Show the code
df_paper_02 <- dget("df_for_papers") Import data
df_paper_02 <- dget("df_for_papers") gtsummary::theme_gtsummary_compact()Setting theme "Compact"
table_0 <-
df_paper_02 %>%
gtsummary::tbl_summary(
include = c(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct,d_stroke_loc, bmi,
mobility, selfcare, usual_act, pain_disc, anxiety, vas, vas_cat,
barthels_index),
digits = gtsummary::all_categorical()~ c(0,1),
statistic = gtsummary::all_categorical() ~ "{n} ({p})",
missing_text = "Missing"
) %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption("**Table 1**: ") %>%
gtsummary::modify_spanning_header(
gtsummary::all_stat_cols() ~ "****") gtsummary::reset_gtsummary_theme()
gtsummary::theme_gtsummary_compact()Setting theme "Compact"
df_paper_02 %>%
mutate(a_livingsit = droplevels(a_livingsit)) %>%
gtsummary::tbl_summary(
include = c(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct,d_stroke_loc, bmi),
digits = gtsummary::all_categorical()~ c(0,1),
statistic = list(
gtsummary::all_categorical() ~ "{n} ({p})",
gtsummary::all_continuous() ~ "{mean} ({sd})"
),
missing = "no",
by = a_gender,
label = a_livingsit ~ "Living Status"
) %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption(
"**Table 1**: Socio-demographic and clinical characteristics of the study participants"
) %>%
gtsummary::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**Sex of study participant**") %>%
gtsummary::add_overall(last = TRUE)%>%
gtsummary::add_p(
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
gtsummary::bold_p()| Characteristic |
Sex of study participant
|
Overall N = 5001 |
p-value2 | |
|---|---|---|---|---|
| Male N = 2811 |
Female N = 2191 |
|||
| Age in years | 58 (11) | 59 (11) | 58 (11) | 0.083 |
| Marital Status | <0.001 | |||
| Currently Married | 235 (83.6) | 98 (44.7) | 333 (66.6) | |
| Previously Married | 32 (11.4) | 112 (51.1) | 144 (28.8) | |
| Never Married | 14 (5.0) | 9 (4.1) | 23 (4.6) | |
| Educational Status | <0.001 | |||
| None | 11 (3.9) | 38 (17.4) | 49 (9.8) | |
| Primary | 89 (31.7) | 114 (52.1) | 203 (40.6) | |
| Secondary | 114 (40.6) | 51 (23.3) | 165 (33.0) | |
| Tertiary | 67 (23.8) | 16 (7.3) | 83 (16.6) | |
| Living Status | <0.001 | |||
| Lives Alone | 16 (5.7) | 13 (5.9) | 29 (5.8) | |
| Lives With Spouse and Children | 199 (70.8) | 74 (33.8) | 273 (54.6) | |
| Lives With Spouse | 18 (6.4) | 12 (5.5) | 30 (6.0) | |
| Lives With Extended Family | 30 (10.7) | 42 (19.2) | 72 (14.4) | |
| Lives With Children | 18 (6.4) | 78 (35.6) | 96 (19.2) | |
| Religion | 0.901 | |||
| Christianity | 250 (89.0) | 198 (90.4) | 448 (89.6) | |
| Islam | 29 (10.3) | 20 (9.1) | 49 (9.8) | |
| Other | 2 (0.7) | 1 (0.5) | 3 (0.6) | |
| Domicile | 0.421 | |||
| Rural | 16 (5.7) | 17 (7.8) | 33 (6.6) | |
| Semi-Urban | 99 (35.2) | 67 (30.6) | 166 (33.2) | |
