Show the code
<- dget("df_for_papers") df_paper_02
Import data
<- dget("df_for_papers") df_paper_02
::theme_gtsummary_compact() gtsummary
Setting theme "Compact"
<-
table_0 %>%
df_paper_02 ::tbl_summary(
gtsummaryinclude = c(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct,d_stroke_loc, bmi,
mobility, selfcare, usual_act, pain_disc, anxiety, vas, vas_cat,
barthels_index),digits = gtsummary::all_categorical()~ c(0,1),
statistic = gtsummary::all_categorical() ~ "{n} ({p})",
missing_text = "Missing"
%>%
) ::bold_labels() %>%
gtsummary::modify_caption("**Table 1**: ") %>%
gtsummary::modify_spanning_header(
gtsummary::all_stat_cols() ~ "****") gtsummary
::reset_gtsummary_theme()
gtsummary::theme_gtsummary_compact() gtsummary
Setting theme "Compact"
%>%
df_paper_02 mutate(a_livingsit = droplevels(a_livingsit)) %>%
::tbl_summary(
gtsummaryinclude = c(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct,d_stroke_loc, bmi),digits = gtsummary::all_categorical()~ c(0,1),
statistic = list(
::all_categorical() ~ "{n} ({p})",
gtsummary::all_continuous() ~ "{mean} ({sd})"
gtsummary
),missing = "no",
by = a_gender,
label = a_livingsit ~ "Living Status"
%>%
) ::bold_labels() %>%
gtsummary::modify_caption(
gtsummary"**Table 1**: Socio-demographic and clinical characteristics of the study participants"
%>%
) ::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**Sex of study participant**") %>%
gtsummary::add_overall(last = TRUE)%>%
gtsummary::add_p() %>%
gtsummary::bold_p() gtsummary
Characteristic |
Sex of study participant
|
Overall N = 5001 |
p-value2 | |
---|---|---|---|---|
Male N = 2811 |
Female N = 2191 |
|||
Age in years | 58 (11) | 59 (12) | 58 (12) | 0.094 |
Marital Status | <0.001 | |||
Currently Married | 235 (83.6) | 98 (44.7) | 333 (66.6) | |
Previously Married | 32 (11.4) | 112 (51.1) | 144 (28.8) | |
Never Married | 14 (5.0) | 9 (4.1) | 23 (4.6) | |
Educational Status | <0.001 | |||
None | 11 (3.9) | 38 (17.4) | 49 (9.8) | |
Primary | 90 (32.0) | 114 (52.1) | 204 (40.8) | |
Secondary | 113 (40.2) | 51 (23.3) | 164 (32.8) | |
Tertiary | 67 (23.8) | 16 (7.3) | 83 (16.6) | |
Living Status | <0.001 | |||
Lives Alone | 16 (5.7) | 13 (5.9) | 29 (5.8) | |
Lives With Spouse and Children | 199 (70.8) | 74 (33.8) | 273 (54.6) | |
Lives With Spouse | 18 (6.4) | 12 (5.5) | 30 (6.0) | |
Lives With Extended Family | 30 (10.7) | 42 (19.2) | 72 (14.4) | |
Lives With Children | 18 (6.4) | 78 (35.6) | 96 (19.2) | |
Religion | >0.9 | |||
Christianity | 250 (89.0) | 198 (90.4) | 448 (89.6) | |
Islam | 29 (10.3) | 20 (9.1) | 49 (9.8) | |
Other | 2 (0.7) | 1 (0.5) | 3 (0.6) | |
Domicile | 0.4 | |||
Rural | 16 (5.7) | 17 (7.8) | 33 (6.6) | |
Semi-Urban | 99 (35.2) | 67 (30.6) | 166 (33.2) | |
Urban | 166 (59.1) | 135 (61.6) | 301 (60.2) | |
Income in GHC | 0.028 | |||
0-100 | 83 (29.6) | 91 (42.1) | 174 (35.1) | |
101-250 | 88 (31.4) | 61 (28.2) | 149 (30.0) | |
251-500 | 67 (23.9) | 42 (19.4) | 109 (22.0) | |
>500 | 42 (15.0) | 22 (10.2) | 64 (12.9) | |
Stroke Type (Choose One) | 0.006 | |||
Ischemic Stroke | 165 (67.3) | 154 (81.5) | 319 (73.5) | |
