Outline

Part 1 – The Introduction

  1. You will research your topic (dataset) and provide background information regarding this topic. Define any technical terms, provide a history of how the topic has evolved over time, etc.

  2. Describe how the source for your data and how data was collected (randomized experiment or observations). Discuss any potential bias, if any.

  3. Provide details about the statistics you will use. What type of information does it contain?

there are 2 categories of variables: categorical and numerical type, company, elements, location, and model are categorical variables elapsed time, max speed, drop height, number of inversions and angle (to be determined through mathematical analysis)

  1. Define the variables included in your dataset.

Type, drop height, max speed, elapsed time, model, length, elemenets, number of inversions, company, and location

  1. Incorporate background research about this topic using at least 3 sources and 5 facts (4 sources and 10 facts for HM Students). Discuss research that has already been done on this topic.

Thrill factor depends on the angle of steepest descent and drop height. The thrill is the sum of thrills for each drop.
Advanced steel and aluminum alloys can affect the coefficient of kinetic friction which directly affects max speed and thrill factor. Linear induction motors will optimize the acceleration and deceleration of the coasters. The four essential metrics for rollercoaster risk are: thrill factor, uniqueness, butterfly quotient and theme factor. I am not using theme-factor for this project because the design of the coaster does not affect the risk factor. Thrill factor depends on max velocity and max height, while butterfly quotient depends on elapsed time and loop height. Воllіgеr & Маbіllаrd, Fаbbrі Grоuр, Gеrѕtlаuеr, Тhе Grаvіtу Grоuр, Grеаt Соаѕtеrѕ Іntеrnаtіоnаl, Іntаmіn, Масk Rіdеѕ, Rосkу Моuntаіn Соnѕtruсtіоn, Vеkоmа Rіdеѕ Маnufасturіng and Маurеr Bollinger and Mabillard, Fabbri Group, Gerstlquer, The Gravity Group, Great Coasters International are among the many companies specialized in roller coaster manufacturing.
https://www.verifiedmarketresearch.com/product/roller-coaster-market/ https://www.dollywood.com/insiders/ultimate-guide-dollywoods-roller-coasters/#:~:text=Thrill%2Dfactor%3A%20Visited%20more%20for,height%20requirement%20of%2042%20inches. https://www.coaster101.com/2011/11/06/coasters-101-track-fabrication/ https://www.azom.com/article.aspx?ArticleID=11958 https://maa.org/book/export/html/115770#:~:text=You%20can%20use%20this%20information,the%20thrills%20of%20each%20drop. https://physicsworld.com/a/twists-turns-thrills-and-spills-the-physics-of-rollercoasters/

  1. Define the overarching question you would like to ask about your dataset.

What parameters affect relative risk for a standard coaster? Is thrill factor directly correlated to risk factor? How correlated is cost to thrill factor? Risk Factor?

Part 2 – Your work with the data 7. Create initial summary graphs (boxplots, histograms, scatterplots, qqplots, etc.) of the data.

library(tidyverse)
setwd("/Users/OWNER/Documents")
coaster<- read_csv("RollerCoasters (2).csv")
head(coaster)
# A tibble: 6 × 15
   ...1 Muntanya_russa      Ubicacio Parc  Tipus Data_obertura Disseny Fabricant
  <dbl> <chr>               <chr>    <chr> <chr> <chr>         <chr>   <chr>    
1     0 Looping Star        Clacton… Clac… Steel 10/23/2021    Sit Do… Pinfari  
2     1 Boomerang           Sydney … Luna… Steel 10/23/2021    Sit Do… Gerstlau…
3     2 Little Nipper       Sydney … Luna… Steel 10/23/2021    Sit Do… Preston …
4     3 Valkyrie            Gyeongj… Gyeo… Steel 10/9/2021     Sit Do… Gerstlau…
5     4 Family Roller Coas… Shijing… Beij… Steel 10/1/2021     Suspen… Hebei H&…
6     5 Stacked Roller Coa… Shijing… Beij… Steel 10/1/2021     Sit Do… Wuhan Fu…
# ℹ 7 more variables: Model <chr>, `Velocitat_màxima (mph)` <dbl>,
#   `Llargada (ft)` <dbl>, `Altura_màxima (ft)` <dbl>, Inversions <dbl>,
#   Duració <time>, Elements <chr>
names(coaster)
 [1] "...1"                   "Muntanya_russa"         "Ubicacio"              
 [4] "Parc"                   "Tipus"                  "Data_obertura"         
 [7] "Disseny"                "Fabricant"              "Model"                 
[10] "Velocitat_màxima (mph)" "Llargada (ft)"          "Altura_màxima (ft)"    
[13] "Inversions"             "Duració"                "Elements"              

