Q1

Integrate by substitution: \(\int{4e^{-7x} \ dx}\)

Let \(u\) = \(e^{-7x}\)

\(\frac{du}{dx} = -7e^{-7x}\)

\(du = -7e^{-7x} \ dx\)

\(\frac{-du}{7} = e^{-7x} \ dx\)

Substitute:

\(\int{4 \cdot \frac{-du}{7}}\)

\(\frac{-4}{7} \int{du}\)

\(\frac{-4}{7} \cdot u\)

\(\frac{-4}{7} \cdot e^{-7x}\)

Q2

\(\frac{dN}{dt} = \frac{-3150}{t^{4}} - 220\)

Integrate:

\(-3150 \cdot \frac{-1}{3} \cdot \frac{1}{t^{3}} - 220t + C\)

\(N(t) = \frac{1050}{t^{3}} -220t + C\)

After 1 day,

\(N(1) = \frac{1050}{(1)^{3}} - 220(1) + C = 6530\)

\(N(1) = 830 + C = 6530\)

\(C=5700\)

Therefore,

\(N(t) = 1050 \cdot \frac{1}{t^{3}} - 220t + 5700\)

Q3

\(A = 1 \cdot f(5) + 1 \cdot f(6) + 1 \cdot f(7) + 1 \cdot f(8)\)

\(A = 1 \cdot (2\cdot5-9) + 1 \cdot (2\cdot6-9) + 1 \cdot (2\cdot7-9) + 1 \cdot (2\cdot8-9)\)

\(A = 1+3+5+7\)

\(A = 16\)

Q4

\(\int_{-1}^{4} x+2-(x^{2}-2x-2) \ dx\)

= \(\int_{-1}^{4} (-x^{2}+3x+4) \ dx\)

= \(\int_{-1}^{4} (-x^{2}+3x+4) \ dx\)

= \(\frac{-x^{3}}{3} + \frac{3x^{2}}{2} + 4x |_{-1}^{4}\)

= \((\frac{-4^3}{3} + \frac{3(4^{2})}{2} + 4(4) ) - (\frac{-(-1^{3})}{3} + \frac{3(-1)^{2}}{2} + 4(-1))\)

= \((\frac{-64}{3} + \frac{48}{2} + 16) - (\frac{1}{3} + \frac{3}{2} -4)\)

= \(\frac{56}{3} - (\frac{-13}{6})\)

= \(\frac{125}{6}\)

Q5

Let:

The total inventory cost is:

\[ TC = OC + HC \]

The cost of placing orders is:

\[ OC = \frac{D}{Q} \times H \]

The cost of holding the inventory is:

\[ HC = \frac{Q}{2} \times S \]

We want to minimize the total inventory cost, so we need to minimize the sum of the ordering cost and the holding cost with respect to \(Q\).

\[ TC = \frac{D}{Q} \times H + \frac{Q}{2} \times S \]

Differentiate with respect to \(Q\) and set to zero.

\[ \frac{d(TC)}{dQ} = \frac{DH}{Q^2} + \frac{S}{2} = 0 \]

\[ \frac{DH}{Q^2} = - \frac{S}{2} \]

\[ Q^2 = \frac{2DH}{S} \]

\[ Q = \sqrt{\frac{2DH}{S}} \]

Plug in the given values:

\[ Q = \sqrt{\frac{2 \times 110 \times 8.25}{3.75}} \]

\[ Q \approx \sqrt{\frac{1815}{3.75}} \]

\[ Q \approx \sqrt{484} \]

\[ Q \approx 22 \]

So, the optimal lot size is approximately 22 flat irons per order.

The number of orders per year is:

\[ \frac{D}{Q} = \frac{110}{22} = 5 \]

The optimal number of orders per year is 5.

The beauty supply store should order approximately 22 flat irons per order and they should place 5 orders per year.

Q6

Use integration by parts to solve : \(\int ln(9x) \cdot x^{6} \ dx\)

Let \(u=ln(9x)\)

\(\frac{du}{dx} = \frac{1}{x}\)

\(du = \frac{dx}{x}\)

Let \(v = \int{x^{6} \ dx} = \frac{1}{7}x^{7}\)

\(\frac{dv}{dx}=\frac{6}{7}x^{6}\)

\(dv = \frac{6}{7}x^{6} \ dx\)

Substituting into the integration by parts formula,

\(\int {ln(9x) \frac{6}{7}x^{6} \ dx} = ln(9x) \cdot \frac{1}{7}x^{7} - \int {\frac{1}{7}x^{7} \cdot \frac{1}{x} \ dx}\)

\(\frac{x^{7}ln(9x)}{7} - \frac{1}{7} \int{x^{6} \ dx}\)

\(\frac{x^{7}ln(9x)}{7} - \frac{1}{7} \cdot \frac{x^{7}}{7}\)

\(\frac{x^{7}ln(9x)}{7} - \frac{x^{7}}{49}\)

Q7

\(f(x) = \frac{1}{6x}\)

For \(f(x)\) to be a probability density function within the interval \([1, e^{6}]\), it must integrate to 1 along this interval. It also must be non-negative along the interval.

Integrating:

\(\int_{1}^{e^{6}} \frac{1}{6x} \ dx\)

= \(\frac{1}{6} ln(e^{6}) - \frac{1}{6}ln(1)\)

= \(\frac{1}{6}ln(e^{6}) - 0\)

= \(\frac{1}{6} \cdot 6\)

= 1

Since \(f(x)\) is non-negative along the interval, and it integrates to 1, it is a probability density function along the interval.