Intracerebral Hemorrhagic Stroke | 69 (28.2) | 31 (16.4) | 100 (23.0) | |
Ischemic With Hemorrhagic Transformation | 8 (3.3) | 2 (1.1) | 10 (2.3) | |
Untyped Stroke (no CT scan available) | 3 (1.2) | 2 (1.1) | 5 (1.2) | |
Stroke Subtype ( with results of Brain CT scan) | 0.003 | |||
Ischaemic | 159 (67.1) | 150 (82.0) | 309 (73.6) | |
Haemorrhage infarct | 13 (5.5) | 3 (1.6) | 16 (3.8) | |
Haemorrhagic | 55 (23.2) | 28 (15.3) | 83 (19.8) | |
Ischaemic and Haemorrhagic | 10 (4.2) | 2 (1.1) | 12 (2.9) | |
Stroke Location | 0.045 | |||
Anterior Circulation | 147 (71.0) | 129 (80.1) | 276 (75.0) | |
Posterior Circulation | 60 (29.0) | 32 (19.9) | 92 (25.0) | |
Body Mass Index | 25.5 (4.8) | 28.0 (6.1) | 26.6 (5.5) | <0.001 |
1 Mean (SD); n (%) | ||||
2 Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test |
# gtsummary::reset_gtsummary_theme()
# gtsummary::theme_gtsummary_compact()
%>%
df_paper_02 ::tbl_summary(
gtsummaryinclude = c(
a_gender, mobility, selfcare, usual_act, pain_disc, anxiety, vas,
vas_cat, barthels_index),digits = gtsummary::all_categorical()~ c(0,1),
statistic = list(
::all_categorical() ~ "{n} ({p})",
gtsummary::all_continuous() ~ "{mean} ({sd})"
gtsummary
),type = list(
c(mobility, selfcare, usual_act, pain_disc, anxiety)~
"continuous"),
missing = "no",
by = a_gender
%>%
) ::bold_labels() %>%
gtsummary::modify_caption(
gtsummary"**Table 2**: Descriptive statistics of EQ-5D, VAS and Barthel index scales"
%>%
) ::modify_spanning_header(
gtsummary::all_stat_cols() ~ "**Sex of study participant**") %>%
gtsummary::add_overall(last = TRUE) %>%
gtsummary::add_p() %>%
gtsummary::bold_p() gtsummary
Characteristic |
Sex of study participant
|
Overall N = 5001 |
p-value2 | |
---|---|---|---|---|
Male N = 2811 |
Female N = 2191 |
|||
Mobility | 1.71 (0.67) | 1.80 (0.66) | 1.75 (0.66) | 0.13 |
Self Care | 1.67 (0.72) | 1.70 (0.76) | 1.69 (0.74) | 0.7 |
Usual Activity | 1.84 (0.72) | 1.90 (0.68) | 1.87 (0.71) | 0.3 |
Pain Discomfort | 1.59 (0.60) | 1.71 (0.61) | 1.64 (0.61) | 0.024 |
Anxiety | 1.44 (0.60) | 1.44 (0.57) | 1.44 (0.58) | 0.8 |
Your Health Today | 64 (23) | 68 (22) | 65 (23) | 0.041 |
Categorised VAS | 0.076 | |||
Below Median | 132 (47.1) | 85 (39.2) | 217 (43.7) | |
Median & above | 148 (52.9) | 132 (60.8) | 280 (56.3) | |
Barthels Index | 68 (26) | 65 (29) | 66 (27) | 0.5 |
1 Mean (SD); n (%) | ||||
2 Wilcoxon rank sum test; Pearson’s Chi-squared test |
<-
table_vas_crude %>%
df_paper_02 filter(!is.na(vas_cat)) %>%
mutate(vas_cat = factor(vas_cat)) %>%
select(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct,d_stroke_loc, bmi, %>%
barthels_index, vas_cat) tbl_uvregression(
y = vas_cat,
method = glm,
method.args = family(binomial),
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3),
exponentiate = T) %>%
::bold_labels() %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p()
gtsummary
<-
table_vas_adj %>%
df_paper_02 select(
vas_cat, a_agebase, a_gender, a_livingsit, a_domicile, income, %>%
d_st_type, bmi, barthels_index, d_stroke_ct) mutate(vas_cat = factor(vas_cat)) %>%
glm(vas_cat ~ ., data = ., family = "binomial") %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3),
