library(randomForest)
## Warning: package 'randomForest' was built under R version 4.3.3
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.3.2
library(tree)
## Warning: package 'tree' was built under R version 4.3.3
library(rpart)
library(caret)
## Warning: package 'caret' was built under R version 4.3.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:randomForest':
##
## margin
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 4.3.2
p = seq(0, 1, 0.001)
gini.index = 2 * p * (1 - p)
class.error = 1 - pmax(p, 1 - p)
cross.entropy = - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy))
set.seed(1)
train = sample(1:nrow(Carseats), nrow(Carseats)/2)
strain = Carseats[train, ]
stest = Carseats[-train, ]
tree.seats = tree(Sales ~ ., data = strain)
summary(tree.seats)
##
## Regression tree:
## tree(formula = Sales ~ ., data = strain)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
plot(tree.seats)
text(tree.seats, pretty = 0)
treeseat.pred = predict(tree.seats, newdata = stest)
mean((treeseat.pred - stest$Sales)^2)
## [1] 4.922039
MSE= 4.922039
set.seed(1)
cv.seats = cv.tree(tree.seats)
plot(cv.seats$size, cv.seats$dev, type = "b")
prune.car = prune.tree(tree.seats, best = 10)
plot(prune.car)
text(prune.car,pretty=0)
treeseat.pred = predict(prune.car, newdata = stest)
mean((treeseat.pred - stest$Sales)^2)
## [1] 4.918134
Yes, MSE went decreased to 4.918134
set.seed(1)
bag.seats = randomForest(Sales~., data = strain, mtry = 10, ntree = 551, importance = TRUE)
bagseat.pred = predict(bag.seats, newdata = stest)
mean((bagseat.pred - stest$Sales)^2)
## [1] 2.599099
importance(bag.seats)
## %IncMSE IncNodePurity
## CompPrice 26.18616309 170.781666
## Income 5.25063979 90.717958
## Advertising 13.25673204 97.498810
## Population -2.14346969 58.289311
## Price 60.58241525 503.478806
## ShelveLoc 50.77308639 380.258594
## Age 19.03720001 158.282846
## Education 1.24264920 44.834257
## Urban -0.08461165 9.883299
## US 4.71515903 17.907727
MSE=2.599 the most important variables are Price and ShelveLoc
set.seed(1)
rando.seats = randomForest(Sales~., data = strain, mtry = 10, importance = TRUE)
randseat.pred = predict(rando.seats, newdata = stest)
mean((randseat.pred - stest$Sales)^2)
## [1] 2.605253
importance(rando.seats)
## %IncMSE IncNodePurity
## CompPrice 24.8888481 170.182937
## Income 4.7121131 91.264880
## Advertising 12.7692401 97.164338
## Population -1.8074075 58.244596
## Price 56.3326252 502.903407
## ShelveLoc 48.8886689 380.032715
## Age 17.7275460 157.846774
## Education 0.5962186 44.598731
## Urban 0.1728373 9.822082
## US 4.2172102 18.073863
MSE=2.605 Price and SHelveLoc are still the most important variables
library(BART)
## Warning: package 'BART' was built under R version 4.3.3
## Loading required package: nlme
## Loading required package: nnet
## Loading required package: survival
## Warning: package 'survival' was built under R version 4.3.3
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
## cluster
#x = Carseats[, 2:11]
#y = Carseats[, "Sales"]
#xtrain = x[train,]
#ytrain = y[train]
#xtest = x[stest, ]
#ytest = y[stest]
#set.seed(1)
#bartfit = gbart(xtrain,
# ytrain,
# x.test = xtest)
set.seed(1)
train = sample(1:nrow(OJ), 800)
OJtrain = OJ[train, ]
OJtest = OJ[-train, ]
tree.OJ = tree(Purchase ~ ., data = OJtrain)
summary(tree.OJ)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJtrain)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
plot(tree.OJ)
text(tree.OJ, pretty = 0)
5 variables 9 nodes error rate:0.1588
tree.OJ
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196196 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196196 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
LoyalCH has 261 observations branch value: LoyalCH > 0.76457 4.2% takes value CH and 95.8% take MM
plot(tree.OJ)
text(tree.OJ, pretty = 0)
LoyalCH, SpecialCH, PriceDiff, PctDiscMM, and ListPriceDiff are the most
important variables.
treeOJ.pred = predict(tree.OJ, newdata = OJtest, type = "class")
table(treeOJ.pred, OJtest$Purchase)
##
## treeOJ.pred CH MM
## CH 160 38
## MM 8 64
(64+160)/(160+64+38+8)= 0.8296 is the error rate
OJcv = cv.tree(tree.OJ, FUN = prune.misclass)
OJcv
## $size
## [1] 9 8 7 4 2 1
##
## $dev
## [1] 150 150 149 158 172 315
##
## $k
## [1] -Inf 0.000000 3.000000 4.333333 10.500000 151.000000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
plot(OJcv$size, OJcv$dev, type = "b")
Which tree size corresponds to the lowest Size 7
Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with fve terminal nodes.
prune.OJ=prune.tree(tree.OJ,best=7)
summary(tree.OJ)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJtrain)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
treeOJ.pred = predict(tree.OJ, newdata = OJtest, type = "class")
table(treeOJ.pred, OJtest$Purchase)
##
## treeOJ.pred CH MM
## CH 160 38
## MM 8 64
unprunedOJvalerr = (38 + 8) / 270
unprunedOJvalerr
## [1] 0.1703704
pruneOJ.pred = predict(prune.OJ, newdata = OJtest, type = "class")
table(pruneOJ.pred, OJtest$Purchase)
##
## pruneOJ.pred CH MM
## CH 160 36
## MM 8 66
prunedOJvalerr = (36 + 8) / 270
prunedOJvalerr
## [1] 0.162963
pruned tree=0.162963 unpruned tree=0.1703704