# librarias
library(nortest)
library(corrplot)
library(car)
library(ellipse)
library(mvnormalTest)
library(ACSWR)
library(Hotelling)
library(psych)
library(biotools)

Os dados a seguir contém informações sobre duas variáveis medidas em 45 aves fêmeas e 45 aves machos da especie hook-billed kites (veja a segunda questão 2 da primeira aula prática), a saber, comprimento da cauda \((x_1)\) e comprimento das asas \((x_2)\). Examine a normalidade bivariada dos dados, e identifique valores discrepantes.

birds_data_female<- read.table("~/Documents/Cursos_GET_UFF/20241GET00126A1/Datasets/birds_female.dat")
colnames(birds_data_female) <- c("tail_length","wing_length")

birds_data_male<- read.table("~/Documents/Cursos_GET_UFF/20241GET00126A1/Datasets/birds_male.dat")
colnames(birds_data_male) <- c("tail_length","wing_length")

group <- factor(c(rep("F",45), rep("M",45)))

birds_data_complete <- data.frame(rbind(birds_data_female,birds_data_male))
birds_data_complete$group <- group
birds_data_complete
pairs(birds_data_female, pch = 21, bg = "coral")

pairs(birds_data_male,pch = 21, bg = "purple")

pairs(birds_data_complete[,c(1,2)], pch = 21, bg=c("coral","purple")[birds_data_complete$group])

Aves Fêmeas

par(mfrow=c(2,2))
nvar  <- ncol(birds_data_female)
nomes <- names(birds_data_female)
for (i in 1:ncol(birds_data_female)) {
  hist(birds_data_female[,i], main = paste("Histograma de",nomes[i]), xlab = paste(nomes[i]))
  plot(density(birds_data_female[,i]), main = paste("Densidade de",nomes[i]))
}

Aves Machos

par(mfrow=c(2,2))
nvar  <- ncol(birds_data_male)
nomes <- names(birds_data_male)
for (i in 1:ncol(birds_data_male)) {
  hist(birds_data_male[,i], main = paste("Histograma de",nomes[i]), xlab = paste(nomes[i]))
  plot(density(birds_data_male[,i]), main = paste("Densidade de",nomes[i]))
}

mvnormalTest::mardia(birds_data_female)
$mv.test

$uv.shapiro
            W      p-value UV.Normality
tail_length 0.9698 0.2857  Yes         
wing_length 0.9813 0.6726  Yes         

Teste \(T^2\) de Hotelling

X1 <- birds_data_female
X2 <- birds_data_male
#vetor de médias por sexo
X1_barra = apply(X1,2,mean)
X2_barra = apply(X2,2,mean)

# matrizes de covariâncias por sexo
S1 = cov(X1)
S2 = cov(X2)

# estimativa da matriz de covariâncias (pooled estimador)
p = ncol(X1) 
n1 = nrow(X1)
n2 = nrow(X2)
W1 = (n1-1)*S1
W2 = (n2-1)*S2
# matriz de covariâncias pooled 
Spl = (W1 + W2)/(n1+n2-2) 
invSpl = solve(Spl)
# Estatística do teste T2 de Hotelling
t2calc = ((n1*n2)/(n1+n2))*t(X1_barra - X2_barra)%*%invSpl%*%(X1_barra-X2_barra)
# Transformando T2 pela F
fcalc = (n1+n2-1-p)/((n1+n2-2)*p)*t2calc
fcalc
         [,1]
[1,] 1.800573

Teste M de Box

boxM(data = birds_data_complete[,-3],grouping = birds_data_complete[,3])