exponentiate = T) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 3a**:Univartiate and multivariate logistic
regression for Quality of Life of study participants")
Characteristic |
Univariate
|
Multivariate
|
|||||
---|---|---|---|---|---|---|---|
N | OR | 95% CI | p-value | OR | 95% CI | p-value | |
Age in years | 497 | 0.97 | 0.96, 0.99 | 0.001 | 0.99 | 0.97, 1.01 | 0.224 |
Gender | 497 | 0.075 | |||||
Male | — | — | — | — | |||
Female | 1.39 | 0.97, 1.99 | 2.42 | 1.40, 4.28 | 0.002 | ||
Marital Status | 497 | 0.299 | |||||
Currently Married | — | — | |||||
Previously Married | 0.83 | 0.56, 1.24 | |||||
Never Married | 0.55 | 0.23, 1.29 | |||||
Educational Status | 497 | 0.346 | |||||
None | — | — | |||||
Primary | 1.61 | 0.86, 3.05 | |||||
Secondary | 1.74 | 0.91, 3.34 | |||||
Tertiary | 1.33 | 0.65, 2.74 | |||||
Living Status | 497 | 0.067 | |||||
Lives Alone | — | — | |||||
Lives With Spouse and Children | 0.67 | 0.28, 1.48 | |||||
Lives With Spouse | 0.34 | 0.11, 0.98 | |||||
Lives With Extended Family | 0.58 | 0.22, 1.42 | |||||
Lives With Children | 0.40 | 0.16, 0.94 | |||||
Religion | 497 | 0.267 | |||||
Christianity | — | — | |||||
Islam | 0.65 | 0.36, 1.18 | |||||
Other | 0.37 | 0.02, 3.88 | |||||
Domicile | 497 | 0.058 | |||||
Rural | — | — | — | — | |||
Semi-Urban | 2.40 | 1.12, 5.34 | 2.35 | 0.91, 6.26 | 0.081 | ||
Urban | 2.39 | 1.15, 5.18 | 2.42 | 0.97, 6.25 | 0.060 | ||
Income in GHC | 493 | <0.001 | |||||
0-100 | — | — | — | — | |||
101-250 | 2.48 | 1.58, 3.91 | 2.33 | 1.31, 4.19 | 0.004 | ||
251-500 | 2.69 | 1.64, 4.48 | 2.31 | 1.21, 4.51 | 0.012 | ||
>500 | 1.21 | 0.67, 2.16 | 1.33 | 0.60, 3.00 | 0.489 | ||
Stroke Type (Choose One) | 432 | <0.001 | |||||
Ischemic Stroke | — | — | — | — | |||
Intracerebral Hemorrhagic Stroke | 1.44 | 0.91, 2.31 | 0.30 | 0.01, 4.03 | 0.410 | ||
Ischemic With Hemorrhagic Transformation | 0.20 | 0.03, 0.83 | 0.28 | 0.01, 4.36 | 0.375 | ||
Untyped Stroke (no CT scan available) | 0.00 | 0.00 | 0.979 | ||||
Stroke Subtype ( with results of Brain CT scan) | 418 | <0.001 | |||||
Ischaemic | — | — | — | — | |||
Haemorrhage infarct | 0.36 | 0.11, 1.02 | 1.47 | 0.09, 47.2 | 0.798 | ||
Haemorrhagic | 2.07 | 1.23, 3.58 | 4.51 | 0.33, 143 | 0.309 | ||
Ischaemic and Haemorrhagic | 0.07 | 0.00, 0.38 | 0.19 | 0.01, 2.51 | 0.224 | ||
Stroke Location | 366 | 0.359 | |||||
Anterior Circulation | — | — | |||||
Posterior Circulation | 0.80 | 0.50, 1.29 | |||||
Body Mass Index | 478 | 1.05 | 1.01, 1.08 | 0.009 | 1.03 | 0.99, 1.08 | 0.197 |
Barthels Index | 482 | 1.02 | 1.01, 1.03 | <0.001 | 1.01 | 1.01, 1.02 | 0.001 |
a_livingsit | |||||||
Lives Alone | — | — | |||||
Lives With Spouse and Children | 0.97 | 0.32, 2.65 | 0.951 | ||||
Lives With Spouse | 0.48 | 0.12, 1.80 | 0.286 | ||||
Lives With Extended Family | 0.52 | 0.15, 1.60 | 0.264 | ||||
Lives With Children | 0.40 | 0.12, 1.19 | 0.109 | ||||
Abbreviations: CI = Confidence Interval, OR = Odds Ratio |
<-
table_vas_crude %>%
df_paper_02 filter(!is.na(vas)) %>%
select(
a_agebase, a_gender, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, d_stroke_loc, bmi,%>%
