This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
train<-data.frame(ClaimID=c(1,2,3), RearEnd=c(TRUE,FALSE,TRUE), Fraud=c(TRUE,FALSE,TRUE))
train
## ClaimID RearEnd Fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE TRUE
library(rpart)
## Warning: package 'rpart' was built under R version 4.3.3
mytree<-rpart(Fraud~RearEnd,data=train, method="class")
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667) *
mytree<-rpart(Fraud~RearEnd,data=train, method="class",minsplit=2, minbucket=1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667)
## 2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
library(rattle)
## Warning: package 'rattle' was built under R version 4.3.3
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.3
library(RColorBrewer)
#plot mytree
fancyRpartPlot(mytree,caption = NULL)
#different splitting procedure i.e. information
mytree<-rpart(Fraud~RearEnd,data=train, method="class",parms=list(split="information"),minsplit=2, minbucket=1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667)
## 2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
#plot mytree once again
fancyRpartPlot(mytree,caption = NULL)
#change the dataset, no tree was generated for this dataset after execution
train<-data.frame(ClaimID=c(1,2,3), RearEnd=c(TRUE,FALSE,TRUE), Fraud=c(TRUE,FALSE,FALSE))
train
## ClaimID RearEnd Fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE FALSE
mytree<-rpart(Fraud~RearEnd,data=train, method="class")
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 FALSE (0.6666667 0.3333333) *
mytree<-rpart(Fraud~RearEnd,data=train, method="class",minsplit=2, minbucket=1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 FALSE (0.6666667 0.3333333) *
#plot mytree
#fancyRpartPlot(mytree,caption = NULL)
#different splitting procedure i.e. information
mytree<-rpart(Fraud~RearEnd,data=train, method="class",parms=list(split="information"),minsplit=2, minbucket=1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 FALSE (0.6666667 0.3333333) *
#plot mytree once again
#fancyRpartPlot(mytree,caption = NULL)
#add CP to New change the dataset, no tree was generated for this dataset after execution
train<-data.frame(ClaimID=c(1,2,3), RearEnd=c(TRUE,FALSE,TRUE), Fraud=c(TRUE,FALSE,FALSE))
train
## ClaimID RearEnd Fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE FALSE
#cp =-1 will generate the tree but we don't want to do it as it may generate more complexed tree
mytree<-rpart(Fraud~RearEnd,data=train, method="class",minsplit=2, minbucket=1, cp=-1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 FALSE (0.6666667 0.3333333)
## 2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) RearEnd>=0.5 2 1 FALSE (0.5000000 0.5000000) *
#fancyRpartPlot(mytree,caption = NULL)
#different dataset
train<-data.frame(ClaimID= 1:7, RearEnd=c(TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE),Whiplash=c(TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE), Fraud=c(TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE))
train
## ClaimID RearEnd Whiplash Fraud
## 1 1 TRUE TRUE TRUE
## 2 2 TRUE TRUE TRUE
## 3 3 FALSE TRUE TRUE
## 4 4 FALSE TRUE FALSE
## 5 5 FALSE TRUE FALSE
## 6 6 FALSE FALSE FALSE
## 7 7 FALSE FALSE FALSE
mytree<-rpart(Fraud~RearEnd+Whiplash,data=train, method="class", maxdepth=1, minsplit=2, minbucket=1)
mytree
## n= 7
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 7 3 FALSE (0.5714286 0.4285714)
## 2) RearEnd< 0.5 5 1 FALSE (0.8000000 0.2000000) *
## 3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
#fancyRpartPlot(mytree,caption = NULL)
lossmatrix<-matrix(c(0,1,3,0), byrow=TRUE,nrow=2)
lossmatrix
## [,1] [,2]
## [1,] 0 1
## [2,] 3 0
mytree<-rpart(Fraud~RearEnd+Whiplash,data=train, method="class", maxdepth=1, minsplit=2, minbucket=1, parms=list(loss=lossmatrix))
mytree
## n= 7
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 7 4 TRUE (0.5714286 0.4285714)
## 2) Whiplash< 0.5 2 0 FALSE (1.0000000 0.0000000) *
## 3) Whiplash>=0.5 5 2 TRUE (0.4000000 0.6000000) *
#fancyRpartPlot(mytree,caption = NULL)
#different dataset
train<-data.frame(ClaimID= c(1,2,3,4,5), Activity=factor(x= c("Active","very Active","very Active", "inActive","very inActive"),levels= c("very inActive","inActive", "Active", "very Active")),Fraud= c(FALSE,TRUE,TRUE,FALSE,TRUE))
train
## ClaimID Activity Fraud
## 1 1 Active FALSE
## 2 2 very Active TRUE
## 3 3 very Active TRUE
## 4 4 inActive FALSE
## 5 5 very inActive TRUE
mytree<-rpart(Fraud~Activity,data=train, method="class", minsplit=2, minbucket=1)
mytree
## n= 5
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 5 2 TRUE (0.4000000 0.6000000)
## 2) Activity=inActive,Active 2 0 FALSE (1.0000000 0.0000000) *
## 3) Activity=very inActive,very Active 3 0 TRUE (0.0000000 1.0000000) *
#fancyRpartPlot(mytree,caption = NULL)
train<-data.frame(ClaimID= c(1,2,3,4,5), Activity=factor(x= c("Active","very Active","very Active", "inActive","very inActive"),levels= c("very inActive","inActive", "Active", "very Active"),order=TRUE), Fraud= c(FALSE,TRUE,TRUE,FALSE,TRUE))
train
## ClaimID Activity Fraud
## 1 1 Active FALSE
## 2 2 very Active TRUE
## 3 3 very Active TRUE
## 4 4 inActive FALSE
## 5 5 very inActive TRUE
mytree<-rpart(Fraud~Activity,data=train, method="class", minsplit=2, minbucket=1)
mytree
## n= 5
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 5 2 TRUE (0.4000000 0.6000000)
## 2) Activity=very inActive,inActive,Active 3 1 FALSE (0.6666667 0.3333333)
## 4) Activity=inActive,Active,very Active 2 0 FALSE (1.0000000 0.0000000) *
## 5) Activity=very inActive 1 0 TRUE (0.0000000 1.0000000) *
## 3) Activity=very Active 2 0 TRUE (0.0000000 1.0000000) *
#fancyRpartPlot(mytree,caption = NULL)
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.