Last Update:

Wednesday, April 17, 2024

Opening Value:

883.4

Highest Value:

887.75

Lowest Value:

839.5

Adj. Closing Value:

840.35

  • The forecast plot shows the forecasted Nvidia stock prices for the next 24 months.

  • The plot also shows the 80% prediction interval in dark purple and the 95% prediction interval in light purple.

  • The numeric values for these forecasted values and prediction intervals are shown in the next tab.

The table below shows the forecast values and 80% and 95% prediction intervals for the 24 requested forecasts for the Nvidia stock.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
May 2024 941.4121 916.4010 966.4232 903.1609 979.6633
Jun 2024 991.6224 947.6358 1035.6090 924.3507 1058.8941
Jul 2024 1041.5928 980.2802 1102.9054 947.8233 1135.3623
Aug 2024 1091.7778 1016.2333 1167.3222 976.2425 1207.3131
Sep 2024 1141.7708 1051.1109 1232.4308 1003.1184 1280.4232
Oct 2024 1191.9355 1087.4087 1296.4624 1032.0755 1351.7956
Nov 2024 1241.9467 1122.6083 1361.2851 1059.4344 1424.4590
Dec 2024 1292.0952 1158.5800 1425.6104 1087.9013 1496.2891
Jan 2025 1342.1209 1193.5872 1490.6546 1114.9583 1569.2835
Feb 2025 1392.2564 1229.0292 1555.4836 1142.6219 1641.8909
Mar 2025 1442.2937 1263.6418 1620.9456 1169.0692 1715.5182
Apr 2025 1492.4188 1298.4828 1686.3548 1195.8193 1789.0184
May 2025 1542.4654 1332.6091 1752.3217 1221.5179 1863.4129
Jun 2025 1592.5822 1366.8271 1818.3373 1247.3196 1937.8448
Jul 2025 1642.6362 1400.4236 1884.8489 1272.2040 2013.0685
Aug 2025 1692.7464 1434.0176 1951.4752 1297.0548 2088.4380
Sep 2025 1742.8064 1467.0648 2018.5480 1321.0960 2164.5168
Oct 2025 1792.9112 1500.0429 2085.7796 1345.0077 2240.8148
Nov 2025 1842.9759 1532.5341 2153.4178 1368.1961 2317.7558
Dec 2025 1893.0766 1564.9087 2221.2444 1391.1871 2394.9660
Jan 2026 1943.1450 1596.8445 2289.4456 1413.5241 2472.7660
Feb 2026 1993.2423 1628.6296 2357.8550 1435.6153 2550.8693
Mar 2026 2043.3138 1660.0148 2426.6128 1457.1085 2629.5191
Apr 2026 2093.4083 1691.2247 2495.5919 1478.3216 2708.4951
  • These three residual plots allow the analyst to examine the distribution of the residuals of the modeled time series.

This dashboard was created using Quarto in RStudio, and the R Language and Environment.

Data to create this dashboard was downloaded from Yahoo Finance.

Software Citations

Arnold J (2024). ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 5.1.0, https://CRAN.R-project.org/package=ggthemes.

Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3, https://CRAN.R-project.org/package=magrittr.

Hyndman R, Athanasopoulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M, Petropoulos F, Razbash S, Wang E, Yasmeen F (2024). forecast: Forecasting functions for time series and linear models. R package version 8.22.0, https://pkg.robjhyndman.com/forecast/.

Hyndman RJ, Khandakar Y (2008). “Automatic time series forecasting: the forecast package for R.” Journal of Statistical Software, 27(3), 1-22. doi:10.18637/jss.v027.i03 https://doi.org/10.18637/jss.v027.i03.

Neuwirth E (2022). RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, https://CRAN.R-project.org/package=RColorBrewer.

Posit team (2024). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rinker, T. W. & Kurkiewicz, D. (2017). pacman: Package Management for R. version 0.5.0. Buffalo, New York. http://github.com/trinker/pacman

Vanderkam D, Allaire J, Owen J, Gromer D, Thieurmel B (2018). dygraphs: Interface to ‘Dygraphs’ Interactive Time Series Charting Library. R package version 1.1.1.6, https://CRAN.R-project.org/package=dygraphs.

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686 https://doi.org/10.21105/joss.01686.

Xie Y (2023). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.45, https://yihui.org/knitr/.

Yihui Xie (2015) Dynamic Documents with R and knitr. 2nd edition. Chapman and Hall/CRC. ISBN 978-1498716963

Yihui Xie (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In Victoria Stodden, Friedrich Leisch and Roger D. Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN 978-1466561595