barthels_index, vas) tbl_uvregression(
y = vas,
method = lm,
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
::bold_labels() %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p()
gtsummary
<-
table_vas_adj %>%
df_paper_02 select(
vas, a_agebase, a_gender, a_domicile, d_st_type, d_stroke_ct, income,%>%
barthels_index, bmi) lm(vas ~ ., data = .) %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 3b**:Univartiate and multivariate linear
regression for quality of life of study participants")
Variable |
Univariate
|
Multivariate
|
|||||
---|---|---|---|---|---|---|---|
N | Estimate | 95% CI | p-value | Beta | 95% CI | p-value | |
Age in years | 497 | -0.27 | -0.44, -0.10 | 0.002 | -0.16 | -0.35, 0.02 | 0.089 |
Gender | 497 | 0.057 | |||||
Male | — | — | — | — | |||
Female | 3.9 | -0.11, 7.9 | 6.7 | 2.2, 11 | 0.004 | ||
Marital Status | 497 | 0.351 | |||||
Currently Married | — | — | |||||
Previously Married | -2.5 | -7.0, 2.0 | |||||
Never Married | -5.3 | -15, 4.3 | |||||
Educational Status | 497 | 0.556 | |||||
None | — | — | |||||
Primary | 3.6 | -3.6, 11 | |||||
Secondary | 5.2 | -2.2, 13 | |||||
Tertiary | 4.8 | -3.3, 13 | |||||
Living Status | 497 | 0.107 | |||||
Lives Alone | — | — | |||||
Lives With Spouse and Children | -5.8 | -14, 2.9 | |||||
Lives With Spouse | -11 | -23, 0.17 | |||||
Lives With Extended Family | -8.2 | -18, 1.6 | |||||
Lives With Children | -11 | -20, -1.4 | |||||
Religion | 497 | 0.398 | |||||
Christianity | — | — | |||||
Islam | -4.6 | -11, 2.1 | |||||
Other | -2.6 | -28, 23 | |||||
Domicile | 497 | 0.021 | |||||
Rural | — | — | — | — | |||
Semi-Urban | 11 | 2.4, 19 | 11 | 2.1, 20 | 0.015 | ||
Urban | 12 | 3.4, 20 | 12 | 3.0, 20 | 0.008 | ||
Income in GHC | 493 | <0.001 | |||||
0-100 | — | — | — | — | |||
101-250 | 10 | 5.2, 15 | 7.5 | 2.3, 13 | 0.005 | ||
251-500 | 9.8 | 4.5, 15 | 8.4 | 2.5, 14 | 0.005 | ||
>500 | 1.4 | -5.0, 7.9 | 1.9 | -5.6, 9.3 | 0.619 | ||
Stroke Type (Choose One) | 432 | 0.001 | |||||
Ischemic Stroke | — | — | — | — | |||
Intracerebral Hemorrhagic Stroke | 5.0 | 0.03, 10 | -6.3 | -26, 14 | 0.537 | ||
Ischemic With Hemorrhagic Transformation | -16 | -30, -2.4 | -6.0 | -27, 15 | 0.580 | ||
Untyped Stroke (no CT scan available) | -24 | -43, -4.1 | -28 | -72, 17 | 0.226 | ||
Stroke Subtype ( with results of Brain CT scan) | 418 | <0.001 | |||||
Ischaemic | — | — | — | — | |||
Haemorrhage infarct | -10 | -21, 0.79 | -2.1 | -24, 20 | 0.849 | ||
Haemorrhagic | 8.5 | 3.1, 14 | 9.6 | -11, 30 | 0.349 | ||
Ischaemic and Haemorrhagic | -17 | -30, -4.7 | -5.6 | -26, 14 | 0.583 | ||
Stroke Location | 366 | 0.633 | |||||
Anterior Circulation | — | — | |||||
Posterior Circulation | -1.3 | -6.5, 3.9 | |||||
Body Mass Index | 478 | 0.34 | -0.03, 0.71 | 0.074 | 0.13 | -0.26, 0.52 | 0.518 |
Barthels Index | 482 | 0.25 | 0.18, 0.32 | <0.001 | 0.19 | 0.11, 0.27 | <0.001 |
Abbreviation: CI = Confidence Interval |
<-
table_vas_crude %>%
df_paper_02 filter(!is.na(vas) & a_gender == "Male") %>%
select(
a_agebase, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, d_stroke_loc, bmi,%>%