| Urban | 166 (59.1) | 135 (61.6) | 301 (60.2) | |
| Income in GHC | 0.026 | |||
| 0-100 | 83 (29.5) | 91 (42.1) | 174 (35.0) | |
| 101-250 | 89 (31.7) | 61 (28.2) | 150 (30.2) | |
| 251-500 | 67 (23.8) | 42 (19.4) | 109 (21.9) | |
| >500 | 42 (14.9) | 22 (10.2) | 64 (12.9) | |
| Stroke Type (Choose One) | 0.004 | |||
| Ischemic Stroke | 170 (67.5) | 162 (81.8) | 332 (73.8) | |
| Intracerebral Hemorrhagic Stroke | 71 (28.2) | 32 (16.2) | 103 (22.9) | |
| Ischemic With Hemorrhagic Transformation | 8 (3.2) | 2 (1.0) | 10 (2.2) | |
| Untyped Stroke (no CT scan available) | 3 (1.2) | 2 (1.0) | 5 (1.1) | |
| Stroke Subtype ( with results of Brain CT scan) | 0.004 | |||
| Ischaemic | 161 (67.4) | 152 (81.7) | 313 (73.6) | |
| Haemorrhage infarct | 13 (5.4) | 3 (1.6) | 16 (3.8) | |
| Haemorrhagic | 55 (23.0) | 29 (15.6) | 84 (19.8) | |
| Ischaemic and Haemorrhagic | 10 (4.2) | 2 (1.1) | 12 (2.8) | |
| Stroke Location | 0.041 | |||
| Anterior Circulation | 149 (71.3) | 132 (80.5) | 281 (75.3) | |
| Posterior Circulation | 60 (28.7) | 32 (19.5) | 92 (24.7) | |
| Body Mass Index | 25.5 (4.8) | 28.0 (6.1) | 26.6 (5.5) | <0.001 |
| 1 Mean (SD); n (%) | ||||
| 2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test | ||||
# gtsummary::reset_gtsummary_theme()
# gtsummary::theme_gtsummary_compact()
df_paper_02 %>%
gtsummary::tbl_summary(
include = c(
a_gender, mobility, selfcare, usual_act, pain_disc, anxiety, vas,
vas_cat, barthels_index),
digits = gtsummary::all_categorical()~ c(0,1),
statistic = list(
gtsummary::all_categorical() ~ "{n} ({p})",
gtsummary::all_continuous() ~ "{mean} ({sd})"
),
type = list(
c(mobility, selfcare, usual_act, pain_disc, anxiety)~
"continuous"),
missing = "no",
by = a_gender
) %>%
gtsummary::bold_labels() %>%
gtsummary::modify_caption(
"**Table 2**: Descriptive statistics of EQ-5D, VAS and Barthel index scales"
) %>%
gtsummary::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**Sex of study participant**") %>%
gtsummary::add_overall(last = TRUE) %>%
gtsummary::add_p(pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
gtsummary::bold_p()| Characteristic |
Sex of study participant
|
Overall N = 5001 |
p-value2 | |
|---|---|---|---|---|
| Male N = 2811 |
Female N = 2191 |
|||
| Mobility | 1.71 (0.67) | 1.80 (0.66) | 1.75 (0.66) | 0.131 |
| Self Care | 1.67 (0.72) | 1.70 (0.76) | 1.69 (0.74) | 0.734 |
| Usual Activity | 1.84 (0.72) | 1.90 (0.68) | 1.87 (0.71) | 0.306 |
| Pain Discomfort | 1.59 (0.60) | 1.71 (0.61) | 1.64 (0.61) | 0.024 |
| Anxiety | 1.44 (0.60) | 1.44 (0.57) | 1.44 (0.58) | 0.787 |
| Your Health Today | 64 (23) | 68 (22) | 65 (23) | 0.040 |
| Categorised VAS | 0.076 | |||
| Below Median | 132 (47.1) | 85 (39.2) | 217 (43.7) | |
| Median & above | 148 (52.9) | 132 (60.8) | 280 (56.3) | |
| Barthels Index | 68 (26) | 65 (29) | 66 (27) | 0.458 |
