Lambert-PhD-Paper-II

Author
Affiliation

Kwame Nkrumah University of Science & Technology

Published

September 15, 2024

Please Note
  1. Being on antihypertensive was determined by answering “yes” to the variable R1_Antihypertensives
  2. European definition of hypertension:
    • Being on antihypertensive or BP >=140/90
  3. American definition of Hypertension is:
    • Being on antihypertensive or BP >=130/80
  4. Check salt inkate groupings

Read main data

Show the code
df_RODAM_2 <- 
    haven::read_sav(
        "20240626_RODAMbaseline_ProsRODAMfollowup_April2023#ROD2_12_LTA_20240626.sav"
        ) %>% 
    mutate(
        R1_BPcat_ESC = haven::as_factor(R1_BPcat_ESC),
        R2_BPcat_ESC = haven::as_factor(R2_BPcat_ESC),
        R1_Sex = haven::as_factor(R1_Sex),
        R1_EduGha = haven::as_factor(R1_EduGha),
        R2_SaltEating = haven::as_factor(R2_SaltEating),
        R2_SaltCook = haven::as_factor(R2_SaltCook),
        R2_SaltProc = haven::as_factor(R2_SaltProc),
        R2_SaltSubj = haven::as_factor(R2_SaltSubj),
        R2_Antilipidemics = haven::as_factor(R2_Antilipidemics)) %>%  
    droplevels()

Read duration data

Show the code
df_RODAM_dura <- 
    haven::read_sav(
        "20221209_RODAMbaseline_ProsRODAMfollowup_Dec2022_140723.sav") %>% 
    mutate(
        dura = as.numeric(R2_Date_physicalexam - R1_Date_physicalexam)/365.25) %>% 
    select(RodamID, dura)


##-----Select required variables

df_for_paper_2 <- 
    df_RODAM_2 %>%  #labelled::look_for("cr")
    droplevels() %>% 
    labelled::unlabelled() %>% 
    droplevels() %>% 
    select(
        RodamID, R1_Age, R1_Sex, R1_Site, R1_BPsys_mean, R2_BPsys_mean, 
        R1_BPdia_mean, R2_BPdia_mean, R1_Chol, R1_HDLChol, R1_LDLChol, R1_TG, 
        R1_Smoking, R1_BMI, R1_Na, R1_K, R2_K_Urine, R2_Na_Urine, R1_WHR, 
        R2_SaltCook, R2_SaltProc, R2_SaltSubj, R1_Renin, R1_Aldosterone, R1_BMI, 
        R1_BPcat_ESC,R2_BPcat_ESC, R1_Antihypertensives, R2_Antihypertensives, 
        R1_DiabDiagn, R1_BMI_cat, R1_BMI_cat4, R1_EduGer, R1_EduGha, R1_EduNL, 
        R1_EduEur, R1_HbA1c, R1_TotalEnergy, R1_Alcohol_day, R2_SaltEating, 
        R1_CKDEPI_eGFR_adj, R1_Ptotallevels, R2_Antilipidemics, R1_CreaUrine) %>% 
    mutate(
        arr = R1_Aldosterone/R1_Renin,
        R1_hpt_eur = case_when(
            R1_Antihypertensives == "yes" ~ "Yes",
            R1_BPsys_mean >= 140 ~ "Yes",
            R1_BPdia_mean >= 90 ~ "Yes",
            R1_BPsys_mean < 140 ~ "No",
            R1_BPdia_mean < 90 ~ "No") %>% factor(),
        R2_hpt_eur = case_when(
            R2_Antihypertensives == "yes" ~ "Yes",
            R2_BPsys_mean >= 140 ~ "Yes",
            R2_BPdia_mean >= 90 ~ "Yes",
            R2_BPsys_mean < 140 ~ "No",
            R2_BPdia_mean < 90 ~ "No") %>% factor(),
        R1_hpt_usa = case_when(
            R1_Antihypertensives == "yes" ~ "Yes",
            R1_BPsys_mean >= 130 ~ "Yes",
            R1_BPdia_mean >= 80 ~ "Yes",
            R1_BPsys_mean < 130 ~ "No",
            R1_BPdia_mean < 80 ~ "No") %>% factor(),
        R2_hpt_usa = case_when(
            R2_Antihypertensives == "yes" ~ "Yes",
            R2_BPsys_mean >= 130 ~ "Yes",
            R2_BPdia_mean >= 80 ~ "Yes",
            R2_BPsys_mean < 130 ~ "No",
            R2_BPdia_mean < 80 ~ "No") %>% factor(),
        across(c(R1_Na, R1_K, R2_K_Urine, R2_Na_Urine), ~ifelse(.x < 0, NA, .x)),
        dm = case_when(
            R1_DiabDiagn == "Yes" ~  "Yes", 
            R1_DiabDiagn == "No" ~  "No"),
        educ = case_when(
            str_detect(R1_EduGha, "^None") ~ "None or Primary",
            str_detect(R1_EduGha, "^Non formal education") ~ "None or Primary",
            str_detect(R1_EduGha, "^Less than Primary") ~ "None or Primary",
            str_detect(R1_EduGha, "^Primary school completed") ~ "None or Primary",
            str_detect(R1_EduGha, "^Junior High School completed") ~ "Low Secondary",
            str_detect(R1_EduGha, "^Senior High/Nursing") ~ "High Secondary",
            str_detect(R1_EduGha, "^Technical/Vocational education") ~ "High Secondary",
            str_detect(R1_EduGha, "^College/Pre-university") ~ "Tertiary",
            str_detect(R1_EduGha, "^Postgraduate or higher") ~ "Tertiary",
            str_detect(R1_EduEur, "^None") ~ "None or Primary",
            str_detect(R1_EduEur, "^Primary school") ~ "None or Primary",
            str_detect(R1_EduEur, "^Lower") ~ "Low Secondary",
            str_detect(R1_EduEur, "^Higher") ~ "High Secondary",
            str_detect(R1_EduEur, "^Vocational education") ~ "High Secondary",
            str_detect(R1_EduEur, "^Teacher training") ~ "High Secondary",
            str_detect(R1_EduEur, "^Nursing") ~ "High Secondary",
            str_detect(R1_EduEur, "^Technical college") ~ "High Secondary",
            str_detect(R1_EduEur, "^University") ~ "Tertiary",
            str_detect(R1_EduEur, "^Other") ~ "Tertiary",
            str_detect(R1_EduNL, "^None") ~ "None or Primary",
            str_detect(R1_EduNL, "^Primary education") ~ "None or Primary",
            str_detect(R1_EduNL, "^Lower or preparatory") ~ "Low Secondary",
            str_detect(R1_EduNL, "^Junior general secondary") ~ "Low Secondary",
            str_detect(R1_EduNL, "^Upper secondary vocational") ~ "High Secondary",
            str_detect(R1_EduNL, "^Senior general secondary") ~ "High Secondary",
            str_detect(R1_EduNL, "^Higher professional education") ~ "High Secondary",
            str_detect(R1_EduNL, "^University") ~ "Tertiary",
            str_detect(R1_EduNL, "^Other") ~ "Tertiary"
            ) %>% 
                factor(
                    levels = c(
                    "None or Primary", "Low Secondary", "High Secondary", 
                    "Tertiary")),
        hyperlip = case_when(
            R1_Chol >= 5.0 ~ "Yes", 
            (R1_HDLChol < 1.2 & R1_Sex == "female") ~ "Yes",
            (R1_HDLChol < 1 & R1_Sex == "male") ~ "Yes",
            R1_LDLChol >= 3 ~ "Yes", 
            R1_TG >= 1.7 ~ "Yes",
            !is.na(R1_Chol) & !is.na(R1_HDLChol) & !is.na(R1_LDLChol) & !is.na(R1_TG) ~ "No"
            ),
        mets_hrs_per_wk = R1_Ptotallevels/60,
        salt_eat = case_when(
            R2_SaltEating %in% c("Always", "Often") ~ "Always/Often",
            R2_SaltEating %in% c("Sometimes") ~ "Sometimes",
            R2_SaltEating %in% c("Rarely","Never") ~ "Rarely/Never"
            ) %>% 
                factor(levels = c("Always/Often", "Sometimes", "Rarely/Never")),
        analysed = case_when(R1_hpt_eur == "No" ~ "Yes", TRUE ~ "No"),
        urine_na_k_ratio = R2_Na_Urine/R2_K_Urine,
        urine_k_creat_ratio = R2_K_Urine/R1_CreaUrine,
        R1_Renin_cat = gtools::quantcut(R1_Renin, 
            q = 4, 
            labels = c("Q1", "Q2", "Q3", "Q4"), 
            ordered_result = F),
        R1_Aldosterone_cat = gtools::quantcut(
            R1_Aldosterone, 
            q = 4, 
            labels = c("Q1", "Q2", "Q3", "Q4"), 
            ordered_result = F) %>% factor(),
        arr_cat = gtools::quantcut(arr, 
            q = 4, 
            labels = c("Q1", "Q2", "Q3", "Q4"), 
            ordered_result = F),
        renin_std = scale(R1_Renin),
        aldosterone_std = scale(R1_Aldosterone),
        arr_std = scale(arr),
        y_usa = ifelse(R2_hpt_usa == "Yes", 1, 0),
        y_eur = ifelse(R2_hpt_eur == "Yes", 1, 0)) %>% 
    full_join(df_RODAM_dura)
Joining with `by = join_by(RodamID)`
Show the code
## Labeling data for paper