barthels_index, vas) tbl_uvregression(
y = vas,
method = lm,
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
::bold_labels() %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p()
gtsummary
<-
table_vas_adj %>%
df_paper_02 filter(!is.na(vas) & a_gender == "Male") %>%
select(
vas, a_agebase, a_domicile, d_stroke_ct, income,%>%
barthels_index) lm(vas ~ ., data = .) %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3)) %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 4a**:Univartiate and multivariate linear
regression for quality of life of study participants (Males)")
Variable |
Univariate
|
Multivariate
|
|||||
---|---|---|---|---|---|---|---|
N | Estimate | 95% CI | p-value | Beta | 95% CI | p-value | |
Age in years | 280 | -0.30 | -0.53, -0.06 | 0.014 | -0.14 | -0.40, 0.12 | 0.284 |
Marital Status | 280 | 0.381 | |||||
Currently Married | — | — | |||||
Previously Married | -0.12 | -8.7, 8.5 | |||||
Never Married | -8.8 | -21, 3.7 | |||||
Educational Status | 280 | 0.688 | |||||
None | — | — | |||||
Primary | -0.56 | -15, 14 | |||||
Secondary | 3.2 | -11, 18 | |||||
Tertiary | 2.5 | -12, 17 | |||||
Living Status | 280 | 0.177 | |||||
Lives Alone | — | — | |||||
Lives With Spouse and Children | -7.7 | -19, 4.1 | |||||
Lives With Spouse | -16 | -32, -0.86 | |||||
Lives With Extended Family | -9.2 | -23, 4.9 | |||||
Lives With Children | -16 | -31, -0.13 | |||||
Religion | 280 | 0.740 | |||||
Christianity | — | — | |||||
Islam | -3.1 | -12, 5.9 | |||||
Other | 6.0 | -26, 38 | |||||
Domicile | 280 | 0.004 | |||||
Rural | — | — | — | — | |||
Semi-Urban | 20 | 8.2, 32 | 19 | 7.6, 31 | 0.001 | ||
Urban | 16 | 3.8, 27 | 17 | 5.8, 28 | 0.003 | ||
Income in GHC | 279 | 0.002 | |||||
0-100 | — | — | — | — | |||
101-250 | 11 | 4.2, 18 | 8.7 | 1.6, 16 | 0.017 | ||
251-500 | 13 | 5.4, 20 | 8.4 | 0.66, 16 | 0.034 | ||
>500 | 7.6 | -0.94, 16 | 2.8 | -6.6, 12 | 0.561 | ||
Stroke Type (Choose One) | 245 | 0.052 | |||||
Ischemic Stroke | — | — | |||||
Intracerebral Hemorrhagic Stroke | 5.8 | -0.55, 12 | |||||
Ischemic With Hemorrhagic Transformation | -11 | -27, 4.8 | |||||
Untyped Stroke (no CT scan available) | -17 | -43, 8.4 | |||||
Stroke Subtype ( with results of Brain CT scan) | 237 | 0.003 | |||||
Ischaemic | — | — | — | — | |||
Haemorrhage infarct | -9.9 | -23, 2.9 | -8.0 | -20, 4.1 | 0.194 | ||
Haemorrhagic | 9.7 | 2.7, 17 | 3.3 | -3.8, 10 | 0.360 | ||
Ischaemic and Haemorrhagic | -11 | -26, 3.4 | -11 | -24, 2.9 | 0.123 | ||
Stroke Location | 207 | 0.328 | |||||
Anterior Circulation | — | — | |||||
Posterior Circulation | -3.3 | -9.9, 3.3 | |||||
Body Mass Index | 273 | -0.23 | -0.81, 0.35 | 0.433 | |||
Barthels Index | 268 | 0.28 | 0.18, 0.38 | <0.001 | 0.20 | 0.09, 0.32 | <0.001 |
Abbreviation: CI = Confidence Interval |
<-
table_vas_crude %>%
df_paper_02 filter(!is.na(vas) & a_gender == "Female") %>%
select(
a_agebase, maristat, educ, a_livingsit, a_religion,
a_domicile, income, d_st_type, d_stroke_ct, d_stroke_loc, bmi,%>%
barthels_index, vas) tbl_uvregression(
y = vas,
method = lm,
pvalue_fun = ~ gtsummary::style_pvalue(.x, digits = 3)) %>%