| 1 Mean (SD); n (%) | ||||
| 2 Wilcoxon rank sum test; Pearson’s Chi-squared test | ||||
table_vas_crude <-
df_paper_02 %>%
filter(!is.na(vas_cat)) %>%
mutate(vas_cat = factor(vas_cat)) %>%
select(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct,d_stroke_loc, bmi,
barthels_index, vas_cat) %>%
tbl_uvregression(
y = vas_cat,
method = glm,
method.args = family(binomial),
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3),
exponentiate = T) %>%
gtsummary::bold_labels() %>%
# gtsummary::add_global_p() %>%
gtsummary::bold_p()
table_vas_adj <-
df_paper_02 %>%
select(
vas_cat, a_agebase, a_gender, a_livingsit, a_domicile, income,
d_st_type, bmi, barthels_index, d_stroke_ct) %>%
mutate(vas_cat = factor(vas_cat)) %>%
glm(vas_cat ~ ., data = ., family = "binomial") %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3),
exponentiate = T) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 3a**:Univartiate and multivariate logistic
regression for Quality of Life of study participants") | Characteristic |
Univariate
|
Multivariate
|
|||||
|---|---|---|---|---|---|---|---|
| N | OR | 95% CI | p-value | OR | 95% CI | p-value | |
| Age in years | 497 | 0.97 | 0.96, 0.99 | 0.002 | 0.99 | 0.97, 1.01 | 0.203 |
| Gender | 497 | ||||||
| Male | — | — | — | — | |||
| Female | 1.39 | 0.97, 1.99 | 0.076 | 2.23 | 1.30, 3.88 | 0.004 | |
| Marital Status | 497 | ||||||
| Currently Married | — | — | |||||
| Previously Married | 0.83 | 0.56, 1.24 | 0.368 | ||||
| Never Married | 0.55 | 0.23, 1.29 | 0.170 | ||||
| Educational Status | 497 | ||||||
| None | — | — | |||||
| Primary | 1.63 | 0.87, 3.08 | 0.132 | ||||
| Secondary | 1.71 | 0.90, 3.29 | 0.104 | ||||
| Tertiary | 1.33 | 0.65, 2.74 | 0.429 | ||||
| Living Status | 497 | ||||||
| Lives Alone | — | — | |||||
| Lives With Spouse and Children | 0.67 | 0.28, 1.48 | 0.338 | ||||
| Lives With Spouse | 0.34 | 0.11, 0.98 | 0.050 | ||||
| Lives With Extended Family | 0.58 | 0.22, 1.42 | 0.245 | ||||
| Lives With Children | 0.40 | 0.16, 0.94 | 0.040 | ||||
| Religion | 497 | ||||||
| Christianity | — | — | |||||
| Islam | 0.65 | 0.36, 1.18 | 0.158 | ||||
| Other | 0.37 | 0.02, 3.88 | 0.417 | ||||
| Domicile | 497 | ||||||
| Rural | — | — | — | — | |||
| Semi-Urban | 2.40 | 1.12, 5.34 | 0.026 | 2.40 | 0.94, 6.34 | 0.069 | |
| Urban | 2.39 | 1.15, 5.18 | 0.022 | 2.62 | 1.07, 6.66 | 0.037 | |
| Income in GHC | 494 | ||||||
| 0-100 | — | — | — | — | |||
| 101-250 | 2.50 | 1.60, 3.95 | <0.001 | 2.32 | 1.32, 4.13 | 0.004 | |
| 251-500 | 2.69 | 1.64, 4.48 | <0.001 | 2.35 | 1.24, 4.53 | 0.009 | |
| >500 | 1.21 | 0.67, 2.16 | 0.522 | 1.31 | 0.59, 2.94 | 0.510 | |
| Stroke Type (Choose One) | 448 | ||||||
| Ischemic Stroke | — | — | — | — | |||
| Intracerebral Hemorrhagic Stroke | 1.37 | 0.88, 2.18 | 0.171 | 0.26 | 0.01, 3.11 | 0.351 | |
