Use integration by substitution to solve the integral below.
\[\int 4e^{-7x} dx\]
\(u = -7x\)
\(du = -7dx\)
\(dx = \frac{du}{-7}\)
\[\int 4e^{u}*-\frac{du}{7}\]
\[ -\frac{4}{7} \int 4e^{u}*du\]
\[\frac{-4}{7}e^{u}+C \rightarrow \frac{-4}{7}e^{-7x}+C\]
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of
\[\frac{dN}{dt}=\frac{-3150}{t^{4}}-220\]
bacteria per cubic centimeter per day, where t is the number of days since treatment began. Find a function N( t ) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
\[\int \frac{-3150}{t^{4}}-220\]
\[\int (-3150t^{-4}-220)dt\]
\[-3150 \int t^{-4} - \int -220 dt\]
\[-3150 \frac{-1}{3}t^{-3} - 220t + C\]
\[\frac{1050}{t^3}- 220t + C\]
Find a function N( t ) to estimate the level of contamination if the level after 1 day was 6530 bacteria per cubic centimeter.
\[6530 = \frac{1050}{(1)^3}-220(1)+C\]
\[6530 = 1050-220+C\]
\[6530 = 830+C\]
\[C = 5700\]
\[N(t) = \frac{1050}{t^3}-220t+5700\]
Find the total area of the red rectangles in the figure below, where the equation of the line is \(f(x) = 2x-9\)
\[\int_{4.5}^{8.5}(2x -9)dx \rightarrow (x^2 -9)|_{4.5}^{8.5}\]
\[8.5^2 - 9(8.5) - (4.5^2 -9(4.5)) = 16\]
The total area under f(x) = 2x-9 is equal to 16
upper <- 4
lower <- -1
e1 <- function(x) {x + 2}
e2 <- function(x) {x^2 - 2*x -2}
area_e1 <- integrate(e1, lower, upper)
area_e2 <- integrate(e2, lower, upper)
solution <- area_e1$value - area_e2$value
print(solution)
## [1] 20.83333
A beauty supply store expects to sell 110 flat irons during the next year. It costs 3.75 to store one flat iron for one year. There is a fixed cost of 8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
ex <- 110
fixed <- 8.25
store <- 3.75
lot_size <- sqrt((2*ex*fixed)/store)
print(lot_size)
## [1] 22
orders_py <- ex/lot_size
print(orders_py)
## [1] 5
Use integration by parts to solve the integral below.
\[\int ln(9x) * x^6\] Let: \[ u=ln(9x)\\ du=\frac{1}{x}dx\\ dv=x^{6}\\ v=\frac{x^7}{7} \]
Substitute in values into the substitution by parts formula:
\[\int ln(9x)*x^6 dx = ln(9x)(\frac{x^7}{7}) - \int \frac{x^7}{7} \frac{1}{x}dx\\ \frac{x^7ln(9x)}{7} - \int \frac{x^7}{7} \frac{1}{x}dx \\ \frac{x^7ln(9x)}{7} - \frac{1}{7}\int x^6 dx \\ \frac{x^{7}ln(9x)}{7}-\frac{1}{7}(\frac{x^{7}}{7})+C\\ \frac{x^{7}ln(9x)}{7}-\frac{x^{7}}{49}+C \]
Determine whether f ( x ) is a probability density function on the interval [1, e6] . If not, determine the value of the definite integral.
The sum of the definite integral f(x) is 1 so f(x) is a probability density function on the interval [1, e6].
\[ f(x) = \frac{1}{6x} |_1^{e^6}\\ \int_1^{e^6} f(x) = \frac{ln(e^6)}{6} - \frac{ln(1)}{6} = \frac{ln(e^6)}{6} - \frac{ln(1)}{6} = 1-0 = 0 \]