labelled::var_label(df_for_paper_2) <-
    list(
        R1_Age = "Age in years",
        R1_Sex = "Sex",
        R1_BPsys_mean = "Systolic blood pressure (mmHg)",
        R2_BPsys_mean = "Systolic blood pressure (mmHg) @ R2",
        R1_BPdia_mean = "Diastolic blood pressure (mmHg)",
        R2_BPdia_mean = "Diastolic blood pressure (mmHg) @ R2",
        R1_Antihypertensives = "Use of antihypertensives at R1",
        R2_Antihypertensives = "Use of antihypertensives at R2",
        R1_Renin = "Renin concentration (pg/ml)",
        R1_Aldosterone = "Aldosterone concentration (pg/ml)",
        R1_Site = "Study site",
        R1_Chol = "Serum total cholesterol, mmol/L",
        R1_HDLChol = "Serum HDL cholesterol, mmol/L",
        R1_LDLChol = "Serum LDL cholesterol, mmol/L",
        R1_BMI = "BMI, kg/m2",
        R1_Smoking = "Smoking",
        R1_WHR = "Waist-to-hip Ratio",
        R1_BPcat_ESC = "ESC Hypertension categories @ R1",
        R2_BPcat_ESC = "ESC Hypertension categories @ R2",
        arr = "Aldosterone-Renin Ratio",
        R1_hpt_eur = "Hypertension (ESC) @ R1",
        R2_hpt_eur = "Hypertension (ESC) @ R2",
        R1_hpt_usa = "Hypertension (ASC) @ R1",
        R2_hpt_usa = "Hypertension (ASC) @ R2",
        educ = "Educational level",
        hyperlip = "Hypercholesterolemia",
        R1_Na = "Serum sodium",
        R1_K = "Serum Potassium",
        R2_K_Urine = "Urine Potassium",
        R1_HbA1c = "HbA1c (%)",
        R1_Alcohol_day = "Alcohol (g/day)",
        dm = "Diabetes",
        dura = "Years of follow-up",
        R1_CKDEPI_eGFR_adj = "eGFR ml/mim/1.73",
        mets_hrs_per_wk = "METs (hours/week)",
        salt_eat = "Salt eating frequency",
        analysed = "Data included in analysis",
        urine_na_k_ratio = "Urine Na:K ratio",
        R2_Antilipidemics = "Antilipids taken",
        R1_Renin_cat = "Direct Renin Concentration",
        R1_Aldosterone_cat = "Direct Aldosterone Concentration",
        arr_cat = "Aldosterone-to-renin ratio",
        renin_std ="Renin (Per 1 SD)",
        aldosterone_std ="Aldosterone (Per 1 SD)",
        arr_std ="ARR (Per 1 SD)")
Show the code
# df_for_paper_2 %>% summary()

Tables

Table I

Show the code
Setting theme `Compact`
Show the code
table_1 <- 
df_for_paper_2 %>% 
    filter(R1_hpt_eur == "No") %>% 
    gtsummary::tbl_summary(
        include = c(
            R1_Age, R1_Site, R1_Sex, dura, educ, R1_BPsys_mean, R1_BPdia_mean, 
            R1_Renin, R1_Aldosterone, arr, R1_Na, R1_K, urine_na_k_ratio, 
            R2_K_Urine, salt_eat, R1_CKDEPI_eGFR_adj, dm, R1_HbA1c, hyperlip, 
            R1_Chol, R1_HDLChol, R1_LDLChol, R2_Antilipidemics, R1_Smoking, R1_BMI,
            mets_hrs_per_wk, 
            R1_TotalEnergy, R1_WHR, R2_hpt_eur),
        by = R1_Site,
        missing = "no",
        digits = list(R1_Renin ~ 1, arr ~ 1, R1_Na ~ 0)
        ) %>% 
    gtsummary::bold_labels() %>% 
    gtsummary::add_overall(last = TRUE) %>% 
    gtsummary::add_n() %>% 
    gtsummary::modify_caption(
        "**Association between baseline renin, aldosterone, aldosterone renin ratio (ARR) and incident HPT among migrant and non-migrant Ghanaians compared to Dutch Europeans**")

table_1
file.remove("table_1.docx")
[1] TRUE
Show the code
table_1 %>% 
    gtsummary::as_gt() %>% 
    gt::gtsave(filename = "table_1.docx")
Table 1: Association between baseline renin, aldosterone, aldosterone renin ratio (ARR) and incident HPT among migrant and non-migrant Ghanaians compared to Dutch Europeans
Characteristic N Rural Ghana, N = 4811 Urban Ghana, N = 4221 Amsterdam, N = 4451 Dutch, N = 1,6431 Overall, N = 2,9911
Age in years 2,991 44 (35, 54) 42 (35, 51) 44 (37, 50) 45 (34, 54) 44 (35, 53)
Sex 2,991




    male
176 (37%) 119 (28%) 159 (36%) 717 (44%) 1,171 (39%)
    female
305 (63%) 303 (72%) 286 (64%) 926 (56%) 1,820 (61%)
Years of follow-up 2,978 6.61 (6.46, 6.85) 6.71 (6.45, 6.87) 6.77 (5.92, 7.37) 5.91 (5.25, 7.16) 6.48 (5.65, 7.00)
Educational level 2,907




    None or Primary
261 (58%) 150 (36%) 153 (37%) 25 (1.5%) 589 (20%)
    Low Secondary
149 (33%) 191 (46%) 56 (14%) 122 (7.5%) 518 (18%)
    High Secondary
28 (6.2%) 51 (12%) 182 (44%) 855 (52%) 1,116 (38%)
    Tertiary
13 (2.9%) 19 (4.6%) 20 (4.9%) 632 (39%) 684 (24%)
Systolic blood pressure (mmHg) 2,991 115 (107, 124) 117 (110, 126) 123 (115, 130) 119 (111, 126) 119 (111, 126)
Diastolic blood pressure (mmHg) 2,991 72 (66, 79) 74 (68, 81) 78 (72, 83) 74 (69, 79) 74 (69, 80)
Renin concentration (pg/ml) 562 7.8 (4.6, 13.0) 9.0 (4.6, 17.0) 6.7 (4.2, 11.4) 11.4 (7.5, 17.0) 9.3 (5.3, 14.6)
Aldosterone concentration (pg/ml) 561 81 (57, 117) 87 (51, 113) 106 (73, 163) 101 (71, 164) 92 (64, 142)
Aldosterone-Renin Ratio 561 10.6 (5.6, 17.5) 8.8 (4.7, 17.9) 15.6 (8.0, 26.5) 9.3 (6.2, 15.3) 10.8 (6.1, 17.9)
Serum sodium 1,116 140 (138, 141) 141 (139, 142) 141 (139, 142) NA (NA, NA) 140 (139, 142)
Serum Potassium 1,113 4.20 (3.90, 4.40) 4.30 (4.10, 4.60) 3.85 (3.70, 4.00) NA (NA, NA) 4.10 (3.90, 4.40)
Urine Na:K ratio 2,420 3.29 (2.05, 5.00) 3.00 (1.91, 4.75) 2.22 (1.34, 3.46) 2.19 (1.48, 3.14) 2.43 (1.57, 3.69)
Urine Potassium 2,420 34 (19, 58) 42 (24, 69) 44 (27, 67) 37 (25, 57) 39 (24, 61)
Salt eating frequency 2,435