| Ischemic With Hemorrhagic Transformation | 0.20 | 0.03, 0.82 | 0.044 | 0.26 | 0.01, 3.65 | 0.332 | |
| Untyped Stroke (no CT scan available) | 0.00 | 0.981 | 0.00 | 0.979 | |||
| Stroke Subtype ( with results of Brain CT scan) | 423 | ||||||
| Ischaemic | — | — | — | — | |||
| Haemorrhage infarct | 0.36 | 0.11, 1.01 | 0.062 | 1.61 | 0.11, 49.6 | 0.749 | |
| Haemorrhagic | 2.09 | 1.25, 3.60 | 0.006 | 4.94 | 0.42, 150 | 0.267 | |
| Ischaemic and Haemorrhagic | 0.07 | 0.00, 0.37 | 0.012 | 0.20 | 0.01, 2.53 | 0.226 | |
| Stroke Location | 371 | ||||||
| Anterior Circulation | — | — | |||||
| Posterior Circulation | 0.79 | 0.49, 1.27 | 0.323 | ||||
| Body Mass Index | 478 | 1.05 | 1.01, 1.08 | 0.011 | 1.03 | 0.99, 1.08 | 0.195 |
| Barthels Index | 483 | 1.02 | 1.01, 1.03 | <0.001 | 1.01 | 1.01, 1.02 | <0.001 |
| a_livingsit | |||||||
| Lives Alone | — | — | |||||
| Lives With Spouse and Children | 0.94 | 0.31, 2.56 | 0.900 | ||||
| Lives With Spouse | 0.47 | 0.12, 1.77 | 0.275 | ||||
| Lives With Extended Family | 0.56 | 0.17, 1.73 | 0.325 | ||||
| Lives With Children | 0.40 | 0.12, 1.19 | 0.108 | ||||
| Abbreviations: CI = Confidence Interval, OR = Odds Ratio | |||||||
table_vas_crude <-
df_paper_02 %>%
filter(!is.na(vas)) %>%
select(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, d_stroke_loc, bmi,
barthels_index, vas) %>%
tbl_uvregression(
y = vas,
method = lm,
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
gtsummary::bold_labels() %>%
# gtsummary::add_global_p() %>%
gtsummary::bold_p()
table_vas_adj <-
df_paper_02 %>%
select(
vas, a_agebase, a_gender, a_domicile, d_st_type, d_stroke_ct, income,
barthels_index, bmi) %>%
lm(vas ~ ., data = .) %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 3b**:Univartiate and multivariate linear
regression for quality of life of study participants") | Variable |
Univariate
|
Multivariate
|
|||||
|---|---|---|---|---|---|---|---|
| N | Estimate | 95% CI | p-value | Beta | 95% CI | p-value | |
| Age in years | 497 | -0.26 | -0.44, -0.09 | 0.003 | -0.16 | -0.35, 0.03 | 0.099 |
| Gender | 497 | ||||||
| Male | — | — | — | — | |||
| Female | 3.9 | -0.09, 8.0 | 0.056 | 6.3 | 1.9, 11 | 0.005 | |
| Marital Status | 497 | ||||||
| Currently Married | — | — | |||||
| Previously Married | -2.5 | -7.0, 1.9 | 0.264 | ||||
| Never Married | -5.3 | -15, 4.3 | 0.279 | ||||
| Educational Status | 497 | ||||||
| None | — | — | |||||
| Primary | 3.6 | -3.6, 11 | 0.324 | ||||
| Secondary | 5.1 | -2.2, 12 | 0.173 | ||||
| Tertiary | 4.8 | -3.3, 13 | 0.244 | ||||
| Living Status | 497 | ||||||
| Lives Alone | — | — | |||||
| Lives With Spouse and Children | -5.8 | -14, 2.9 | 0.191 | ||||
| Lives With Spouse | -11 | -23, 0.16 | 0.053 | ||||
| Lives With Extended Family | -8.3 | -18, 1.5 | 0.097 | ||||
| Lives With Children | -11 | -20, -1.4 | 0.024 | ||||
