tidyr)
sw11<-starwars%>%
  select(name,height,mass,sex)%>%
  rename(weight=mass)%>%
  na.omit()%>%
  mutate(height=height/100)%>%
  filter(sex=="male"|sex=="female")%>%
  mutate(sex=recode(sex,male="m",female="f"))%>%
  mutate(size=height>1&weight>75,
         size=if_else(size==TRUE,"big","small"))
sw11
## # A tibble: 53 × 5
##    name               height weight sex   size 
##    <chr>               <dbl>  <dbl> <chr> <chr>
##  1 Luke Skywalker       1.72     77 m     big  
##  2 Darth Vader          2.02    136 m     big  
##  3 Leia Organa          1.5      49 f     small
##  4 Owen Lars            1.78    120 m     big  
##  5 Beru Whitesun lars   1.65     75 f     small
##  6 Biggs Darklighter    1.83     84 m     big  
##  7 Obi-Wan Kenobi       1.82     77 m     big  
##  8 Anakin Skywalker     1.88     84 m     big  
##  9 Chewbacca            2.28    112 m     big  
## 10 Han Solo             1.8      80 m     big  
## # ℹ 43 more rows
#Data Analysis 2
library(tidyverse)
library(tidyr)
plot(cars,main="Speed v/s Stopping Distance",
     xlab="Speed(MPH)",
     ylab="Stopping Distance",
     col="Blue",
     pch=19)

#Pair_Plot
library(ggplot2)
library(GGally)
## Warning: package 'GGally' was built under R version 4.2.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
ggpairs(iris)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#How does the distribution of sepal length vary with respect to different species of iris?
library(ggplot2)
library(GGally)
ggpairs(iris, columns = c("Species", "Sepal.Length"), aes(color = Species))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#Is there any relationship between petal length and petal width for each species of iris?
library(ggplot2)
library(GGally)
ggpairs(iris, columns = c("Petal.Length", "Petal.Width"), aes(color = Species))