    Always/Often
64 (14%) 22 (5.3%) 29 (7.2%) 482 (42%) 597 (25%)
    Sometimes
92 (20%) 49 (12%) 37 (9.1%) 374 (33%) 552 (23%)
    Rarely/Never
313 (67%) 341 (83%) 339 (84%) 293 (26%) 1,286 (53%)
eGFR ml/mim/1.73 2,959 101 (85, 116) 93 (82, 108) 99 (87, 115) 97 (86, 106) 97 (85, 109)
Diabetes 1,413 9 (33%) 13 (22%) 26 (11%) 17 (1.6%) 65 (4.6%)
HbA1c (%) 2,991 27 (17, 33) 35 (31, 39) 37 (33, 40) 35 (33, 38) 35 (32, 38)
Hypercholesterolemia 2,990 325 (68%) 348 (82%) 284 (64%) 963 (59%) 1,920 (64%)
Serum total cholesterol, mmol/L 2,958 4.18 (3.60, 4.94) 5.12 (4.42, 5.82) 4.84 (4.21, 5.56) 4.96 (4.32, 5.70) 4.87 (4.18, 5.59)
Serum HDL cholesterol, mmol/L 2,991 1.16 (0.96, 1.37) 1.22 (1.06, 1.44) 1.43 (1.19, 1.71) 1.58 (1.31, 1.88) 1.43 (1.17, 1.74)
Serum LDL cholesterol, mmol/L 2,991 2.51 (2.04, 3.12) 3.37 (2.70, 4.02) 2.91 (2.38, 3.56) 2.94 (2.37, 3.59) 2.92 (2.33, 3.60)
Antilipids taken 2,991 2 (0.4%) 2 (0.5%) 26 (5.8%) 71 (4.3%) 101 (3.4%)
Smoking 2,905




    Yes
11 (2.4%) 3 (0.7%) 22 (5.4%) 364 (22%) 400 (14%)
    No, I have never smoked
415 (92%) 397 (97%) 360 (88%) 639 (39%) 1,811 (62%)
    No, but I used to smoke
24 (5.3%) 11 (2.7%) 27 (6.6%) 632 (39%) 694 (24%)
BMI, kg/m2 2,989 21.6 (19.5, 24.6) 26.4 (22.9, 30.7) 27.2 (24.2, 30.1) 23.3 (21.5, 25.4) 23.8 (21.5, 26.7)
METs (hours/week) 1,035 96 (40, 168) 84 (12, 176) 89 (30, 266) NA (NA, NA) 90 (30, 182)
R1 - TotalEnergy (kcal/day) 1,079 2,704 (2,140, 3,656) 2,292 (1,975, 2,759) 2,341 (1,803, 3,064) NA (NA, NA) 2,480 (2,001, 3,100)
Waist-to-hip Ratio 2,989 0.88 (0.85, 0.92) 0.90 (0.85, 0.93) 0.88 (0.83, 0.94) 0.86 (0.81, 0.92) 0.87 (0.82, 0.92)
Hypertension (ESC) @ R2 2,976 90 (19%) 83 (20%) 98 (22%) 100 (6.1%) 371 (12%)
1 Median (IQR); n (%)

Table II

Show the code
Setting theme `Compact`
Show the code
table_2 <- 
df_for_paper_2 %>% 
    drop_na(analysed) %>% 
    gtsummary::tbl_summary(
        include = c(R1_Age, R1_Site, R1_Sex, dura, educ, R1_BPsys_mean, 
        R1_BPdia_mean, R1_Renin, R1_Aldosterone, arr, R1_Na, R1_K, R2_K_Urine, 
        urine_na_k_ratio, salt_eat, R1_CKDEPI_eGFR_adj, dm, R1_HbA1c, hyperlip, 
        R1_HDLChol, R1_LDLChol, R2_Antilipidemics, R1_Smoking, R1_BMI, 
        mets_hrs_per_wk, R1_TotalEnergy, R1_WHR, R2_hpt_eur, analysed),
        by = analysed,
        missing = "no"
        ) %>% 
    gtsummary::bold_labels() %>% 
    gtsummary::add_overall(last = TRUE) %>% 
    gtsummary::add_n() %>% 
    gtsummary::modify_caption(
        "**Difference between data included in the analysis and that not included.**") %>% 
    gtsummary::add_p() 

table_2
file.remove("table_2.docx")
[1] TRUE
Show the code
table_2 %>% 
    gtsummary::as_gt() %>% 
    gt::gtsave(filename = "table_2.docx")
Table 2: Difference between data included in the analysis and that not included.
Characteristic N No, N = 1,2881 Yes, N = 2,9911 Overall, N = 4,2791 p-value2
Age in years 4,278 53 (46, 59) 44 (35, 53) 47 (38, 55) <0.001
Study site 4,279


<0.001
    Rural Ghana
168 (13%) 481 (16%) 649 (15%)
    Urban Ghana
193 (15%) 422 (14%) 615 (14%)
    Amsterdam
473 (37%) 445 (15%) 918 (21%)
    Dutch
454 (35%) 1,643 (55%) 2,097 (49%)
Sex 4,278


<0.001
    male
608 (47%) 1,171 (39%) 1,779 (42%)
    female
679 (53%) 1,820 (61%) 2,499 (58%)
Years of follow-up 4,212 6.64 (5.84, 7.18) 6.48 (5.65, 7.00) 6.54 (5.71, 7.06) <0.001
Educational level 4,136


<0.001
    None or Primary
359 (29%) 589 (20%) 948 (23%)
    Low Secondary
263 (21%) 518 (18%) 781 (19%)
    High Secondary
458 (37%) 1,116 (38%) 1,574 (38%)
    Tertiary
149 (12%) 684 (24%) 833 (20%)
Systolic blood pressure (mmHg) 4,223 144 (134, 153) 119 (111, 126) 124 (114, 135) <0.001
Diastolic blood pressure (mmHg) 4,223 90 (83, 95) 74 (69, 80) 78 (71, 86) <0.001
Renin concentration (pg/ml) 788 6 (3, 10) 9 (5, 15) 8 (5, 13) <0.001
Aldosterone concentration (pg/ml) 787 114 (82, 173) 92 (64, 142) 98 (68, 149) <0.001
Aldosterone-Renin Ratio 787 21 (12, 37) 11 (6, 18) 13 (7, 22) <0.001
Serum sodium 1,725 141.20 (139.60, 142.40) 140.30 (138.80, 141.80) 140.60 (139.10, 142.10) <0.001
Serum Potassium 1,722 4.00 (3.80, 4.30) 4.10 (3.90, 4.40) 4.10 (3.80, 4.40) <0.001
Urine Potassium 3,547 39 (24, 60) 39 (24, 61) 39 (24, 61) 0.8
Urine Na:K ratio 3,547 2.55 (1.46, 3.83) 2.43 (1.57, 3.69) 2.47 (1.54, 3.72) 0.8
Salt eating frequency 3,536


