#Cargamos los datos.
load("C:/Users/FEBRERO/Downloads/datos_parcial.RData")
print(sat)
##                expend ratio salary takers verbal math total
## Alabama         4.405  17.2 31.144      8    491  538  1029
## Alaska          8.963  17.6 47.951     47    445  489   934
## Arizona         4.778  19.3 32.175     27    448  496   944
## Arkansas        4.459  17.1 28.934      6    482  523  1005
## California      4.992  24.0 41.078     45    417  485   902
## Colorado        5.443  18.4 34.571     29    462  518   980
## Connecticut     8.817  14.4 50.045     81    431  477   908
## Delaware        7.030  16.6 39.076     68    429  468   897
## Florida         5.718  19.1 32.588     48    420  469   889
## Georgia         5.193  16.3 32.291     65    406  448   854
## Hawaii          6.078  17.9 38.518     57    407  482   889
## Idaho           4.210  19.1 29.783     15    468  511   979
## Illinois        6.136  17.3 39.431     13    488  560  1048
## Indiana         5.826  17.5 36.785     58    415  467   882
## Iowa            5.483  15.8 31.511      5    516  583  1099
## Kansas          5.817  15.1 34.652      9    503  557  1060
## Kentucky        5.217  17.0 32.257     11    477  522   999
## Louisiana       4.761  16.8 26.461      9    486  535  1021
## Maine           6.428  13.8 31.972     68    427  469   896
## Maryland        7.245  17.0 40.661     64    430  479   909
## Massachusetts   7.287  14.8 40.795     80    430  477   907
## Michigan        6.994  20.1 41.895     11    484  549  1033
## Minnesota       6.000  17.5 35.948      9    506  579  1085
## Mississippi     4.080  17.5 26.818      4    496  540  1036
## Missouri        5.383  15.5 31.189      9    495  550  1045
## Montana         5.692  16.3 28.785     21    473  536  1009
## Nebraska        5.935  14.5 30.922      9    494  556  1050
## Nevada          5.160  18.7 34.836     30    434  483   917
## New Hampshire   5.859  15.6 34.720     70    444  491   935
## New Jersey      9.774  13.8 46.087     70    420  478   898
## New Mexico      4.586  17.2 28.493     11    485  530  1015
## New York        9.623  15.2 47.612     74    419  473   892
## North Carolina  5.077  16.2 30.793     60    411  454   865
## North Dakota    4.775  15.3 26.327      5    515  592  1107
## Ohio            6.162  16.6 36.802     23    460  515   975
## Oklahoma        4.845  15.5 28.172      9    491  536  1027
## Oregon          6.436  19.9 38.555     51    448  499   947
## Pennsylvania    7.109  17.1 44.510     70    419  461   880
## Rhode Island    7.469  14.7 40.729     70    425  463   888
## South Carolina  4.797  16.4 30.279     58    401  443   844
## South Dakota    4.775  14.4 25.994      5    505  563  1068
## Tennessee       4.388  18.6 32.477     12    497  543  1040
## Texas           5.222  15.7 31.223     47    419  474   893
## Utah            3.656  24.3 29.082      4    513  563  1076
## Vermont         6.750  13.8 35.406     68    429  472   901
## Virginia        5.327  14.6 33.987     65    428  468   896
## Washington      5.906  20.2 36.151     48    443  494   937
## West Virginia   6.107  14.8 31.944     17    448  484   932
## Wisconsin       6.930  15.9 37.746      9    501  572  1073
## Wyoming         6.160  14.9 31.285     10    476  525  1001
  1. Estimar el modelo.
options(scipen = 9999999)
estimacion_modelo<- lm(formula = total~expend+ratio+salary+takers, data =sat)
summary(estimacion_modelo)
## 
## Call:
## lm(formula = total ~ expend + ratio + salary + takers, data = sat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -90.531 -20.855  -1.746  15.979  66.571 
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept) 1045.9715    52.8698  19.784 < 0.0000000000000002 ***
## expend         4.4626    10.5465   0.423                0.674    
## ratio         -3.6242     3.2154  -1.127                0.266    
## salary         1.6379     2.3872   0.686                0.496    
## takers        -2.9045     0.2313 -12.559 0.000000000000000261 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 32.7 on 45 degrees of freedom
## Multiple R-squared:  0.8246, Adjusted R-squared:  0.809 
## F-statistic: 52.88 on 4 and 45 DF,  p-value: < 0.00000000000000022
  1. Calculamos un intervalo de confianza del 94.78% ´para las variables “expend” y “salary”.
#Para la variable exped.
confint(object = estimacion_modelo, parm = "expend", level = .9478)
##           2.61 %  97.39 %
## expend -16.57026 25.49545
#Para la variable salary.

confint(object = estimacion_modelo, parm = "salary", level = .9478)
##           2.61 %  97.39 %
## salary -3.122951 6.398786
  1. ¿El modelo resulta ser estadisticamente significativo? ## p-value: < 0.00000000000000022 ### El modelo no resulta ser siginifcativo por que el P value es cero.
  2. Calcular las matrices A, P y M.
#Calcumalmos Matriz A.

  #Formamos matriz x.
matriz_X<- model.matrix(estimacion_modelo)

    #Formamos la sigma matriz.
matriz_XX<-t(matriz_X)%*%matriz_X

matriz_A<-solve(matriz_XX)%*%t(matriz_X)
print(matriz_A [1:5,5:1 ])
##               California      Arkansas       Arizona       Alaska       Alabama
## (Intercept) -0.422174416  0.1780225369 -0.0728991868 -0.471973891  0.2565261764
## expend      -0.057183953 -0.0250904587 -0.0045991810  0.058318347 -0.0750342914
## ratio        0.016661935 -0.0062815391  0.0093052725  0.013399464 -0.0177255005
## salary       0.013923827  0.0034232104 -0.0013112799 -0.001220096  0.0154718688
## takers       0.000397894 -0.0006580417  0.0002514394 -0.001016023 -0.0009500899
#Calculamos matriz P.
matriz_P<-matriz_X%*%matriz_A
print(matriz_P[1:5,5:1 ])
##            California    Arkansas     Arizona      Alaska     Alabama
## Alabama    0.04934236  0.06080472  0.02806512 -0.03073763  0.09537668
## Alaska     0.04489829 -0.02419993 -0.00140838  0.18030612 -0.03073763
## Arizona    0.08491826  0.02928129  0.04931612 -0.00140838  0.02806512
## Arkansas   0.01302079  0.05382878  0.02928129 -0.02419993  0.06080472
## California 0.28211791  0.01302079  0.08491826  0.04489829  0.04934236
#Calculamos matriz M.
n<-nrow(matriz_X)
matriz_M<-diag(n)-matriz_P
print(matriz_M[1:5,5:1 ])
##             California    Arkansas     Arizona      Alaska     Alabama
## Alabama    -0.04934236 -0.06080472 -0.02806512  0.03073763  0.90462332
## Alaska     -0.04489829  0.02419993  0.00140838  0.81969388  0.03073763
## Arizona    -0.08491826 -0.02928129  0.95068388  0.00140838 -0.02806512
## Arkansas   -0.01302079  0.94617122 -0.02928129  0.02419993 -0.06080472
## California  0.71788209 -0.01302079 -0.08491826 -0.04489829 -0.04934236