| Religion | 497 | ||||||
| Christianity | — | — | |||||
| Islam | -4.6 | -11, 2.1 | 0.179 | ||||
| Other | -2.6 | -28, 23 | 0.846 | ||||
| Domicile | 497 | ||||||
| Rural | — | — | — | — | |||
| Semi-Urban | 11 | 2.4, 19 | 0.012 | 11 | 2.0, 19 | 0.016 | |
| Urban | 12 | 3.4, 20 | 0.006 | 12 | 3.4, 20 | 0.006 | |
| Income in GHC | 494 | ||||||
| 0-100 | — | — | — | — | |||
| 101-250 | 10 | 5.2, 15 | <0.001 | 7.2 | 2.1, 12 | 0.006 | |
| 251-500 | 9.8 | 4.5, 15 | <0.001 | 8.1 | 2.4, 14 | 0.006 | |
| >500 | 1.4 | -5.0, 7.9 | 0.661 | 1.6 | -5.7, 9.0 | 0.664 | |
| Stroke Type (Choose One) | 448 | ||||||
| Ischemic Stroke | — | — | — | — | |||
| Intracerebral Hemorrhagic Stroke | 4.0 | -0.92, 9.0 | 0.110 | -6.0 | -24, 12 | 0.513 | |
| Ischemic With Hemorrhagic Transformation | -16 | -30, -2.2 | 0.024 | -5.8 | -26, 14 | 0.572 | |
| Untyped Stroke (no CT scan available) | -24 | -43, -3.8 | 0.020 | -27 | -71, 16 | 0.220 | |
| Stroke Subtype ( with results of Brain CT scan) | 423 | ||||||
| Ischaemic | — | — | — | — | |||
| Haemorrhage infarct | -10 | -21, 0.66 | 0.065 | -2.7 | -23, 17 | 0.793 | |
| Haemorrhagic | 8.6 | 3.3, 14 | 0.002 | 9.3 | -8.8, 27 | 0.315 | |
| Ischaemic and Haemorrhagic | -18 | -30, -4.9 | 0.007 | -6.0 | -25, 13 | 0.530 | |
| Stroke Location | 371 | ||||||
| Anterior Circulation | — | — | |||||
| Posterior Circulation | -1.5 | -6.6, 3.7 | 0.572 | ||||
| Body Mass Index | 478 | 0.34 | -0.03, 0.71 | 0.073 | 0.13 | -0.25, 0.51 | 0.502 |
| Barthels Index | 483 | 0.25 | 0.18, 0.32 | <0.001 | 0.18 | 0.11, 0.26 | <0.001 |
| Abbreviation: CI = Confidence Interval | |||||||
table_vas_crude <-
df_paper_02 %>%
filter(!is.na(vas) & a_gender == "Male") %>%
select(
a_agebase, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, d_stroke_loc, bmi,
barthels_index, vas) %>%
tbl_uvregression(
y = vas,
method = lm,
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
gtsummary::bold_labels() %>%
# gtsummary::add_global_p() %>%
gtsummary::bold_p(t = 0.1)
table_vas_adj <-
df_paper_02 %>%
filter(!is.na(vas) & a_gender == "Male") %>%
select(
vas, a_agebase, a_domicile, d_stroke_ct, income, d_st_type,
barthels_index) %>%
lm(vas ~ ., data = .) %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 4a**:Univartiate and multivariate linear
regression for quality of life of study participants (Males)") | Variable |
Univariate
|
Multivariate
|
|||||
|---|---|---|---|---|---|---|---|
| N | Estimate | 95% CI | p-value | Beta | 95% CI | p-value | |
| Age in years | 280 | -0.30 | -0.53, -0.06 | 0.014 | -0.14 | -0.40, 0.12 | 0.281 |
| Marital Status | 280 | ||||||
| Currently Married | — | — | |||||
| Previously Married | -0.27 | -8.8, 8.3 | 0.950 | ||||
| Never Married | -8.8 | -21, 3.7 | 0.166 | ||||
| Educational Status | 280 | ||||||
| None | — | — | |||||
