Class 4.1

iris 

Boxplot

box_plot = ggplot(iris, aes(x = variety, y = sepal.length, fill = variety)) +
  #fill for default color 
  #aes foe axis
geom_boxplot() +
  labs(title = "Boxplot using ggplot2",
       x = "Class",
       y = "Length") +
  
  theme(legend.position = "right",
        text = element_text(color = "black", size = 10),
        axis.text.x = element_text(color = "blue", size = 9),
        axis.text.y = element_text(color = "red", size = 8))
  box_plot
#save as a variable
ggsave("box_plot_500dpi.png", dpi = 500)
Saving 4.17 x 2.57 in image

#here the dot sign is a outlier

Violin Plot

ggplot(data = iris, aes(x = variety, y = sepal.length, fill = variety))+
  geom_violin()+
  labs(title = "This plot is created using ggplot",
       x = "Class",
       Y = "Sepal Length",
       caption = "Source = iris dataset")

# middle wide area indicate mean

To get mean

summary(iris)
  sepal.length  
 Min.   :4.300  
 1st Qu.:5.100  
 Median :5.800  
 Mean   :5.843  
 3rd Qu.:6.400  
 Max.   :7.900  
  sepal.width   
 Min.   :2.000  
 1st Qu.:2.800  
 Median :3.000  
 Mean   :3.057  
 3rd Qu.:3.300  
 Max.   :4.400  
  petal.length  
 Min.   :1.000  
 1st Qu.:1.600  
 Median :4.350  
 Mean   :3.758  
 3rd Qu.:5.100  
 Max.   :6.900  
  petal.width   
 Min.   :0.100  
 1st Qu.:0.300  
 Median :1.300  
 Mean   :1.199  
 3rd Qu.:1.800  
 Max.   :2.500  
   variety         
 Length:150        
 Class :character  
 Mode  :character  
                   
                   
                   

##Correlaton

cor(iris$sepal.length, iris$sepal.width)
[1] -0.1175698
#correlation value range from -1 to +1

Correlation Matrix

cor_matrix = cor(iris[ ,1:4])
cor_matrix
             sepal.length
sepal.length    1.0000000
sepal.width    -0.1175698
petal.length    0.8717538
petal.width     0.8179411
             sepal.width
sepal.length  -0.1175698
sepal.width    1.0000000
petal.length  -0.4284401
petal.width   -0.3661259
             petal.length
sepal.length    0.8717538
sepal.width    -0.4284401
petal.length    1.0000000
petal.width     0.9628654
             petal.width
sepal.length   0.8179411
sepal.width   -0.3661259
petal.length   0.9628654
petal.width    1.0000000
#to see correlation from 1 to 4 column, it has to be numerical value

Heatmap

library(ggcorrplot)
ggcorrplot(cor_matrix)

#to understand correlation among variables

###Lower triangle

library(ggcorrplot)
ggcorrplot(cor_matrix, type = "lower")

###Upper triangle

library(ggcorrplot)
ggcorrplot(cor_matrix, type = "upper")

To Change Color

ggcorrplot(cor_matrix, type = "lower",
           color = c("blue", "purple","white"))

To Show plot with Value

ggcorrplot(cor_matrix, type = "lower",
           color = c("blue", "purple","white"),
           lab = TRUE)

Pairplot : To show all data in one plot

library(GGally)
ggpairs(iris, aes(color = variety))

Interractive plot

library(plotly)
#pipeline operator (%>%): to apply conditions
fig = iris %>%
  plot_ly(y= ~sepal.length, type = "violin")
  fig
library(plotly)
#pipeline operator (%>%): to apply conditions
fig = iris %>%
  plot_ly(y= ~sepal.length, type = "box")
  fig
library(plotly)
#pipeline operator (%>%): to apply conditions
fig = iris %>%
  plot_ly(x= ~sepal.length, type = "histogram")
  fig