modify_header(
update = list(estimate ~ "**Estimate**", label ~ "**Variable**")) %>%
::bold_labels() %>%
gtsummary::add_global_p() %>%
gtsummary::bold_p()
gtsummary
<-
table_vas_adj %>%
df_paper_02 filter(!is.na(vas) & a_gender == "Female") %>%
select(
vas, a_agebase, a_domicile, d_st_type, d_stroke_ct, income,%>%
barthels_index, d_stroke_loc, maristat) lm(vas ~ ., data = .) %>%
tbl_regression(
pvalue_fun = function(x) style_pvalue(x, digits = 3),
label = d_st_type ~ "Stroke Type (Choose One)") %>%
bold_labels() %>%
bold_p()
tbl_merge(
list(table_vas_crude, table_vas_adj),
tab_spanner = c("**Univariate**", "**Multivariate**")) %>%
modify_caption(
caption = "**Table 4a**:Univartiate and multivariate linear
regression for quality of life of study participants (Females)")
Variable |
Univariate
|
Multivariate
|
|||||
---|---|---|---|---|---|---|---|
N | Estimate | 95% CI | p-value | Beta | 95% CI | p-value | |
Age in years | 217 | -0.26 | -0.52, -0.01 | 0.040 | -0.05 | -0.34, 0.25 | 0.760 |
Marital Status | 217 | 0.034 | |||||
Currently Married | — | — | — | — | |||
Previously Married | -7.9 | -14, -1.9 | -10 | -17, -3.0 | 0.005 | ||
Never Married | -1.8 | -17, 13 | 0.54 | -16, 17 | 0.949 | ||
Educational Status | 217 | 0.195 | |||||
None | — | — | |||||
Primary | 6.6 | -1.6, 15 | |||||
Secondary | 8.4 | -1.0, 18 | |||||
Tertiary | 12 | -0.55, 25 | |||||
Living Status | 217 | 0.063 | |||||
Lives Alone | — | — | |||||
Lives With Spouse and Children | -0.18 | -13, 13 | |||||
Lives With Spouse | -3.8 | -21, 13 | |||||
Lives With Extended Family | -7.7 | -21, 6.0 | |||||
Lives With Children | -10 | -23, 2.8 | |||||
Religion | 217 | 0.331 | |||||
Christianity | — | — | |||||
Islam | -6.5 | -17, 3.7 | |||||
Other | -18 | -62, 25 | |||||
Domicile | 217 | 0.034 | |||||
Rural | — | — | — | — | |||
Semi-Urban | 1.1 | -11, 13 | -4.9 | -19, 9.0 | 0.483 | ||
Urban | 8.8 | -2.3, 20 | 0.77 | -12, 14 | 0.908 | ||
Income in GHC | 214 | 0.001 | |||||
0-100 | — | — | — | — | |||
101-250 | 11 | 4.0, 18 | 7.3 | -1.1, 16 | 0.089 | ||
251-500 | 8.0 | 0.16, 16 | 10 | 0.40, 20 | 0.042 | ||
>500 | -6.3 | -16, 3.8 | -2.8 | -15, 9.4 | 0.648 | ||
Stroke Type (Choose One) | 187 | 0.014 | |||||
Ischemic Stroke | — | — | — | — | |||
Intracerebral Hemorrhagic Stroke | 6.1 | -2.2, 14 | -25 | -65, 16 | 0.226 | ||
Ischemic With Hemorrhagic Transformation | -30 | -60, 0.42 | 12 | -51, 74 | 0.716 | ||
Untyped Stroke (no CT scan available) | -32 | -62, -2.1 | |||||
Stroke Subtype ( with results of Brain CT scan) | 181 | 0.013 | |||||
Ischaemic | — | — | — | — | |||
Haemorrhage infarct | -4.0 | -28, 20 | 13 | -36, 62 | 0.610 | ||
Haemorrhagic | 8.3 | -0.28, 17 | 26 | -14, 66 | 0.203 | ||
Ischaemic and Haemorrhagic | -39 | -69, -9.6 | -45 | -119, 29 | 0.234 | ||
Stroke Location | 159 | 0.521 | |||||
Anterior Circulation | — | — | — | — | |||
Posterior Circulation | 2.8 | -5.8, 11 | 7.0 | -1.3, 15 | 0.099 | ||
Body Mass Index | 205 | 0.65 | 0.16, 1.1 | 0.010 | |||
Barthels Index | 214 | 0.23 | 0.14, 0.33 | <0.001 | 0.17 | 0.05, 0.30 | 0.007 |
Abbreviation: CI = Confidence Interval |