the roots of f(x) are known or are easily found. Use 5 iterations of Newton’s Method with the given initial approximation to approximate the root. Compare it to the known value of the root. \(f(x) = x^2 - 2, x_o = 1:5\)
Newton’s Method define as : \(x_n + 1 = x_n - \frac {f(x_n)}{f'(x_n)}\)
where \(f'(x)\) is the derivative of \(f(x)\)
\(f(x) = x^2 - 2\) , the derivative is \(f'(2x)\)
See solution in R
# Define the function f(x) and its derivative f'(x)
f <- function(x) {
return(x^2 - 2)
}
f_prime <- function(x) {
return(2 * x)
}
# Implement Newton's Method function
newtons_method <- function(f, f_prime, x0, num_iterations) {
x <- x0
for (i in 1:num_iterations) {
fx <- f(x)
fx_prime <- f_prime(x)
x <- x - fx / fx_prime
}
return(x)
}
# Set initial approximation and number of iterations
x0 <- 1.5
num_iterations <- 5
# Apply Newton's Method
root_approx <- newtons_method(f, f_prime, x0, num_iterations)
# Print the approximation result
print(root_approx)
## [1] 1.414214