Chapter 4
Water flows onto a flat surface at a rate of 5cm3 /s forming a
circular puddle 10mm deep. How fast is the radius growing when the
radius is: (a) 1 cm? (b) 10 cm? (c) 100 cm?
#Relevant data
Q <- 5 # Flow rate in cm^3/s
h <- 10 # Depth of the puddle in mm, converted to cm
dV_dt <- Q # Rate of change of volume, given by the flow rate
#A function to calculate the rate of change of the radius
rate_of_change_radius <- function(r) {
# Convert depth to cm
h_cm <- h / 10
#Calculating the volume of the puddle using the formula V = pi * r^2 * h
V <- pi * r^2 * h_cm
#Using the formula for the volume of a cylinder to find the rate of change of the radius
dV_dr <- 2 * pi * r * h_cm
#Calculating the rate of change of the radius using dV/dt = dV/dr * dr/dt
dR_dt <- dV_dt / dV_dr
return(dR_dt)
}
#Calculating the rate of change of the radius for each given radius value
radius_values <- c(1, 10, 100) # in cm
for (r in radius_values) {
rate <- rate_of_change_radius(r)
cat("When the radius is", r, "cm, the rate of change of the radius is", rate, "cm/s\n")
}
## When the radius is 1 cm, the rate of change of the radius is 0.7957747 cm/s
## When the radius is 10 cm, the rate of change of the radius is 0.07957747 cm/s
## When the radius is 100 cm, the rate of change of the radius is 0.007957747 cm/s
LS0tDQp0aXRsZTogImRhdGEgNjA1IERpc2N1c3Npb24gMTMiDQphdXRob3I6ICJMYXVyYSBCIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpDaGFwdGVyIDQNCg0KV2F0ZXIgZmxvd3Mgb250byBhIGZsYXQgc3VyZmFjZSBhdCBhIHJhdGUgb2YgNWNtMw0KL3MgZm9ybWluZyBhDQpjaXJjdWxhciBwdWRkbGUgMTBtbSBkZWVwLiBIb3cgZmFzdCBpcyB0aGUgcmFkaXVzIGdyb3dpbmcNCndoZW4gdGhlIHJhZGl1cyBpczoNCihhKSAxIGNtPw0KKGIpIDEwIGNtPw0KKGMpIDEwMCBjbT8NCg0KYGBge3J9DQojUmVsZXZhbnQgZGF0YQ0KUSA8LSA1ICAjIEZsb3cgcmF0ZSBpbiBjbV4zL3MNCmggPC0gMTAgICMgRGVwdGggb2YgdGhlIHB1ZGRsZSBpbiBtbSwgY29udmVydGVkIHRvIGNtDQpkVl9kdCA8LSBRICAjIFJhdGUgb2YgY2hhbmdlIG9mIHZvbHVtZSwgZ2l2ZW4gYnkgdGhlIGZsb3cgcmF0ZQ0KDQojQSBmdW5jdGlvbiB0byBjYWxjdWxhdGUgdGhlIHJhdGUgb2YgY2hhbmdlIG9mIHRoZSByYWRpdXMNCnJhdGVfb2ZfY2hhbmdlX3JhZGl1cyA8LSBmdW5jdGlvbihyKSB7DQogICMgQ29udmVydCBkZXB0aCB0byBjbQ0KICBoX2NtIDwtIGggLyAxMA0KICANCiAgI0NhbGN1bGF0aW5nIHRoZSB2b2x1bWUgb2YgdGhlIHB1ZGRsZSB1c2luZyB0aGUgZm9ybXVsYSBWID0gcGkgKiByXjIgKiBoDQogIFYgPC0gcGkgKiByXjIgKiBoX2NtDQogIA0KICAjVXNpbmcgdGhlIGZvcm11bGEgZm9yIHRoZSB2b2x1bWUgb2YgYSBjeWxpbmRlciB0byBmaW5kIHRoZSByYXRlIG9mIGNoYW5nZSBvZiB0aGUgcmFkaXVzDQogIGRWX2RyIDwtIDIgKiBwaSAqIHIgKiBoX2NtDQogIA0KICAjQ2FsY3VsYXRpbmcgdGhlIHJhdGUgb2YgY2hhbmdlIG9mIHRoZSByYWRpdXMgdXNpbmcgZFYvZHQgPSBkVi9kciAqIGRyL2R0DQogIGRSX2R0IDwtIGRWX2R0IC8gZFZfZHINCiAgDQogIHJldHVybihkUl9kdCkNCn0NCg0KI0NhbGN1bGF0aW5nIHRoZSByYXRlIG9mIGNoYW5nZSBvZiB0aGUgcmFkaXVzIGZvciBlYWNoIGdpdmVuIHJhZGl1cyB2YWx1ZQ0KcmFkaXVzX3ZhbHVlcyA8LSBjKDEsIDEwLCAxMDApICAjIGluIGNtDQpmb3IgKHIgaW4gcmFkaXVzX3ZhbHVlcykgew0KICByYXRlIDwtIHJhdGVfb2ZfY2hhbmdlX3JhZGl1cyhyKQ0KICBjYXQoIldoZW4gdGhlIHJhZGl1cyBpcyIsIHIsICJjbSwgdGhlIHJhdGUgb2YgY2hhbmdlIG9mIHRoZSByYWRpdXMgaXMiLCByYXRlLCAiY20vc1xuIikNCn0NCg0KYGBgDQoNCg==