<0.001
    Always/Often
140 (13%) 597 (25%) 737 (21%)
    Sometimes
165 (15%) 552 (23%) 717 (20%)
    Rarely/Never
796 (72%) 1,286 (53%) 2,082 (59%)
eGFR ml/mim/1.73 4,185 89 (78, 101) 97 (85, 109) 95 (83, 107) <0.001
Diabetes 2,126 104 (15%) 65 (4.6%) 169 (7.9%) <0.001
HbA1c (%) 4,233 38 (33, 41) 35 (32, 38) 35 (32, 39) <0.001
Hypercholesterolemia 4,232 943 (76%) 1,920 (64%) 2,863 (68%) <0.001
Serum HDL cholesterol, mmol/L 4,233 1.35 (1.11, 1.61) 1.43 (1.17, 1.74) 1.41 (1.14, 1.71) <0.001
Serum LDL cholesterol, mmol/L 4,233 3.25 (2.59, 3.94) 2.92 (2.33, 3.60) 3.01 (2.41, 3.71) <0.001
Antilipids taken 4,278 232 (18%) 101 (3.4%) 333 (7.8%) <0.001
Smoking 4,127


<0.001
    Yes
120 (9.8%) 400 (14%) 520 (13%)
    No, I have never smoked
832 (68%) 1,811 (62%) 2,643 (64%)
    No, but I used to smoke
270 (22%) 694 (24%) 964 (23%)
BMI, kg/m2 4,231 27.2 (24.4, 30.4) 23.8 (21.5, 26.7) 24.7 (22.1, 28.1) <0.001
METs (hours/week) 1,553 64 (15, 159) 90 (30, 182) 83 (22, 174) <0.001
R1 - TotalEnergy (kcal/day) 1,614 2,315 (1,847, 3,003) 2,480 (2,001, 3,100) 2,422 (1,947, 3,073) <0.001
Waist-to-hip Ratio 4,231 0.93 (0.88, 0.98) 0.87 (0.82, 0.92) 0.89 (0.84, 0.94) <0.001
Hypertension (ESC) @ R2 4,255 657 (51%) 371 (12%) 1,028 (24%) <0.001
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Pearson’s Chi-squared test

Table III

Show the code
Setting theme `Compact`
Show the code
table_3 <- 
df_for_paper_2 %>% drop_na(R2_hpt_eur) %>% 
    gtsummary::tbl_summary(
        include = c(R1_Age, R1_Site, R1_Sex, dura, educ, R1_BPsys_mean, 
        R1_BPdia_mean, R1_Renin, R1_Aldosterone, arr, R1_Na, R1_K, R2_K_Urine, 
        urine_na_k_ratio, salt_eat, R1_CKDEPI_eGFR_adj, dm, R1_HbA1c, hyperlip, 
        R1_HDLChol, R1_LDLChol, R2_Antilipidemics, R1_Smoking, R1_BMI, 
        mets_hrs_per_wk, R1_TotalEnergy, R1_WHR, R2_hpt_eur),
        by = R2_hpt_eur,
        missing = "no"
        ) %>% 
    gtsummary::bold_labels() %>% 
    gtsummary::add_overall(last = TRUE) %>% 
    gtsummary::add_n() %>% 
    gtsummary::modify_caption(
        "**Baseline characteristics among groups classified by the development of hypertension (ESC)**") %>% 
    gtsummary::add_p() 

table_3
file.remove("table_3.docx")
[1] TRUE
Show the code
table_3 %>% 
    gtsummary::as_gt() %>% 
    gt::gtsave(filename = "table_3.docx")
Table 3: Baseline characteristics among groups classified by the development of hypertension (ESC)
Characteristic N No, N = 3,2271 Yes, N = 1,0281 Overall, N = 4,2551 p-value2
Age in years 4,255 45 (35, 54) 51 (45, 59) 47 (38, 55) <0.001
Study site 4,255


<0.001
    Rural Ghana
441 (14%) 197 (19%) 638 (15%)
    Urban Ghana
414 (13%) 190 (18%) 604 (14%)
    Amsterdam
577 (18%) 341 (33%) 918 (22%)
    Dutch
1,795 (56%) 300 (29%) 2,095 (49%)
Sex 4,255


<0.001
    male
1,277 (40%) 494 (48%) 1,771 (42%)
    female
1,950 (60%) 534 (52%) 2,484 (58%)
Years of follow-up 4,208 6.48 (5.63, 7.04) 6.65 (6.03, 7.10) 6.54 (5.71, 7.06) <0.001
Educational level 4,114


<0.001
    None or Primary
608 (19%) 329 (33%) 937 (23%)
    Low Secondary
549 (18%) 222 (22%) 771 (19%)
    High Secondary
1,233 (39%) 340 (34%) 1,573 (38%)
    Tertiary
733 (23%) 100 (10%) 833 (20%)
Systolic blood pressure (mmHg) 4,200 120 (111, 129) 139 (128, 150) 124 (114, 135) <0.001
Diastolic blood pressure (mmHg) 4,200 75 (69, 82) 87 (80, 93) 78 (71, 86) <0.001
Renin concentration (pg/ml) 788 9 (5, 15) 6 (4, 10) 8 (5, 13) <0.001
Aldosterone concentration (pg/ml) 787 92 (65, 145) 108 (79, 163) 98 (68, 149) <0.001
Aldosterone-Renin Ratio 787 11 (6, 18) 18 (10, 30) 13 (7, 22) <0.001
Serum sodium 1,705 140.40 (138.90, 141.90) 141.00 (139.40, 142.35) 140.60 (139.10, 142.10) <0.001
Serum Potassium 1,702 4.10 (3.90, 4.40) 4.10 (3.80, 4.30) 4.10 (3.80, 4.40) 0.012
Urine Potassium 3,528 38 (24, 61) 40 (24, 60) 39 (24, 61) 0.9
Urine Na:K ratio 3,528 2.41 (1.52, 3.61) 2.68 (1.59, 4.18) 2.46 (1.53, 3.72) <0.001
Salt eating frequency 3,524


<0.001
    Always/Often
619 (24%) 116 (13%) 735 (21%)
    Sometimes
570 (22%) 142 (16%) 712 (20%)
    Rarely/Never
1,440 (55%) 637 (71%) 2,077 (59%)
eGFR ml/mim/1.73 4,163 96 (85, 108) 90 (78, 103) 95 (83, 107) <0.001
Diabetes 2,124 97 (5.9%) 70 (15%) 167 (7.9%) <0.001
HbA1c (%) 4,210 35 (32, 38) 37 (32, 41) 35 (32, 39) <0.001
Hypercholesterolemia 4,209 2,070 (65%) 774 (76%) 2,844 (68%) <0.001
Serum HDL cholesterol, mmol/L 4,210 1.44 (1.17, 1.74) 1.32 (1.09, 1.59) 1.41 (1.15, 1.71) <0.001
Serum LDL cholesterol, mmol/L 4,210 2.96 (2.37, 3.65) 3.20 (2.58, 3.88) 3.02 (2.41, 3.71) <0.001
Antilipids taken 4,255 221 (6.8%) 112 (11%) 333 (7.8%) <0.001
Smoking 4,105


<0.001
    Yes
434 (14%) 86 (8.7%) 520 (13%)
    No, I have never smoked
1,911 (61%) 715 (73%) 2,626 (64%)
    No, but I used to smoke
775 (25%) 184 (19%) 959 (23%)
BMI, kg/m2 4,208 24.2 (21.7, 27.5) 26.3 (23.8, 29.5) 24.7 (22.1, 28.1) <0.001
METs (hours/week) 1,532 84 (24, 172) 83 (20, 180) 84 (22, 175) 0.9
R1 - TotalEnergy (kcal/day) 1,593 2,433 (1,964, 3,058) 2,369 (1,929, 3,089) 2,419 (1,946, 3,073) 0.4
Waist-to-hip Ratio 4,208 0.88 (0.83, 0.93) 0.93 (0.88, 0.97) 0.89 (0.84, 0.94) <0.001
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Pearson’s Chi-squared test