    Box's M-test for Homogeneity of Covariance Matrices

data:  birds_data_complete[, -3]
Chi-Sq (approx.) = 27.536, df = 3, p-value = 4.546e-06
  1. Teste \(H_0: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = 0\). Qual a sua decisão?
  2. Qual o p-valor do teste? Lembre que \(F_{p,p(n_1+n_2-2),\alpha} = \frac{(n_1+n_2-1-p)}{(n_1+n_2-2)p}T^2_{p,n_1+n_2-2,\alpha}\)
  3. Usando que, \(T^2 = \frac{n_1n_2}{n_1+n_2}(\bar{\mathbf X}_1 - \bar{\mathbf X}_2)^\top\mathbf S_{pl}^{-1}(\bar{\mathbf X}_1 - \bar{\mathbf X}_2) \approx_{\mathcal D} \chi^2_p\) sob \(H_0\), para \(n_i - p\), \(i=1,2\) são grandes, realize um teste assintótico para testar \(H_0: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = 0\).
  4. A suposição de igualdade das matrizes de covariâncias das fêmeas e dos machos é razoável?
  5. Determine a elipse de 95% de confiança para \(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\) e os intervalos de confiança simultâneos para os componentes de \(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\).
  6. Removendo o(s) valor(es) discrepantes, refaça (a)-(d).
  7. Consulte sobre as funções hotelling.stat() e hotelling.test() do pacote Hotelling.
LS0tCnRpdGxlOiAiQXVsYSBQcsOhdGljYSAyIChHRVQwMDEyNikgLSBUZXN0ZXMgcGFyYSBjb21wYXJhw6fDo28gZGUgZHVhcyBwb3B1bGHDp8O1ZXMgbm9ybWFpcyBtdWx0aXZhcmlhZGFzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpgYGB7ciBzZXR1cCwgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0KIyBsaWJyYXJpYXMKbGlicmFyeShub3J0ZXN0KQpsaWJyYXJ5KGNvcnJwbG90KQpsaWJyYXJ5KGNhcikKbGlicmFyeShlbGxpcHNlKQpsaWJyYXJ5KG12bm9ybWFsVGVzdCkKbGlicmFyeShBQ1NXUikKbGlicmFyeShIb3RlbGxpbmcpCmxpYnJhcnkocHN5Y2gpCmxpYnJhcnkoYmlvdG9vbHMpCmBgYAoKT3MgZGFkb3MgYSBzZWd1aXIgY29udMOpbSBpbmZvcm1hw6fDtWVzIHNvYnJlIGR1YXMgdmFyacOhdmVpcyBtZWRpZGFzIGVtIDQ1IGF2ZXMgZsOqbWVhcyBlIDQ1IGF2ZXMgbWFjaG9zIGRhIGVzcGVjaWUgKmhvb2stYmlsbGVkIGtpdGVzKiAodmVqYSBhIFtzZWd1bmRhIHF1ZXN0w6NvIDIgZGEgcHJpbWVpcmEgYXVsYSBwcsOhdGljYV0oaHR0cHM6Ly9ycHVicy5jb20vanV0cmlhdmFsZGVzL0FQMV9OTVYpKSwgYSBzYWJlciwgY29tcHJpbWVudG8gZGEgY2F1ZGEgJCh4XzEpJCBlIGNvbXByaW1lbnRvIGRhcyBhc2FzICQoeF8yKSQuIEV4YW1pbmUgYSBub3JtYWxpZGFkZSBiaXZhcmlhZGEgZG9zIGRhZG9zLCBlIGlkZW50aWZpcXVlIHZhbG9yZXMgZGlzY3JlcGFudGVzLiAgIAoKYGBge3J9CmJpcmRzX2RhdGFfZmVtYWxlPC0gcmVhZC50YWJsZSgifi9Eb2N1bWVudHMvQ3Vyc29zX0dFVF9VRkYvMjAyNDFHRVQwMDEyNkExL0RhdGFzZXRzL2JpcmRzX2ZlbWFsZS5kYXQiKQpjb2xuYW1lcyhiaXJkc19kYXRhX2ZlbWFsZSkgPC0gYygidGFpbF9sZW5ndGgiLCJ3aW5nX2xlbmd0aCIpCgpiaXJkc19kYXRhX21hbGU8LSByZWFkLnRhYmxlKCJ+L0RvY3VtZW50cy9DdXJzb3NfR0VUX1VGRi8yMDI0MUdFVDAwMTI2QTEvRGF0YXNldHMvYmlyZHNfbWFsZS5kYXQiKQpjb2xuYW1lcyhiaXJkc19kYXRhX21hbGUpIDwtIGMoInRhaWxfbGVuZ3RoIiwid2luZ19sZW5ndGgiKQoKZ3JvdXAgPC0gZmFjdG9yKGMocmVwKCJGIiw0NSksIHJlcCgiTSIsNDUpKSkKCmJpcmRzX2RhdGFfY29tcGxldGUgPC0gZGF0YS5mcmFtZShyYmluZChiaXJkc19kYXRhX2ZlbWFsZSxiaXJkc19kYXRhX21hbGUpKQpiaXJkc19kYXRhX2NvbXBsZXRlJGdyb3VwIDwtIGdyb3VwCmJpcmRzX2RhdGFfY29tcGxldGUKYGBgCgpgYGB7cn0KcGFpcnMoYmlyZHNfZGF0YV9mZW1hbGUsIHBjaCA9IDIxLCBiZyA9ICJjb3JhbCIpCnBhaXJzKGJpcmRzX2RhdGFfbWFsZSxwY2ggPSAyMSwgYmcgPSAicHVycGxlIikKcGFpcnMoYmlyZHNfZGF0YV9jb21wbGV0ZVssYygxLDIpXSwgcGNoID0gMjEsIGJnPWMoImNvcmFsIiwicHVycGxlIilbYmlyZHNfZGF0YV9jb21wbGV0ZSRncm91cF0pCmBgYAojIyBBdmVzIEbDqm1lYXMKCmBgYHtyfQpwYXIobWZyb3c9YygyLDIpKQpudmFyICA8LSBuY29sKGJpcmRzX2RhdGFfZmVtYWxlKQpub21lcyA8LSBuYW1lcyhiaXJkc19kYXRhX2ZlbWFsZSkKZm9yIChpIGluIDE6bmNvbChiaXJkc19kYXRhX2ZlbWFsZSkpIHsKICBoaXN0KGJpcmRzX2RhdGFfZmVtYWxlWyxpXSwgbWFpbiA9IHBhc3RlKCJIaXN0b2dyYW1hIGRlIixub21lc1tpXSksIHhsYWIgPSBwYXN0ZShub21lc1tpXSkpCiAgcGxvdChkZW5zaXR5KGJpcmRzX2RhdGFfZmVtYWxlWyxpXSksIG1haW4gPSBwYXN0ZSgiRGVuc2lkYWRlIGRlIixub21lc1tpXSkpCn0KYGBgCiMjIEF2ZXMgTWFjaG9zCgpgYGB7cn0KcGFyKG1mcm93PWMoMiwyKSkKbnZhciAgPC0gbmNvbChiaXJkc19kYXRhX21hbGUpCm5vbWVzIDwtIG5hbWVzKGJpcmRzX2RhdGFfbWFsZSkKZm9yIChpIGluIDE6bmNvbChiaXJkc19kYXRhX21hbGUpKSB7CiAgaGlzdChiaXJkc19kYXRhX21hbGVbLGldLCBtYWluID0gcGFzdGUoIkhpc3RvZ3JhbWEgZGUiLG5vbWVzW2ldKSwgeGxhYiA9IHBhc3RlKG5vbWVzW2ldKSkKICBwbG90KGRlbnNpdHkoYmlyZHNfZGF0YV9tYWxlWyxpXSksIG1haW4gPSBwYXN0ZSgiRGVuc2lkYWRlIGRlIixub21lc1tpXSkpCn0KYGBgCmBgYHtyfQptdm5vcm1hbFRlc3Q6Om1hcmRpYShiaXJkc19kYXRhX2ZlbWFsZSkKYGBgCgojIyBUZXN0ZSAkVF4yJCBkZSBIb3RlbGxpbmcKCmBgYHtyfQpYMSA8LSBiaXJkc19kYXRhX2ZlbWFsZQpYMiA8LSBiaXJkc19kYXRhX21hbGUKI3ZldG9yIGRlIG3DqWRpYXMgcG9yIHNleG8KWDFfYmFycmEgPSBhcHBseShYMSwyLG1lYW4pClgyX2JhcnJhID0gYXBwbHkoWDIsMixtZWFuKQoKIyBtYXRyaXplcyBkZSBjb3ZhcmnDom5jaWFzIHBvciBzZXhvClMxID0gY292KFgxKQpTMiA9IGNvdihYMikKCiMgZXN0aW1hdGl2YSBkYSBtYXRyaXogZGUgY292YXJpw6JuY2lhcyAocG9vbGVkIGVzdGltYWRvcikKcCA9IG5jb2woWDEpIApuMSA9IG5yb3coWDEpCm4yID0gbnJvdyhYMikKVzEgPSAobjEtMSkqUzEKVzIgPSAobjItMSkqUzIKIyBtYXRyaXogZGUgY292YXJpw6JuY2lhcyBwb29sZWQgClNwbCA9IChXMSArIFcyKS8objErbjItMikgCmludlNwbCA9IHNvbHZlKFNwbCkKIyBFc3RhdMOtc3RpY2EgZG8gdGVzdGUgVDIgZGUgSG90ZWxsaW5nCnQyY2FsYyA9ICgobjEqbjIpLyhuMStuMikpKnQoWDFfYmFycmEgLSBYMl9iYXJyYSklKiVpbnZTcGwlKiUoWDFfYmFycmEtWDJfYmFycmEpCiMgVHJhbnNmb3JtYW5kbyBUMiBwZWxhIEYKZmNhbGMgPSAobjErbjItMS1wKS8oKG4xK24yLTIpKnApKnQyY2FsYwpmY2FsYwpgYGAKIyMgVGVzdGUgTSBkZSBCb3gKCmBgYHtyfQpib3hNKGRhdGEgPSBiaXJkc19kYXRhX2NvbXBsZXRlWywtM10sZ3JvdXBpbmcgPSBiaXJkc19kYXRhX2NvbXBsZXRlWywzXSkKYGBgCgooYSkgVGVzdGUgJEhfMDogXGJvbGRzeW1ib2x7XG11fV8xIC0gXGJvbGRzeW1ib2x7XG11fV8yID0gMCQuIFF1YWwgYSBzdWEgZGVjaXPDo28/ICAKKGIpIFF1YWwgbyBwLXZhbG9yIGRvIHRlc3RlPyBMZW1icmUgcXVlICRGX3twLHAobl8xK25fMi0yKSxcYWxwaGF9ID0gXGZyYWN7KG5fMStuXzItMS1wKX17KG5fMStuXzItMilwfVReMl97cCxuXzErbl8yLTIsXGFscGhhfSQKKGMpIFVzYW5kbyBxdWUsICRUXjIgPSBcZnJhY3tuXzFuXzJ9e25fMStuXzJ9KFxiYXJ7XG1hdGhiZiBYfV8xIC0gXGJhcntcbWF0aGJmIFh9XzIpXlx0b3BcbWF0aGJmIFNfe3BsfV57LTF9KFxiYXJ7XG1hdGhiZiBYfV8xIC0gXGJhcntcbWF0aGJmIFh9XzIpIFxhcHByb3hfe1xtYXRoY2FsIER9IFxjaGleMl9wJCBzb2IgJEhfMCQsIHBhcmEgJG5faSAtIHAkLCAkaT0xLDIkIHPDo28gZ3JhbmRlcywgcmVhbGl6ZSB1bSB0ZXN0ZSBhc3NpbnTDs3RpY28gcGFyYSB0ZXN0YXIgJEhfMDogXGJvbGRzeW1ib2x7XG11fV8xIC0gXGJvbGRzeW1ib2x7XG11fV8yID0gMCQuCihkKSBBIHN1cG9zacOnw6NvIGRlIGlndWFsZGFkZSBkYXMgbWF0cml6ZXMgZGUgY292YXJpw6JuY2lhcyBkYXMgZsOqbWVhcyBlIGRvcyBtYWNob3Mgw6kgcmF6b8OhdmVsPwooZSkgRGV0ZXJtaW5lIGEgZWxpcHNlIGRlIDk1JSBkZSBjb25maWFuw6dhIHBhcmEgJFxib2xkc3ltYm9se1xtdX1fMSAtIFxib2xkc3ltYm9se1xtdX1fMiQgZSBvcyBpbnRlcnZhbG9zIGRlIGNvbmZpYW7Dp2Egc2ltdWx0w6JuZW9zIHBhcmEgb3MgY29tcG9uZW50ZXMgZGUgJFxib2xkc3ltYm9se1xtdX1fMSAtIFxib2xkc3ltYm9se1xtdX1fMiQuIAooZikgUmVtb3ZlbmRvIG8ocykgdmFsb3IoZXMpIGRpc2NyZXBhbnRlcywgcmVmYcOnYSAoYSktKGQpLgooZykgQ29uc3VsdGUgc29icmUgYXMgZnVuw6fDtWVzIGBob3RlbGxpbmcuc3RhdCgpYCBlIGBob3RlbGxpbmcudGVzdCgpYCBkbyBwYWNvdGUgYEhvdGVsbGluZ2AuIAoK