Rename headers

coaster1 <- coaster |>
  rename(Name = "Muntanya_russa", Material = "Tipus", Drop_Height = "Altura_màxima (ft)", Max_Speed = "Velocitat_màxima (mph)", Date =  "Data_obertura", Length = "Llargada (ft)", Time_Elapsed = "Duració", Type = "Disseny", Location = "Ubicacio", Park = "Parc", Roller_Coaster_Company = "Fabricant" )
head(coaster1)
# A tibble: 6 × 15
   ...1 Name    Location Park  Material Date  Type  Roller_Coaster_Company Model
  <dbl> <chr>   <chr>    <chr> <chr>    <chr> <chr> <chr>                  <chr>
1     0 Loopin… Clacton… Clac… Steel    10/2… Sit … Pinfari                Zykl…
2     1 Boomer… Sydney … Luna… Steel    10/2… Sit … Gerstlauer Amusement … Shut…
3     2 Little… Sydney … Luna… Steel    10/2… Sit … Preston & Barbieri     Mini…
4     3 Valkyr… Gyeongj… Gyeo… Steel    10/9… Sit … Gerstlauer Amusement … Shut…
5     4 Family… Shijing… Beij… Steel    10/1… Susp… Hebei H&S Amusement E… Air …
6     5 Stacke… Shijing… Beij… Steel    10/1… Sit … Wuhan Fute Amusement … All …
# ℹ 6 more variables: Max_Speed <dbl>, Length <dbl>, Drop_Height <dbl>,
#   Inversions <dbl>, Time_Elapsed <time>, Elements <chr>
max_speed_mph <- coaster1$Max_Speed
hist(max_speed_mph)

coaster2 <- coaster1 |>
  filter(!is.na(Inversions) & !is.na(Drop_Height) & !is.na(Length) &  !is.na(Max_Speed) & !is.na(Model) & !is.na(Elements))|> 
  mutate(del_t = sqrt(Drop_Height*Drop_Height + Length*Length)/Max_Speed)|>
  mutate(lambda = atan(Drop_Height/Length)*180/pi) |> 
  mutate(thrillFactor = lambda*Drop_Height) |>
  mutate(Butterfly = Inversions/del_t)  
head(coaster2) 
# A tibble: 6 × 19
   ...1 Name    Location Park  Material Date  Type  Roller_Coaster_Company Model
  <dbl> <chr>   <chr>    <chr> <chr>    <chr> <chr> <chr>                  <chr>
1     1 Boomer… Sydney … Luna… Steel    10/2… Sit … Gerstlauer Amusement … Shut…
2     5 Stacke… Shijing… Beij… Steel    10/1… Sit … Wuhan Fute Amusement … All …
3    15 Blu Po… Munaily… Tety… Steel    8/26… Sit … Mack Rides GmbH & Co … Powe…
4    23 Stag's… Yangqu … Orie… Steel    7/23… Sit … Vekoma                 Other
5    27 Rockin… Munaily… Tety… Steel    7/17… Sit … Mack Rides GmbH & Co … Spin…
6    28 Abyssus Zator /… Ener… Steel    7/14… Sit … Vekoma                 Shoc…
# ℹ 10 more variables: Max_Speed <dbl>, Length <dbl>, Drop_Height <dbl>,
#   Inversions <dbl>, Time_Elapsed <time>, Elements <chr>, del_t <dbl>,
#   lambda <dbl>, thrillFactor <dbl>, Butterfly <dbl>
  1. Calculate any summary statistics
  2. Define the parameter or parameters you are trying to estimate.
  3. Use at least 3 DIFFERENT statistical techniques (4 for HM students) you have learned throughout this course to attempt to answer your question. Techniques may include sampling, randomization testing, Chi-Square tests, ANOVA, bootstrapping confidence intervals, linear, multiple linear, and logistic regressions, non-parametric tests, etc. Be sure you check all basic assumptions for that technique before performing any HT or CI. Part 3 – The conclusion
  4. Write a general conclusion based on the statistical analysis you performed.
  5. Restate p-values, confidence intervals, and any other important results from your findings.
  6. Write specific conclusions regarding implications of your results (useful to the general public). You can include your own personal opinions here.
  7. Write your opinion about how the overall statistical analysis went. Was it thorough? Were there pieces you wished to include if you had had that data? Were there questions left unanswered? Were there deficiencies in the original data?
  8. Include a bibliography of all sources Submit your rendered/knitted document to Word or pdf in the assignment dropbox.
unique(coaster1$Inversions)
[1] 1 0 7 4 3 2 5
times <- coaster2$del_t
hist(times)

butterfly <- coaster2$Butterfly
hist(butterfly)

thrills <- coaster2$thrillFactor
hist(thrills)

angle <- coaster2$lambda
hist(angle)