\[ \int 4e^{-7x} \, dx \] \[ u=-7x\\ du/-7= dx\\ \int 4e^{-7x} \, dx=\int \frac{4}{-7}e^u \, du\\ =\frac{-4}{7}e^u+C\\ =\frac{-4}{7}e^{-7x}+C\\ \]
\[ \frac{dN}{dt}=-\frac{3150}{t^4}-220\\ N(t)= \int -\frac{3150}{t^4}-220 \, dt\\ N(t)= \int -3150t^{-4}-220 \, dt\\ N(t)=-3150(\frac{1}{-3})t^{-3}-220t+C\\ N(t)=\frac{3150}{3t^3}-220t+C\\ 6530=\frac{3150}{3(1)^3}-220(1)+C\\ 6530=1050-220+C\\ 6530=830+C\\ 5700=C\\ N(t)=\frac{1050}{t^3}-220t+5700\\ \]
library(png)
img <- readPNG("/Users/mollysiebecker/Desktop/Screenshot 2024-04-21 at 11.36.46 PM.png")
plot(1:2, type="n", ann=FALSE, axes=FALSE)
rasterImage(img, 1, 1, 2, 2)
\[ \Delta x=1 \\ n=4\\ A = \sum_{i=1}^{n} f(x_i) \cdot \Delta x\\ A = \sum_{i=1}^{4} f(x_i) \cdot 1\\ A = 2(5)-9+2(6)-9+2(7)-9+2(8)-9\\ A = 2(26)-36\\ A = 16\\ \]
\[ y=x^2-2x-2, y=x+2\\ x^2-2x-2=x+2\\ x^2-3x-4=0\\ x={4,-1}\\ A=\int_{-1}^{4}(x+2)-(x^2-2x-2)\,dx\\ A=\int_{-1}^{4}-x^2+3x+4\,dx\\ A=\frac{-1}{3}(4)^3+\frac{3}{2}(4)^2+4(4)-(\frac{-1}{3}(-1)^3+\frac{3}{2}(-1)^2+4(-1))\\ A=-\frac{64}{3}+24+16-(\frac{1}{3}+\frac{3}{2}-4)\\ A=-\frac{64}{3}+24+16-\frac{1}{3}-\frac{3}{2}+4\\ A=-\frac{65}{3}-\frac{3}{2}+44\\ A=-\frac{130}{6}-\frac{9}{6}+\frac{264}{6}\\ A=\frac{125}{6} \approx 20.83\\ \]
The number of orders \(n\) is the expected demand divided by the lot size \(L\), and the amount of inventory at a given time can be calculated as half of the lot size, if we assume the inventory decreases linearly. \[ C=8.25(\frac{110}{L})+3.75(\frac{L}{2})\\ C'=-907.5L^{-2}+1.875\\ 0=-907.5L^{-2}+1.875\\ \frac{1.875}{907.5}=L^{-2}\\ L= \sqrt{\frac{907.5}{1.875}}\\ L=22\\ n=\frac{110}{22}\\ n=5\\ \] A lot size of 22, with 5 orders per year, will minimize the expected costs.
Use integration by parts to solve the integral below. \[ \int ln(9x) \cdot x^6 \, dx\\ u=ln(9x)\\ dv=x^6\\ \int udv=uv-\int vdu\\ \int ln(9x) \cdot x^6=ln(9x) \cdot \frac{1}{7}x^7-\int \frac{1}{7}x^7 \cdot \frac{1}{x} dx\\ =ln(9x) \cdot \frac{1}{7}x^7-\frac{1}{49}x^7+C\\ =\frac{7ln(9x)-1}{49}(x^7)+C\\ \]
Determine whether \(f(x)\) is a probability density function on the interval \([1, e^6]\). If not, determine the value of the definite integral.
\[ f(x)=\frac{1}{6x}\\ \int_1^{e^6} \frac{1}{6x} \ dx\\ =\frac{1}{6}ln(e^6)-\frac{1}{6}ln(1)\\ =1-0\\ =1 \] Yes, \(f(x)\) is a probability density function on the given interval because it is non-negative, and the integral equals 1.