Table IV

Show the code
Setting theme `Compact`
Show the code
table_4 <- 
df_for_paper_2 %>% 
    drop_na(R2_hpt_usa) %>% 
    gtsummary::tbl_summary(
        include = c(R1_Age, R1_Site, R1_Sex, dura, educ, R1_BPsys_mean, 
        R1_BPdia_mean, R1_Renin, R1_Aldosterone, arr, R1_Na, R1_K, R2_K_Urine, 
        urine_na_k_ratio, salt_eat, R1_CKDEPI_eGFR_adj, dm, R1_HbA1c, hyperlip, 
        R1_HDLChol, R1_LDLChol, R2_Antilipidemics, R1_Smoking, R1_BMI, 
        mets_hrs_per_wk, R1_TotalEnergy, R1_WHR, R2_hpt_usa),
        by = R2_hpt_usa,
        missing = "no"
        ) %>% 
    gtsummary::bold_labels() %>% 
    gtsummary::add_overall(last = TRUE) %>% 
    gtsummary::add_n() %>% 
    gtsummary::modify_caption(
        "**Baseline characteristics among groups classified by the development of hypertension (USA)**") %>% 
    gtsummary::add_p() 

table_4
file.remove("table_4.docx")
[1] TRUE
Show the code
table_4 %>% 
    gtsummary::as_gt() %>% 
    gt::gtsave(filename = "table_4.docx")
Table 4: Baseline characteristics among groups classified by the development of hypertension (USA)
Characteristic N No, N = 2,2201 Yes, N = 2,0351 Overall, N = 4,2551 p-value2
Age in years 4,255 43 (33, 53) 50 (42, 58) 47 (38, 55) <0.001
Study site 4,255


<0.001
    Rural Ghana
311 (14%) 327 (16%) 638 (15%)
    Urban Ghana
276 (12%) 328 (16%) 604 (14%)
    Amsterdam
318 (14%) 600 (29%) 918 (22%)
    Dutch
1,315 (59%) 780 (38%) 2,095 (49%)
Sex 4,255


<0.001
    male
764 (34%) 1,007 (49%) 1,771 (42%)
    female
1,456 (66%) 1,028 (51%) 2,484 (58%)
Years of follow-up 4,208 6.46 (5.59, 7.01) 6.61 (5.85, 7.11) 6.54 (5.71, 7.06) <0.001
Educational level 4,114


<0.001
    None or Primary
397 (18%) 540 (27%) 937 (23%)
    Low Secondary
354 (16%) 417 (21%) 771 (19%)
    High Secondary
851 (40%) 722 (37%) 1,573 (38%)
    Tertiary
546 (25%) 287 (15%) 833 (20%)
Systolic blood pressure (mmHg) 4,200 116 (109, 125) 132 (123, 144) 124 (114, 135) <0.001
Diastolic blood pressure (mmHg) 4,200 73 (68, 78) 84 (77, 91) 78 (71, 86) <0.001
Renin concentration (pg/ml) 788 9 (5, 14) 7 (4, 12) 8 (5, 13) <0.001
Aldosterone concentration (pg/ml) 787 87 (57, 137) 105 (76, 157) 98 (68, 149) <0.001
Aldosterone-Renin Ratio 787 9 (6, 18) 15 (8, 27) 13 (7, 22) <0.001
Serum sodium 1,705 140.20 (138.70, 141.70) 140.90 (139.30, 142.30) 140.60 (139.10, 142.10) <0.001
Serum Potassium 1,702 4.10 (3.90, 4.40) 4.10 (3.80, 4.30) 4.10 (3.80, 4.40) <0.001
Urine Potassium 3,528 38 (24, 61) 40 (24, 61) 39 (24, 61) 0.3
Urine Na:K ratio 3,528 2.38 (1.52, 3.50) 2.59 (1.56, 4.00) 2.46 (1.53, 3.72) <0.001
Salt eating frequency 3,524


<0.001
    Always/Often
452 (25%) 283 (16%) 735 (21%)
    Sometimes
392 (22%) 320 (18%) 712 (20%)
    Rarely/Never
942 (53%) 1,135 (65%) 2,077 (59%)
eGFR ml/mim/1.73 4,163 97 (86, 109) 92 (80, 104) 95 (83, 107) <0.001
Diabetes 2,124 48 (4.3%) 119 (12%) 167 (7.9%) <0.001
HbA1c (%) 4,210 35 (32, 38) 36 (32, 40) 35 (32, 39) <0.001
Hypercholesterolemia 4,209 1,355 (62%) 1,489 (74%) 2,844 (68%) <0.001
Serum HDL cholesterol, mmol/L 4,210 1.48 (1.20, 1.77) 1.34 (1.10, 1.62) 1.41 (1.15, 1.71) <0.001
Serum LDL cholesterol, mmol/L 4,210 2.89 (2.30, 3.55) 3.17 (2.55, 3.87) 3.02 (2.41, 3.71) <0.001
Antilipids taken 4,255 116 (5.2%) 217 (11%) 333 (7.8%) <0.001
Smoking 4,105


<0.001
    Yes
307 (14%) 213 (11%) 520 (13%)
    No, I have never smoked
1,286 (60%) 1,340 (69%) 2,626 (64%)
    No, but I used to smoke
557 (26%) 402 (21%) 959 (23%)
BMI, kg/m2 4,208 23.7 (21.4, 26.6) 26.0 (23.2, 29.3) 24.7 (22.1, 28.1) <0.001
METs (hours/week) 1,532 84 (25, 176) 82 (20, 174) 84 (22, 175) 0.6
R1 - TotalEnergy (kcal/day) 1,593 2,480 (2,008, 3,066) 2,343 (1,915, 3,078) 2,419 (1,946, 3,073) 0.028
Waist-to-hip Ratio 4,208 0.87 (0.81, 0.92) 0.92 (0.87, 0.96) 0.89 (0.84, 0.94) <0.001
1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Pearson’s Chi-squared test

Function for tables

Show the code
#===================================== MODEL  1 ================================
tblgen <- function(data){
    x <- 
    data %>% 
    select(y_usa, renin_std) %>% 
    glm(
        y_usa ~ renin_std, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Renin_cat) %>% 
    glm(
        y_usa ~ R1_Renin_cat, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_1 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, aldosterone_std, ) %>% 
    glm(
        y_usa ~ aldosterone_std, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Aldosterone_cat) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_1 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, arr_std) %>% 
    glm(
        y_usa ~ arr_std, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, arr_cat) %>% 
    glm(
        y_usa ~ arr_cat, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_1 <- gtsummary::tbl_stack(tbls = list(x,y))

#================================= MODEL 2 =====================================

x <- 
    data %>% 
    select(y_usa, renin_std, R1_Age, R1_Sex) %>% 
    glm(
        y_usa ~ renin_std + R1_Age + R1_Sex, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Renin_cat, R1_Age, R1_Sex) %>% 
    glm(
        y_usa ~ R1_Renin_cat + R1_Age + R1_Sex, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_2 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, aldosterone_std, R1_Age, R1_Sex ) %>% 
    glm(
        y_usa ~ aldosterone_std + R1_Age + R1_Sex, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Aldosterone_cat, R1_Age, R1_Sex) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat + R1_Age + R1_Sex, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_2 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, arr_std, R1_Age, R1_Sex) %>% 
    glm(
        y_usa ~ arr_std + R1_Age + R1_Sex, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, arr_cat, R1_Age, R1_Sex) %>% 
    glm(
        y_usa ~ arr_cat + R1_Age + R1_Sex, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_2 <- gtsummary::tbl_stack(tbls = list(x,y))

#=============================== MODEL 3 ======================================

x <- 
    data %>% 
    select(
        y_usa, renin_std, 
        R1_Age, R1_Sex, 
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ renin_std + R1_Age + R1_Sex + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Renin_cat, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ R1_Renin_cat + R1_Age + R1_Sex + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_3 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, aldosterone_std, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ aldosterone_std + R1_Age + R1_Sex + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Aldosterone_cat, 
        R1_Age, R1_Sex, 
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat + R1_Age + R1_Sex + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_3 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, arr_std, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ arr_std + R1_Age + R1_Sex + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, arr_cat, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ arr_cat + R1_Age + R1_Sex + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_3 <- gtsummary::tbl_stack(tbls = list(x,y))