| Primary | -0.54 | -15, 14 | 0.942 | ||||
| Secondary | 3.1 | -11, 18 | 0.668 | ||||
| Tertiary | 2.5 | -12, 17 | 0.742 | ||||
| Living Status | 280 | ||||||
| Lives Alone | — | — | |||||
| Lives With Spouse and Children | -7.7 | -19, 4.1 | 0.200 | ||||
| Lives With Spouse | -16 | -32, -0.87 | 0.039 | ||||
| Lives With Extended Family | -9.3 | -23, 4.7 | 0.191 | ||||
| Lives With Children | -16 | -31, -0.14 | 0.048 | ||||
| Religion | 280 | ||||||
| Christianity | — | — | |||||
| Islam | -3.0 | -12, 5.9 | 0.504 | ||||
| Other | 6.0 | -26, 38 | 0.714 | ||||
| Domicile | 280 | ||||||
| Rural | — | — | — | — | |||
| Semi-Urban | 20 | 8.2, 32 | 0.001 | 19 | 7.9, 31 | 0.001 | |
| Urban | 16 | 3.8, 27 | 0.010 | 17 | 6.1, 28 | 0.003 | |
| Income in GHC | 280 | ||||||
| 0-100 | — | — | — | — | |||
| 101-250 | 11 | 4.2, 18 | 0.002 | 8.1 | 1.0, 15 | 0.025 | |
| 251-500 | 13 | 5.4, 20 | <0.001 | 8.5 | 0.80, 16 | 0.031 | |
| >500 | 7.6 | -0.92, 16 | 0.080 | 2.5 | -6.9, 12 | 0.603 | |
| Stroke Type (Choose One) | 252 | ||||||
| Ischemic Stroke | — | — | — | — | |||
| Intracerebral Hemorrhagic Stroke | 5.3 | -1.1, 12 | 0.104 | -0.44 | -24, 24 | 0.971 | |
| Ischemic With Hemorrhagic Transformation | -11 | -28, 5.1 | 0.177 | -5.2 | -29, 19 | 0.664 | |
| Untyped Stroke (no CT scan available) | -17 | -44, 9.0 | 0.195 | -24 | -72, 24 | 0.318 | |
| Stroke Subtype ( with results of Brain CT scan) | 239 | ||||||
| Ischaemic | — | — | — | — | |||
| Haemorrhage infarct | -10 | -23, 2.7 | 0.123 | -7.0 | -33, 19 | 0.596 | |
| Haemorrhagic | 9.5 | 2.6, 16 | 0.007 | 4.3 | -20, 29 | 0.729 | |
| Ischaemic and Haemorrhagic | -11 | -26, 3.2 | 0.126 | -8.8 | -31, 13 | 0.434 | |
| Stroke Location | 209 | ||||||
| Anterior Circulation | — | — | |||||
| Posterior Circulation | -3.5 | -10, 3.1 | 0.294 | ||||
| Body Mass Index | 273 | -0.23 | -0.81, 0.35 | 0.439 | |||
| Barthels Index | 269 | 0.28 | 0.17, 0.38 | <0.001 | 0.19 | 0.08, 0.30 | <0.001 |
| Abbreviation: CI = Confidence Interval | |||||||
table_vas_crude <-
df_paper_02 %>%
filter(!is.na(vas) & a_gender == "Female") %>%
select(
a_agebase, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, d_stroke_loc, bmi,
barthels_index, vas) %>%
tbl_uvregression(
y = vas,
method = lm,
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
gtsummary::bold_labels() %>%
# gtsummary::add_global_p() %>%
gtsummary::bold_p()
table_vas_adj <-
df_paper_02 %>%
filter(!is.na(vas) & a_gender == "Female") %>%
select(
vas, a_agebase, a_domicile, d_st_type, d_stroke_ct, income,
barthels_index, d_stroke_loc, maristat, a_livingsit) %>%
lm(vas ~ ., data = .) %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3),
label = d_st_type ~ "Stroke Type (Choose One)") %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 4a**:Univartiate and multivariate linear
regression for quality of life of study participants (Females)") | Variable |
