table_vas_crude <-
df_paper_02 %>%
filter(!is.na(vas_cat)) %>%
mutate(vas_cat = factor(vas_cat)) %>%
select(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, bmi, barthels_index, vas_cat) %>%
tbl_uvregression(
y = vas_cat,
method = glm,
method.args = family(binomial),
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3),
exponentiate = T) %>%
gtsummary::bold_labels() %>%
gtsummary::bold_p()
table_vas_adj <-
df_paper_02 %>%
select(
vas_cat, a_agebase, a_gender, a_livingsit, a_domicile,
income, bmi, barthels_index) %>%
mutate(vas_cat = factor(vas_cat), a_livingsit = a_livingsit) %>%
glm(vas_cat ~ ., data = ., family = "binomial") %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3),
exponentiate = T,
label = list(a_livingsit ~ "Living Status")) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 3a**:Univartiate and multivariate logistic
regression for Quality of Life of study participants")