#=============================== MODEL 4 ======================================

x <- 
    data %>% 
    select(
        y_usa, renin_std, 
        R1_Age, R1_Sex, 
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ renin_std + R1_Age + R1_Sex + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Renin_cat, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ R1_Renin_cat + R1_Age + R1_Sex + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_4 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, aldosterone_std, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ aldosterone_std + R1_Age + R1_Sex + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Aldosterone_cat, 
        R1_Age, R1_Sex, 
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat + R1_Age + R1_Sex + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_4 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, arr_std, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ arr_std + R1_Age + R1_Sex + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, arr_cat, 
        R1_Age, R1_Sex,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ arr_cat + R1_Age + R1_Sex + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_4 <- gtsummary::tbl_stack(tbls = list(x,y))

#======================== MERGE TABLE PARTS ==================================

abc = c("Model 1", "Model 2", "Model 3", "Model 4")

tbl_1 <- 
    gtsummary::tbl_merge(
        tbls = list(tbl_1_1, tbl_1_2, tbl_1_3, tbl_1_4),
        tab_spanner = abc) 
tbl_2 <- 
    gtsummary::tbl_merge(
        tbls = list(tbl_2_1, tbl_2_2, tbl_2_3, tbl_2_4),
        tab_spanner = abc)
tbl_3 <- 
    gtsummary::tbl_merge(
        tbls = list(tbl_3_1, tbl_3_2, tbl_3_3, tbl_3_4),
        tab_spanner = abc)

gtsummary::tbl_stack(
    tbls = list(tbl_1, tbl_2, tbl_3), 
    group_header = c("Renin", "Aldosterone", "Aldosterone-Renin Ratio")) 
}

No sex function

Show the code
#===================================== MODEL  1 ================================
tblgen_nosex <- function(data){
    x <- 
    data %>% 
    select(y_usa, renin_std) %>% 
    glm(
        y_usa ~ renin_std, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Renin_cat) %>% 
    glm(
        y_usa ~ R1_Renin_cat, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_1 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, aldosterone_std, ) %>% 
    glm(
        y_usa ~ aldosterone_std, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Aldosterone_cat) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_1 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, arr_std) %>% 
    glm(
        y_usa ~ arr_std, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, arr_cat) %>% 
    glm(
        y_usa ~ arr_cat, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_1 <- gtsummary::tbl_stack(tbls = list(x,y))

#================================= MODEL 2 =====================================

x <- 
    data %>% 
    select(y_usa, renin_std, R1_Age) %>% 
    glm(
        y_usa ~ renin_std + R1_Age, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Renin_cat, R1_Age) %>% 
    glm(
        y_usa ~ R1_Renin_cat + R1_Age, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_2 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, aldosterone_std, R1_Age ) %>% 
    glm(
        y_usa ~ aldosterone_std + R1_Age, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, R1_Aldosterone_cat, R1_Age) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat + R1_Age, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_2 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(y_usa, arr_std, R1_Age) %>% 
    glm(
        y_usa ~ arr_std + R1_Age, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(y_usa, arr_cat, R1_Age) %>% 
    glm(
        y_usa ~ arr_cat + R1_Age, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_2 <- gtsummary::tbl_stack(tbls = list(x,y))

#=============================== MODEL 3 ======================================

x <- 
    data %>% 
    select(
        y_usa, renin_std, 
        R1_Age, 
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ renin_std + R1_Age + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Renin_cat, 
        R1_Age,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ R1_Renin_cat + R1_Age + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_3 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, aldosterone_std, 
        R1_Age,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ aldosterone_std + R1_Age + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Aldosterone_cat, 
        R1_Age, 
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat + R1_Age + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_3 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, arr_std, 
        R1_Age,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ arr_std + R1_Age + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, arr_cat, 
        R1_Age,
        educ,  R1_Smoking) %>% 
    glm(
        y_usa ~ arr_cat + R1_Age + educ + R1_Smoking, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_3 <- gtsummary::tbl_stack(tbls = list(x,y))

#=============================== MODEL 4 ======================================

x <- 
    data %>% 
    select(
        y_usa, renin_std, 
        R1_Age, 
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ renin_std + R1_Age + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = renin_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Renin_cat, 
        R1_Age,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ R1_Renin_cat + R1_Age + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Renin_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_1_4 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, aldosterone_std, 
        R1_Age,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ aldosterone_std + R1_Age + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = aldosterone_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, R1_Aldosterone_cat, 
        R1_Age, 
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ R1_Aldosterone_cat + R1_Age + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = R1_Aldosterone_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_2_4 <- gtsummary::tbl_stack(tbls = list(x,y))

x <- 
    data %>% 
    select(
        y_usa, arr_std, 
        R1_Age,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ arr_std + R1_Age + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_std,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

y <- 
    data %>% 
    select(
        y_usa, arr_cat, 
        R1_Age,
        educ,  R1_Smoking, 
        R1_BMI, R1_WHR, R1_Chol, R1_BPsys_mean, salt_eat, dura, 
        R1_CKDEPI_eGFR_adj) %>% 
    glm(
        y_usa ~ arr_cat + R1_Age + educ + 
            R1_Smoking + R1_BMI + R1_WHR + R1_Chol + 
            R1_BPsys_mean + salt_eat + dura + R1_CKDEPI_eGFR_adj, 
        family = poisson(link = "log"), 
        data = .
    ) %>% 
    gtsummary::tbl_regression(
        exponentiate=TRUE,
        include = arr_cat,
        pvalue_fun = function(x) gtsummary::style_pvalue(x, digits = 3)
    )

tbl_3_4 <- gtsummary::tbl_stack(tbls = list(x,y))

#======================== MERGE TABLE PARTS ==================================

abc = c("Model 1", "Model 2", "Model 3", "Model 4")

tbl_1 <- 
    gtsummary::tbl_merge(
        tbls = list(tbl_1_1, tbl_1_2, tbl_1_3, tbl_1_4),
        tab_spanner = abc) 
tbl_2 <- 
    gtsummary::tbl_merge(
        tbls = list(tbl_2_1, tbl_2_2, tbl_2_3, tbl_2_4),
        tab_spanner = abc)
tbl_3 <- 
    gtsummary::tbl_merge(
        tbls = list(tbl_3_1, tbl_3_2, tbl_3_3, tbl_3_4),
        tab_spanner = abc)

gtsummary::tbl_stack(
    tbls = list(tbl_1, tbl_2, tbl_3), 
    group_header = c("Renin", "Aldosterone", "Aldosterone-Renin Ratio")) 
}

Table Continued

Table for whole population

Show the code
tblgen(df_for_paper_2)
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.89 0.79, 0.99 0.036 0.90 0.80, 0.99 0.052 0.90 0.80, 1.00 0.056 0.94 0.84, 1.04 0.276
Direct Renin Concentration











    Q1



    Q2 0.97 0.76, 1.24 0.806 0.96 0.76, 1.23 0.764 0.97 0.76, 1.24 0.806 1.01 0.79, 1.30 0.914
    Q3 0.81 0.63, 1.05 0.109 0.80 0.62, 1.04 0.094 0.80 0.62, 1.04 0.100 0.88 0.68, 1.15 0.366
    Q4 0.78 0.61, 1.01 0.061 0.79 0.61, 1.03 0.081 0.79 0.60, 1.04 0.094 0.90 0.68, 1.19 0.467
Aldosterone
Aldosterone (Per 1 SD) 1.05 0.97, 1.12 0.187 1.06 0.98, 1.12 0.128 1.06 0.97, 1.12 0.145 1.03 0.93, 1.11 0.575
Direct Aldosterone Concentration











    Q1



    Q2 1.21 0.92, 1.59 0.168 1.21 0.92, 1.59 0.175 1.23 0.93, 1.61 0.145 1.12 0.85, 1.48 0.414
    Q3 1.45 1.12, 1.89 0.005 1.45 1.12, 1.89 0.005 1.48 1.14, 1.93 0.003 1.28 0.98, 1.69 0.070
    Q4 1.38 1.06, 1.80 0.017 1.42 1.09, 1.85 0.010 1.42 1.09, 1.86 0.010 1.23 0.93, 1.63 0.149
Aldosterone-Renin Ratio
ARR (Per 1 SD) 1.15 1.06, 1.23 <0.001 1.16 1.07, 1.25 <0.001 1.15 1.06, 1.24 <0.001 1.07 0.98, 1.17 0.117
Aldosterone-to-renin ratio