Univariate
|
Multivariate
|
|||||
|---|---|---|---|---|---|---|---|
| N | Estimate | 95% CI | p-value | Beta | 95% CI | p-value | |
| Age in years | 217 | -0.26 | -0.52, 0.00 | 0.052 | -0.03 | -0.35, 0.28 | 0.825 |
| Marital Status | 217 | ||||||
| Currently Married | — | — | — | — | |||
| Previously Married | -7.9 | -14, -1.9 | 0.010 | -3.2 | -15, 8.9 | 0.607 | |
| Never Married | -1.8 | -17, 13 | 0.817 | 5.0 | -14, 24 | 0.608 | |
| Educational Status | 217 | ||||||
| None | — | — | |||||
| Primary | 6.6 | -1.6, 15 | 0.115 | ||||
| Secondary | 8.4 | -1.0, 18 | 0.080 | ||||
| Tertiary | 12 | -0.55, 25 | 0.060 | ||||
| Living Status | 217 | ||||||
| Lives Alone | — | — | |||||
| Lives With Spouse and Children | -0.18 | -13, 13 | 0.978 | ||||
| Lives With Spouse | -3.8 | -21, 13 | 0.662 | ||||
| Lives With Extended Family | -7.7 | -21, 6.0 | 0.268 | ||||
| Lives With Children | -10 | -23, 2.8 | 0.125 | ||||
| Religion | 217 | ||||||
| Christianity | — | — | |||||
| Islam | -6.5 | -17, 3.7 | 0.210 | ||||
| Other | -18 | -62, 25 | 0.409 | ||||
| Domicile | 217 | ||||||
| Rural | — | — | — | — | |||
| Semi-Urban | 1.1 | -11, 13 | 0.859 | -6.3 | -20, 7.2 | 0.359 | |
| Urban | 8.8 | -2.3, 20 | 0.119 | 1.2 | -11, 14 | 0.850 | |
| Income in GHC | 214 | ||||||
| 0-100 | — | — | — | — | |||
| 101-250 | 11 | 4.0, 18 | 0.002 | 7.5 | -0.74, 16 | 0.074 | |
| 251-500 | 8.0 | 0.16, 16 | 0.046 | 10 | 0.76, 20 | 0.035 | |
| >500 | -6.3 | -16, 3.8 | 0.222 | -2.3 | -14, 9.7 | 0.704 | |
| Stroke Type (Choose One) | 196 | ||||||
| Ischemic Stroke | — | — | — | — | |||
| Intracerebral Hemorrhagic Stroke | 4.2 | -4.1, 12 | 0.321 | -16 | -45, 14 | 0.295 | |
| Ischemic With Hemorrhagic Transformation | -29 | -60, 0.84 | 0.057 | 26 | -30, 83 | 0.359 | |
| Untyped Stroke (no CT scan available) | -32 | -62, -1.7 | 0.039 | ||||
| Stroke Subtype ( with results of Brain CT scan) | 184 | ||||||
| Ischaemic | — | — | — | — | |||
| Haemorrhage infarct | -4.0 | -28, 20 | 0.743 | 3.6 | -37, 44 | 0.861 | |
| Haemorrhagic | 8.8 | 0.40, 17 | 0.040 | 17 | -13, 46 | 0.265 | |
| Ischaemic and Haemorrhagic | -39 | -69, -9.8 | 0.009 | -59 | -128, 9.3 | 0.090 | |
| Stroke Location | 162 | ||||||
| Anterior Circulation | — | — | — | — | |||
| Posterior Circulation | 2.6 | -5.9, 11 | 0.549 | 6.9 | -1.3, 15 | 0.097 | |
| Body Mass Index | 205 | 0.65 | 0.16, 1.1 | 0.010 | |||
| Barthels Index | 214 | 0.23 | 0.14, 0.33 | <0.001 | 0.17 | 0.05, 0.30 | 0.006 |
| a_livingsit | |||||||
| Lives Alone | — | — | |||||
| Lives With Spouse and Children | 0.67 | -19, 21 | 0.947 | ||||
| Lives With Spouse | -4.9 | -28, 18 | 0.675 | ||||
| Lives With Extended Family | -13 | -30, 3.7 | 0.126 | ||||
| Lives With Children | -8.5 | -25, 7.6 | 0.299 | ||||
| Abbreviation: CI = Confidence Interval | |||||||