To show plots

plot_ly(iris, x = ~variety, y = ~ sepal.length, type = "box")
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyBDbGFzcyA0LjENCg0KYGBge3J9DQppcmlzIA0KYGBgDQoNCiMjIEJveHBsb3QNCg0KYGBge3J9DQpib3hfcGxvdCA9IGdncGxvdChpcmlzLCBhZXMoeCA9IHZhcmlldHksIHkgPSBzZXBhbC5sZW5ndGgsIGZpbGwgPSB2YXJpZXR5KSkgKw0KICAjZmlsbCBmb3IgZGVmYXVsdCBjb2xvciANCiAgI2FlcyBmb2UgYXhpcw0KZ2VvbV9ib3hwbG90KCkgKw0KICBsYWJzKHRpdGxlID0gIkJveHBsb3QgdXNpbmcgZ2dwbG90MiIsDQogICAgICAgeCA9ICJDbGFzcyIsDQogICAgICAgeSA9ICJMZW5ndGgiKSArDQogIA0KICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAicmlnaHQiLA0KICAgICAgICB0ZXh0ID0gZWxlbWVudF90ZXh0KGNvbG9yID0gImJsYWNrIiwgc2l6ZSA9IDEwKSwNCiAgICAgICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoY29sb3IgPSAiYmx1ZSIsIHNpemUgPSA5KSwNCiAgICAgICAgYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoY29sb3IgPSAicmVkIiwgc2l6ZSA9IDgpKQ0KICBib3hfcGxvdA0KI3NhdmUgYXMgYSB2YXJpYWJsZQ0KZ2dzYXZlKCJib3hfcGxvdF81MDBkcGkucG5nIiwgZHBpID0gNTAwKQ0KI2hlcmUgdGhlIGRvdCBzaWduIGlzIGEgb3V0bGllcg0KYGBgDQoNCiMjIFZpb2xpbiBQbG90DQpgYGB7cn0NCmdncGxvdChkYXRhID0gaXJpcywgYWVzKHggPSB2YXJpZXR5LCB5ID0gc2VwYWwubGVuZ3RoLCBmaWxsID0gdmFyaWV0eSkpKw0KICBnZW9tX3Zpb2xpbigpKw0KICBsYWJzKHRpdGxlID0gIlRoaXMgcGxvdCBpcyBjcmVhdGVkIHVzaW5nIGdncGxvdCIsDQogICAgICAgeCA9ICJDbGFzcyIsDQogICAgICAgWSA9ICJTZXBhbCBMZW5ndGgiLA0KICAgICAgIGNhcHRpb24gPSAiU291cmNlID0gaXJpcyBkYXRhc2V0IikNCiMgbWlkZGxlIHdpZGUgYXJlYSBpbmRpY2F0ZSBtZWFuDQpgYGANCiMjIFRvIGdldCBtZWFuDQpgYGB7cn0NCnN1bW1hcnkoaXJpcykNCmBgYA0KDQojI0NvcnJlbGF0b24NCg0KYGBge3J9DQpjb3IoaXJpcyRzZXBhbC5sZW5ndGgsIGlyaXMkc2VwYWwud2lkdGgpDQojY29ycmVsYXRpb24gdmFsdWUgcmFuZ2UgZnJvbSAtMSB0byArMQ0KYGBgDQojIyMgQ29ycmVsYXRpb24gTWF0cml4DQpgYGB7cn0NCmNvcl9tYXRyaXggPSBjb3IoaXJpc1sgLDE6NF0pDQpjb3JfbWF0cml4DQojdG8gc2VlIGNvcnJlbGF0aW9uIGZyb20gMSB0byA0IGNvbHVtbiwgaXQgaGFzIHRvIGJlIG51bWVyaWNhbCB2YWx1ZQ0KYGBgDQojIyBIZWF0bWFwDQpgYGB7cn0NCmxpYnJhcnkoZ2djb3JycGxvdCkNCmdnY29ycnBsb3QoY29yX21hdHJpeCkNCiN0byB1bmRlcnN0YW5kIGNvcnJlbGF0aW9uIGFtb25nIHZhcmlhYmxlcw0KYGBgDQojIyNMb3dlciB0cmlhbmdsZQ0KYGBge3J9DQpsaWJyYXJ5KGdnY29ycnBsb3QpDQpnZ2NvcnJwbG90KGNvcl9tYXRyaXgsIHR5cGUgPSAibG93ZXIiKQ0KYGBgDQojIyNVcHBlciB0cmlhbmdsZQ0KYGBge3J9DQpsaWJyYXJ5KGdnY29ycnBsb3QpDQpnZ2NvcnJwbG90KGNvcl9tYXRyaXgsIHR5cGUgPSAidXBwZXIiKQ0KYGBgDQojIyMgVG8gQ2hhbmdlIENvbG9yDQpgYGB7cn0NCmdnY29ycnBsb3QoY29yX21hdHJpeCwgdHlwZSA9ICJsb3dlciIsDQogICAgICAgICAgIGNvbG9yID0gYygiYmx1ZSIsICJwdXJwbGUiLCJ3aGl0ZSIpKQ0KYGBgDQojIyMgVG8gU2hvdyBwbG90IHdpdGggVmFsdWUNCmBgYHtyfQ0KZ2djb3JycGxvdChjb3JfbWF0cml4LCB0eXBlID0gImxvd2VyIiwNCiAgICAgICAgICAgY29sb3IgPSBjKCJibHVlIiwgInB1cnBsZSIsIndoaXRlIiksDQogICAgICAgICAgIGxhYiA9IFRSVUUpDQpgYGANCiMjIFBhaXJwbG90IDogVG8gc2hvdyBhbGwgZGF0YSBpbiBvbmUgcGxvdA0KYGBge3J9DQpsaWJyYXJ5KEdHYWxseSkNCmdncGFpcnMoaXJpcywgYWVzKGNvbG9yID0gdmFyaWV0eSkpDQpgYGANCg0KDQojIyBJbnRlcnJhY3RpdmUgcGxvdA0KYGBge3J9DQpsaWJyYXJ5KHBsb3RseSkNCiNwaXBlbGluZSBvcGVyYXRvciAoJT4lKTogdG8gYXBwbHkgY29uZGl0aW9ucw0KZmlnID0gaXJpcyAlPiUNCiAgcGxvdF9seSh5PSB+c2VwYWwubGVuZ3RoLCB0eXBlID0gInZpb2xpbiIpDQogIGZpZw0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShwbG90bHkpDQojcGlwZWxpbmUgb3BlcmF0b3IgKCU+JSk6IHRvIGFwcGx5IGNvbmRpdGlvbnMNCmZpZyA9IGlyaXMgJT4lDQogIHBsb3RfbHkoeT0gfnNlcGFsLmxlbmd0aCwgdHlwZSA9ICJib3giKQ0KICBmaWcNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkocGxvdGx5KQ0KI3BpcGVsaW5lIG9wZXJhdG9yICglPiUpOiB0byBhcHBseSBjb25kaXRpb25zDQpmaWcgPSBpcmlzICU+JQ0KICBwbG90X2x5KHg9IH5zZXBhbC5sZW5ndGgsIHR5cGUgPSAiaGlzdG9ncmFtIikNCiAgZmlnDQpgYGANCg0KIyMgVG8gc2hvdyBwbG90cw0KYGBge3J9DQpwbG90X2x5KGlyaXMsIHggPSB+dmFyaWV0eSwgeSA9IH4gc2VwYWwubGVuZ3RoLCB0eXBlID0gImJveCIpDQpgYGANCg0KDQoNCg0KDQoNCg0K