    Q1



    Q2 1.23 0.93, 1.63 0.141 1.27 0.96, 1.68 0.092 1.27 0.96, 1.68 0.095 1.18 0.89, 1.57 0.249
    Q3 1.42 1.09, 1.87 0.010 1.43 1.10, 1.88 0.009 1.42 1.09, 1.87 0.010 1.32 1.00, 1.74 0.050
    Q4 1.60 1.24, 2.09 <0.001 1.64 1.26, 2.15 <0.001 1.63 1.25, 2.14 <0.001 1.34 1.00, 1.79 0.050
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Table for Males

Show the code
df_for_paper_2 %>% filter(R1_Sex == "male") %>% tblgen_nosex()
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.89 0.76, 1.01 0.109 0.91 0.78, 1.03 0.188 0.91 0.78, 1.04 0.199 0.93 0.81, 1.05 0.324
Direct Renin Concentration











    Q1



    Q2 1.10 0.77, 1.60 0.601 1.12 0.77, 1.62 0.560 1.12 0.78, 1.63 0.548 1.17 0.81, 1.72 0.407
    Q3 0.94 0.66, 1.37 0.756 0.97 0.68, 1.41 0.883 0.97 0.67, 1.42 0.879 1.04 0.71, 1.54 0.836
    Q4 0.80 0.56, 1.17 0.252 0.86 0.59, 1.26 0.442 0.86 0.59, 1.28 0.463 0.96 0.64, 1.45 0.849
Aldosterone
Aldosterone (Per 1 SD) 1.13 0.98, 1.28 0.063 1.15 1.00, 1.30 0.040 1.16 1.00, 1.31 0.037 1.06 0.90, 1.21 0.477
Direct Aldosterone Concentration











    Q1



    Q2 1.29 0.89, 1.88 0.180 1.31 0.91, 1.91 0.149 1.33 0.92, 1.94 0.138 1.22 0.83, 1.80 0.313
    Q3 1.43 0.99, 2.07 0.057 1.44 1.00, 2.10 0.050 1.47 1.02, 2.14 0.042 1.31 0.90, 1.93 0.164
    Q4 1.54 1.07, 2.24 0.022 1.57 1.09, 2.29 0.017 1.59 1.09, 2.34 0.016 1.31 0.88, 1.96 0.183
Aldosterone-Renin Ratio
ARR (Per 1 SD) 1.16 1.03, 1.30 0.012 1.15 1.02, 1.29 0.018 1.15 1.02, 1.29 0.021 1.05 0.91, 1.20 0.473
Aldosterone-to-renin ratio











    Q1



    Q2 1.29 0.91, 1.84 0.158 1.31 0.92, 1.86 0.136 1.29 0.91, 1.85 0.151 1.22 0.85, 1.76 0.278
    Q3 1.46 1.03, 2.07 0.034 1.41 1.00, 2.01 0.053 1.39 0.98, 1.98 0.068 1.32 0.92, 1.89 0.130
    Q4 1.65 1.14, 2.38 0.007 1.59 1.10, 2.30 0.013 1.59 1.09, 2.30 0.015 1.25 0.84, 1.88 0.273
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Table for Females

Show the code
df_for_paper_2 %>% filter(R1_Sex == "female") %>% tblgen_nosex()
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.86 0.71, 1.01 0.096 0.87 0.72, 1.03 0.140 0.87 0.72, 1.03 0.134 0.97 0.79, 1.16 0.754
Direct Renin Concentration











    Q1



    Q2 0.86 0.62, 1.18 0.352 0.86 0.62, 1.20 0.383 0.89 0.64, 1.25 0.511 0.93 0.66, 1.31 0.673
    Q3 0.64 0.43, 0.93 0.022 0.65 0.44, 0.95 0.030 0.67 0.45, 0.98 0.044 0.78 0.51, 1.16 0.227
    Q4 0.74 0.50, 1.07 0.118 0.77 0.52, 1.12 0.183 0.77 0.52, 1.13 0.196 0.92 0.61, 1.39 0.711
Aldosterone
Aldosterone (Per 1 SD) 1.02 0.90, 1.11 0.696 1.02 0.91, 1.11 0.671 1.02 0.91, 1.11 0.681 1.02 0.89, 1.13 0.712
Direct Aldosterone Concentration











    Q1



    Q2 1.11 0.74, 1.66 0.614 1.10 0.73, 1.64 0.651 1.10 0.73, 1.65 0.637 1.03 0.68, 1.55 0.906
    Q3 1.47 1.01, 2.14 0.043 1.47 1.01, 2.14 0.044 1.51 1.04, 2.20 0.032 1.30 0.88, 1.94 0.185
    Q4 1.25 0.86, 1.83 0.245 1.27 0.87, 1.86 0.211 1.29 0.88, 1.89 0.195 1.22 0.82, 1.81 0.334
Aldosterone-Renin Ratio
ARR (Per 1 SD) 1.17 1.05, 1.28 0.003 1.16 1.04, 1.28 0.004 1.15 1.04, 1.27 0.006 1.09 0.97, 1.22 0.148
Aldosterone-to-renin ratio











    Q1



    Q2 1.19 0.76, 1.87 0.453 1.21 0.78, 1.92 0.400 1.24 0.79, 1.97 0.350 1.14 0.72, 1.82 0.592
    Q3 1.45 0.95, 2.24 0.088 1.45 0.95, 2.24 0.087 1.49 0.97, 2.31 0.071 1.34 0.86, 2.12 0.201
    Q4 1.71 1.16, 2.58 0.009 1.68 1.14, 2.54 0.011 1.70 1.15, 2.59 0.010 1.39 0.91, 2.17 0.139
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Table for Rural Ghana

Show the code
df_for_paper_2 %>% filter(R1_Site == "Rural Ghana") %>% tblgen()
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.77 0.55, 1.03 0.103 0.81 0.58, 1.08 0.194 0.81 0.58, 1.08 0.197 0.89 0.62, 1.21 0.484
Direct Renin Concentration











    Q1



    Q2 1.08 0.67, 1.76 0.747 1.13 0.69, 1.84 0.632 1.13 0.69, 1.85 0.633 1.12 0.66, 1.89 0.678
    Q3 0.81 0.48, 1.37 0.433 0.87 0.51, 1.46 0.594 0.83 0.48, 1.41 0.493 0.81 0.46, 1.41 0.448
    Q4 0.75 0.40, 1.35 0.347 0.85 0.45, 1.54 0.592 0.84 0.45, 1.54 0.591 0.97 0.50, 1.80 0.915
Aldosterone
Aldosterone (Per 1 SD) 1.22 0.92, 1.58 0.145 1.22 0.91, 1.59 0.170 1.21 0.90, 1.58 0.185 1.17 0.83, 1.58 0.351
Direct Aldosterone Concentration











    Q1



    Q2 1.39 0.80, 2.46 0.245 1.46 0.84, 2.59 0.184 1.57 0.89, 2.80 0.124 1.35 0.74, 2.47 0.326
    Q3 1.96 1.16, 3.39 0.013 1.94 1.15, 3.37 0.015 2.11 1.23, 3.69 0.007 1.63 0.91, 2.98 0.102
    Q4 1.61 0.89, 2.92 0.114 1.56 0.85, 2.84 0.146 1.64 0.89, 3.02 0.109 1.45 0.74, 2.83 0.272
Aldosterone-Renin Ratio
ARR (Per 1 SD) 1.25 1.04, 1.48 0.014 1.21 1.00, 1.45 0.040 1.24 1.02, 1.49 0.027 1.14 0.92, 1.39 0.214
Aldosterone-to-renin ratio











    Q1



    Q2 0.97 0.49, 1.86 0.921 0.97 0.49, 1.87 0.920 1.02 0.52, 1.99 0.948 0.91 0.46, 1.79 0.790
    Q3 1.85 1.09, 3.25 0.027 1.77 1.03, 3.11 0.042 1.88 1.08, 3.39 0.029 1.69 0.95, 3.07 0.078
    Q4 1.88 1.09, 3.32 0.025 1.74 1.0, 3.11 0.056 1.84 1.05, 3.32 0.038 1.50 0.83, 2.77 0.181
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Table for Urban Ghana

