Create a random forest model to predict customer attrition using the CreditCardData data from the AER package
The total transaction count followed by total transaction amount is
the greatest indicator for whether someone will be an attrited customer.
Using the validation data, it is observed that the model is able to:
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 2990
##
##
## | val$predicted_Attrition_Flag
## val$Attrition_Flag | Attrited Customer | Existing Customer | Row Total |
## -------------------|-------------------|-------------------|-------------------|
## Attrited Customer | 392 | 90 | 482 |
## | 1558.549 | 253.999 | |
## | 0.813 | 0.187 | 0.161 |
## | 0.936 | 0.035 | |
## | 0.131 | 0.030 | |
## -------------------|-------------------|-------------------|-------------------|
## Existing Customer | 27 | 2481 | 2508 |
## | 299.530 | 48.815 | |
## | 0.011 | 0.989 | 0.839 |
## | 0.064 | 0.965 | |
## | 0.009 | 0.830 | |
## -------------------|-------------------|-------------------|-------------------|
## Column Total | 419 | 2571 | 2990 |
## | 0.140 | 0.860 | |
## -------------------|-------------------|-------------------|-------------------|
##
##