Show the code
df_for_paper_2 %>% filter(R1_Site == "Urban Ghana") %>% tblgen()
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.89 0.74, 1.03 0.147 0.89 0.75, 1.03 0.159 0.89 0.74, 1.03 0.150 0.90 0.74, 1.06 0.245
Direct Renin Concentration











    Q1



    Q2 0.97 0.59, 1.56 0.891 0.89 0.54, 1.45 0.645 0.89 0.54, 1.44 0.628 0.86 0.52, 1.41 0.552
    Q3 0.81 0.48, 1.35 0.430 0.79 0.46, 1.32 0.383 0.81 0.47, 1.37 0.444 0.85 0.49, 1.44 0.550
    Q4 0.76 0.47, 1.21 0.256 0.75 0.46, 1.22 0.256 0.75 0.46, 1.22 0.246 0.77 0.46, 1.28 0.314
Aldosterone
Aldosterone (Per 1 SD) 1.31 1.03, 1.63 0.023 1.30 1.01, 1.63 0.035 1.30 1.00, 1.66 0.042 1.18 0.88, 1.57 0.256
Direct Aldosterone Concentration











    Q1



    Q2 1.15 0.66, 1.97 0.614 1.10 0.63, 1.89 0.737 1.10 0.62, 1.94 0.733 1.11 0.62, 1.95 0.731
    Q3 1.47 0.92, 2.38 0.108 1.36 0.85, 2.22 0.206 1.36 0.84, 2.24 0.218 1.29 0.77, 2.19 0.340
    Q4 1.60 0.96, 2.68 0.070 1.56 0.93, 2.61 0.088 1.58 0.91, 2.73 0.101 1.38 0.76, 2.49 0.288
Aldosterone-Renin Ratio
ARR (Per 1 SD) 1.19 0.99, 1.41 0.051 1.20 0.99, 1.44 0.060 1.20 0.98, 1.45 0.068 1.13 0.91, 1.38 0.255
Aldosterone-to-renin ratio











    Q1



    Q2 1.56 0.92, 2.67 0.102 1.56 0.92, 2.68 0.099 1.56 0.91, 2.70 0.105 1.37 0.78, 2.40 0.273
    Q3 1.73 1.01, 2.97 0.046 1.62 0.94, 2.79 0.081 1.63 0.94, 2.88 0.085 1.44 0.80, 2.59 0.225
    Q4 1.82 1.10, 3.05 0.020 1.79 1.07, 3.06 0.029 1.79 1.05, 3.11 0.033 1.51 0.84, 2.73 0.170
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Table for Amsterdam

Show the code
df_for_paper_2 %>% filter(R1_Site == "Amsterdam") %>% tblgen()
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.96 0.74, 1.13 0.698 0.95 0.72, 1.12 0.608 0.95 0.73, 1.12 0.626 0.96 0.76, 1.13 0.680
Direct Renin Concentration











    Q1



    Q2 0.82 0.53, 1.26 0.381 0.79 0.51, 1.23 0.303 0.83 0.52, 1.29 0.408 0.95 0.59, 1.51 0.825
    Q3 0.97 0.60, 1.52 0.881 0.89 0.54, 1.45 0.652 0.89 0.53, 1.46 0.649 1.09 0.63, 1.85 0.761
    Q4 0.65 0.34, 1.16 0.170 0.62 0.32, 1.12 0.130 0.65 0.33, 1.18 0.177 0.74 0.37, 1.38 0.363
Aldosterone
Aldosterone (Per 1 SD) 1.14 0.96, 1.31 0.115 1.13 0.95, 1.31 0.142 1.12 0.94, 1.31 0.159 1.08 0.90, 1.26 0.393
Direct Aldosterone Concentration











    Q1



    Q2 1.44 0.78, 2.84 0.262 1.46 0.79, 2.88 0.249 1.49 0.79, 3.01 0.240 1.32 0.69, 2.69 0.426
    Q3 1.47 0.78, 2.92 0.248 1.50 0.79, 2.98 0.228 1.64 0.86, 3.35 0.151 1.45 0.75, 3.00 0.287
    Q4 1.68 0.95, 3.22 0.094 1.69 0.95, 3.23 0.092 1.74 0.96, 3.42 0.084 1.54 0.83, 3.09 0.189
Aldosterone-Renin Ratio
ARR (Per 1 SD) 1.12 1.00, 1.25 0.037 1.14 1.01, 1.27 0.021 1.14 1.01, 1.27 0.024 1.07 0.94, 1.21 0.290
Aldosterone-to-renin ratio











    Q1



    Q2 1.55 0.73, 3.66 0.280 1.59 0.75, 3.75 0.254 1.52 0.72, 3.61 0.301 1.59 0.73, 3.84 0.269
    Q3 1.30 0.61, 3.10 0.515 1.34 0.62, 3.21 0.475 1.27 0.58, 3.07 0.570 1.42 0.64, 3.48 0.409
    Q4 2.03 1.04, 4.58 0.058 2.19 1.10, 5.00 0.039 2.09 1.04, 4.77 0.055 1.91 0.92, 4.49 0.103
1 IRR = Incidence Rate Ratio, CI = Confidence Interval

Table for Dutch

Show the code
df_for_paper_2 %>% filter(R1_Site == "Dutch") %>% tblgen()
Characteristic Model 1 Model 2 Model 3 Model 4
IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value IRR1 95% CI1 p-value
Renin
Renin (Per 1 SD) 0.90 0.67, 1.16 0.439 0.89 0.66, 1.17 0.447 0.88 0.64, 1.16 0.385 0.97 0.71, 1.29 0.861
Direct Renin Concentration











    Q1



    Q2 1.07 0.54, 2.37 0.861 1.19 0.59, 2.67 0.642 1.17 0.57, 2.65 0.680 1.04 0.48, 2.52 0.921
    Q3 0.74 0.37, 1.65 0.430 0.77 0.38, 1.73 0.495 0.77 0.38, 1.75 0.507 0.82 0.38, 1.96 0.625
    Q4 0.87 0.44, 1.89 0.695 0.90 0.45, 2.03 0.792 0.88 0.43, 2.00 0.747 0.99 0.46, 2.39 0.986
Aldosterone
Aldosterone (Per 1 SD) 0.90 0.71, 1.05 0.295 0.93 0.74, 1.07 0.433 0.92 0.73, 1.07 0.404 0.95 0.75, 1.10 0.588
Direct Aldosterone Concentration











    Q1



    Q2 0.95 0.58, 1.58 0.849 0.96 0.58, 1.59 0.862 0.96 0.58, 1.60 0.875 0.89 0.52, 1.53 0.683
    Q3 1.08 0.66, 1.77 0.768 1.11 0.67, 1.84 0.693 1.09 0.66, 1.82 0.733 1.01 0.60, 1.70 0.973
    Q4 0.81 0.48, 1.36 0.429 0.90 0.52, 1.54 0.699 0.89 0.52, 1.54 0.687 0.92 0.52, 1.62 0.765
Aldosterone-Renin Ratio
ARR (Per 1 SD) 0.95 0.61, 1.40 0.799 1.03 0.66, 1.54 0.906 1.03 0.65, 1.55 0.909 0.97 0.59, 1.53 0.893
Aldosterone-to-renin ratio











    Q1



    Q2 1.04 0.66, 1.62 0.874 1.10 0.70, 1.73 0.663 1.15 0.73, 1.81 0.548 1.12 0.71, 1.79 0.624
    Q3 1.15 0.74, 1.81 0.534 1.25 0.79, 1.98 0.332 1.27 0.80, 2.02 0.301 1.21 0.75, 1.95 0.437
    Q4 0.60 0.21, 1.39 0.285 0.63 0.21, 1.49 0.341 0.62 0.21, 1.48 0.331 0.57 0.19, 1.40 0.258
1 IRR = Incidence Rate Ratio, CI = Confidence Interval